
Optimizing probability of barrier crossing with differentiable simulators
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Abstract

Simulating events that involve some energy bar-

rier often requires us to promote the barrier cross-

ing in order to increase the probability of the event.

One example of such a system can be a chemical

reaction which we propose to explore using dif-

ferentiable simulations. Transition path discovery

and estimation of the reaction barrier are merged

into a single end-to-end problem that is solved

by path-integral optimization. We show how the

probability of transition can be formulated in a

differentiable way and increase it by introducing

a trainable position-dependent bias function. We

also introduce improvements over standard meth-

ods making DiffSim training stable and efficient.

1. Introduction

A chemical reaction is a transition from one depression

(reactant, R) to another (product, P) on the potential en-

ergy surface (PES), this includes but is not limited to the

rearrangement of chemical bonds, the exchange between

conformers, and phase transitions. The reaction mechanism

is defined by the most likely paths connecting the two states.

Determining the reaction path is challenging due to the high

dimensionality of molecular configuration space, which can

have thousands of degrees of freedom (DoF). Standard un-

biased sampling algorithms like molecular dynamics (MD)

or Monte-Carlo (MC) often get trapped in stable regions,

making it inefficient to explore candidate paths that have

to cross low probability regions in phase space (Chipot &

Pohorille, 2007; Chipot, 2014). Hence, it is necessary to

bias the exploration.
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Finding reaction mechanisms is commonly divided into two

sub-tasks. First, a dimensionality reduction from all DoFs

down to the so-called collective variables (CVs) and second,

enhanced sampling along those CVs (Torrie et al., 1977;

Darve & Pohorille, 2001; Laio & Parrinello, 2002; Abrams

& Bussi, 2013; Spiwok et al., 2015; Valsson et al., 2016).

Recently, machine learning has partially automatized the

task of CV identification. (Sultan & Pande, 2018; Mendels

et al., 2018; Wehmeyer & Noé, 2018; Wang et al., 2019;

Bonati et al., 2020; Wang & Tiwary, 2021; Sun et al., 2022;

Šı́pka et al., 2022). The ideal CVs represent those DoFs,

which fully describe the rare transition event, and thus are

associated with the slowest motions. However, identifica-

tion of the ideal CVs requires knowledge of the transition

path that one is trying to discover, i.e., one still ends up with

the proverbial ”chicken-and-egg problem” (Rohrdanz et al.,

2013). A problem not solved by previously proposed ma-

chine learning based tools. Furthermore, once the CVs are

chosen it is very difficult to correct them on-the-fly. Once

equipped with a good, low-dimensional representation of

the chemical reaction, enhanced sampling algorithms usu-

ally introduce a biasing potential such that the occurrence

of reactive events is increased significantly. Subsequent

analysis can yield the reaction mechanism, reaction barrier,

and rate constant.

Differentiable Simulations (DiffSims) have been developed

for optimization, control, and learning of motion (Degrave

et al., 2016; de Avila Belbute-Peres et al., 2018; Hu et al.,

2019; 2020), but also for quantities of interest in molec-

ular dynamics (Wang et al., 2020; Ingraham et al., 2019;

Greener & Jones, 2021). Differentiating along trajectories

follows naturally from optimizing path-dependent quantities.

DiffSim results are often promising, but it is well known

(Metz et al., 2021) that naı̈vely backpropagated gradients

may vanish or explode. This problem is associated with

the spectrum of the system’s Jacobian (Metz et al., 2021;

Galimberti et al., 2021). Therefore, in order to use DiffSim

successfully, gradients have to become controllable. Here,

the loss gradient behaviour is thoroughly studied, and mech-

anisms to control fluctuations and magnitude are proposed.

Employing the improved DiffSim, we define a differentiable

loss function that, when minimized, results in the robust

training of a biasing potential, which enhances the sampling

of reactive transitions without prior determination of CVs.
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2. Problem Definition

Reaction processes on an atomistic level are explored using

molecular dynamics. Let U0(x) be the system’s PES, where

the column vector x ∈ R
N denotes the mass-weighted

coordinates of the system and p the conjugate momenta.

The PES is modified by a learnable bias term B(x, θ) to

increase the probability of the barrier crossing

U(x, θ) = U0(x) +B(x, θ). (1)

Commonly, the system is coupled to a thermostat to generate

trajectories from the canonical (NVT) ensemble (Callen &

Scott, 1998). Here, we choose the Langevin thermostat

because of its simplicity and its favorable properties with

respect to differentiating along the computational graph, as

will be shown later (see Section 3.2). The thermostat is

coupled to the system through the friction constant γ (2).

Hence, the biased dynamics evolve according to

ẋ(t) = p(t)

ṗ(t) = −
∂U(x(t))

∂x
− γp(t) +

√

2γkBTR(t),
(2)

where kb is the Boltzmann constant, T the absolute temper-

ature of the bath, and R(t) a Gaussian process.

2.1. Differentiable barrier crossing

It is often suitable to use general curvilinear coordinate to

describe reactions. These special coordinates are denoted

with ξ(x) ∈ R
M and M ≤ N . The wells Wα of reactant

(-1) and product (1), divided by a reaction barrier, are charac-

terized by the set of points Γα (α = −1, 1), corresponding

to equilibrium configurations in each well, i.e., an unbiased

simulation on the PES U0(x) is likely to stay in these wells.

The indicator function for a well is

⊮α(x) =

{

1 for x ∈ Wα

0 for x /∈ Wα.
(3)

Under suitable regularity conditions, we can cast the escape

probability pα of a trajectory X with x(t0) ∈ W
−α as

pα = P

(

sup
t<te

(⊮α(x(t)) > 0

∣

∣

∣

∣

x(t0) ∈ W
−α

)

. (4)

A soft loss function that is continuous everywhere and dif-

ferentiable is defined as

L = Lξ
α
=

{

0 if ∃ x(t) ∈ Wα

min
t0<t<te

(ξ(x(t))− ξα)
2 otherwise

,

(5)

where for each trajectory a random single ξα ∈ Γα is se-

lected for the loss function. The term (ξ(x(t)) − ξα)
2 is

the distance metric measuring how close a trajectory got

to the target. Other more complex metrics can be chosen.

Minimizing this loss function leads to a maximization of

the probability (4) and can be seen as the minimization of a

path-dependent integral. Note that the loss function is de-

fined only for one point of the trajectory and is influenced by

the dynamics of every preceding point. In this manuscript,

we only consider transitions between two wells, W
−1 and

W1. Additional basins would be handled analogously.

2.2. Differentiable simulations

The loss in (5) is minimized by optimizing the parameters

θ of the bias potential (1). Instead of saving the compu-

tational graph for the entire forward path, as it would be

extremely memory-demanding, the optimization process

can be conveniently reformulated using the adjoint equation.

With the adjoint vectors the system dynamics can be run

backwards, leading to memory-savings and the ability to ad-

just the extent of backpropagation based on the sought-after

dynamical scale (see Section 3). We employ the framework

and notation adapted recently for neural networks (Chen

et al., 2018) from the original work by (Lev Semenovich

Pontryagin et al., 1962).

Propagating z(t) = (x(t),p(t)) using f(z(t), θ) = ż(t)
(the right side of (2)) is called the forward process. No-

tice that f(z(t)) is only time-dependent through z(t). The

adjoint vectors are

a(t) =
∂L

∂z(t)
. (6)

To solve (6) we introduce the new time τ ∈ (0, τe) such

that z(τ = 0) = z(t = te) and z(τ = τe) = z(t = 0).
This backward flowing time reflects that the loss is only

influenced by preceding points in time. In backward flowing

time τ the adjoint vectors obey the equations

a(τ = 0) =
∂L

∂z(τ = 0)

ȧ(τ) = a(τ)T
∂f(z(τ), θ)

∂z
.

(7)

The total gradient of the loss function with respect to bias

parameters is then obtained by

∂L

∂θ
=

∫ τe

0

a(τ)T
∂f(z(τ), θ)

∂θ
dτ . (8)

While solving (7), z(τ) can be either saved or reconstructed

by running dynamics (2) backward, depending on the mem-

ory and computational trade-off. The algorithm for running

the adjoint method for the dynamics that includes random

noise is developed and analyzed in (Li et al., 2020).
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3. Challenges and Solutions

3.1. Challenges

Ideally, one would simulate the biased dynamics (2), com-

pute the loss (5), backpropagate by solving (7), and after a

number of training epochs obtain the biasing potential that

enhances transitions. However, currently the use of DiffSim

is hampered by the following issues:

1. Gradient control Past efforts have been devoted to

understand the behavior of gradients (their explosion or

vanishing) that arise while optimizing DiffSims (Suh

et al., 2022; Huang et al., 2021; Metz et al., 2021).

A DiffSim can be arbitrarily deep, however, it can

be challenging to controllably backpropagate complex

Hamiltonians. In fact, even simple Hamiltonians can

yield exploding gradients (Galimberti et al., 2021).

2. Multiscale Problem The dynamics on U0(x) can

include very high and very low frequency motions.

However, only the slow dynamics should be controlled

by the trainable bias, as those are associated with the

rare event. Avoiding fitting fast fluctuations reduces

the noise in the gradients used for training.

3. Chaotic behaviour Small changes in initial conditions

of some Hamiltonian systems can result in exponen-

tially different trajectories (Percival I, 1987).

4. One large parameter update per trajectory Diff-

Sims produce one update per trajectory. Obtaining

a sufficient number of gradient updates is expensive

when long trajectories are required.

We address all these challenges and show how to efficiently

and controllably learn slow dynamics necessary for the in-

vestigation of reactions.

3.2. Partial backpropagation

Stopping the flow of the gradient through x with the .de-

tach() operator introduced, e.g., in Refs. (Foerster et al.,

2018; Schulman et al., 2015; Zhang et al., 2019) reduces the

complexity and level of detail in the equations, the compu-

tational graph is pruned such that backpropagation occurs

only in the momenta. The mathematical idea behind the

use of .detach() operator is better explained in (Šı́pka et al.,

2023). We demonstrate how the approach suppresses high

order oscillation in Figure 1.

The use of the .detach() operator simplifies the adjoint time

derivative to

ȧ(τ) = aT ∂

∂p(τ)

(

−
∂U(x(τ))

∂x
− γp(τ) +

√

2γkBTR(τ)

)

= −aT (τ)
∂2U(x(τ))

∂2x
∆τ − γa(τ) .

(9)

Figure 1. Comparison of the adjoint evolution for original and

partially detached graphs for simulations on the 2D Müller-Brown

potential with parameters described in (Šı́pka et al., 2023).

Additionally, the .detach() operator allows for theorems de-

scribing the adjoint magnitude and its controllability by the

friction constant γ. Consider a trajectory xt generated by (2)

with time t in a possibly infinite time interval I ⊂ (−∞,∞).
The loss (5) is defined for a point xtL . To optimize B(x, θ),
we need to backpropagate the gradient of this loss through

every point preceding xtL , using backwards flowing time τ .

Definition 3.1 (Differentiable Trajectory). A Differen-

tiable Trajectory T is defined by the following quadruple

(z(t), L(z(tL), f(z(t)), f̃(z(t))): Let z(t) ∈ Ωx × Ωp

where Ωx ⊂ R
N and Ωp ⊂ R

N for t ∈ (ti, te), where

−∞ ≤ ti < te ≤ ∞ be the sequence of states generate by

the dynamics f(z(t)) from a certain initial state z(t0), t0 ∈
[ti, te]. We define a loss function L(z(tL)) at time tL. The

gradient dynamics of the loss function is guided by the dy-

namics f̃(z(t)) that includes possible .detach() operators.

The backward dynamics is represented in the reverse flowing

time τ starting from z(tL) = z(τ = 0) to z(τe) = z(ti).

This allows us to formulate a theorem, that is proven in

(Šı́pka et al., 2023)

Theorem 3.2 (Converging adjoints). Td be a Differentiable

Trajectory for the molecular dynamics presented in the pa-

per. Let U(x) ∈ C2(Ωx) and denote the spectrum of its

Hessian
∂
2
U(x(t))
∂2x

by λi(x(t)). Define λmin as

λmin = inf
τ>0

min
i

λi(x(τ)). (10)

Then for every γ that fulfills: (∆τλmin + γ) = ϵ > 0, it

holds:

∀τ > 0 : ∥a(τ)∥
2
≤ ∥a(0)∥

2
e−2ϵτ (11)

This theorem allows us to backpropagate the dynamics with-

out exploding gradients as long as γ is sufficiently large.

The exponential scaling of the adjoints also indicates that

after identifying the point for which the loss is calculated,

only a few points need to be considered before a(τ) van-
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Figure 2. Log-density of simulated points before (left) and after

the training (right) of bias function by differentiable simulations.

The right plot shows how well all important regions are sampled

after training. The background of the Figure is the UMB(x, y), the

underlying Muller-Brown potential.

ishes. Further adjoint propagation does not contribute to the

gradient update.

The theorem also highlights when backpropagation

may lead to exploding gradients. If the expression

(∆τλmin + γ) = ϵ < 0, then the upper bound may not

hold, and gradients can increase exponentially. A strongly

negative λi of the Hessian indicates a concave part in the

potential landscape, generally problematic for control. How-

ever, with ∆τ and γ, we have two robust dials to ensure

non-exploding adjoints.

3.3. Mini-batching the graph

To alleviate challenge 4 we introduce a technique called

graph mini-batching. The idea is to calculate trajectory

depended gradients first (the adjoints a) in one pass and

then split them to mini-batches. The adjoints are then used

during training as vectors in Jacobi-vector products (8). The

approach stabilizes learning and allows for much lower

learning rates, better suited for training neural networks. An

example of a use case is more thoroughly discussed in the

work (Šı́pka et al., 2023).

4. Applications

4.1. 2D Muller-Brown potential

Details of the Muller-Brown PES (Müller & Brown, 1979)

and the biasing function are given in (Šı́pka et al., 2023).

This PES is difficult as no linear combination of the Carte-

sian coordinates yields a good CV. After training the bias

potential via DiffSim, the biased dynamics generate increas-

ingly many successful transitions between reactants and

products along the expected transition path. Comparing

right and left side of Figure 2, the unbiased dynamics was

trapped in the local minima whereas the biased dynamics

Figure 3. left Bias function (right) log-density obtained from long

biased simulations.

produces an almost even log-density along the expected

transition path.

4.2. Cis-trans isomerization of azobenzene

Here, we study the cis-trans isomerization of azobenzene in

the electronic ground state (the reaction is shown in the right

side of Figure 3). A trained neural network potentials was

obtained from Ref. (Axelrod et al., 2022) and is used for

U0. For this system we chose two descriptors, the CNNC

dihedral angle and one NNC bond angle. These two angles

describe rotation and inversion mechanisms. See (Axel-

rod et al., 2022) for more details about different possible

mechanisms.

As the isomerization barrier is relatively high and reactant

and product geometries are comparatively stiff, the reaction

investigation is split into two steps. First, we simulate at

300 K with a relatively high learning rate to get an esti-

mate of the reaction barrier. Then, the bias is refined at

1000 K with a much lower learning rate (see left part of

Figure 3). The log-density (Figure 3, right side) obtained

from simulations with the fully trained bias clearly shows a

rotation assisted inversion mechanism. This is analogous to

the findings of (Axelrod et al., 2022).

5. Conclusion

We present a way for DiffSims to increase the probability of

a barrier crossing by learning a biasing potential. The effec-

tiveness of the framework is demonstrated on a common toy

system used for testing enhanced sampling algorithms and

on a challenging cis-trans isomerization. It is shown that a

neural network potential to can provide forces for a differen-

tiable simulator and create a setup suitable for accelerators

as dozens of replicas are simulated at the same time, signifi-

cantly speeding up the algorithm. In the theoretical section

of the manuscript, the gradient behavior in a differentiable

simulator is discussed and their convergence in a so called

detached and undetached regime is investigated.
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