
Differentiable Tree Operations Promote Compositional Generalization

Paul Soulos 1 † Edward Hu 2 † Kate McCurdy 3 † Yunmo Chen 4 † Roland Fernandez 5 Paul Smolensky 1 5

Jianfeng Gao 5

Abstract

In the context of structure-to-structure transfor-

mation tasks, learning sequences of discrete sym-

bolic operations poses significant challenges due

to their non-differentiability. To facilitate the

learning of these symbolic sequences, we intro-

duce a differentiable tree interpreter that compiles

high-level symbolic tree operations into subsym-

bolic matrix operations on tensors. We present

a novel Differentiable Tree Machine (DTM) ar-

chitecture that integrates our interpreter with an

external memory and an agent that learns to se-

quentially select tree operations to execute the

target transformation in an end-to-end manner.

With respect to out-of-distribution compositional

generalization on synthetic semantic parsing and

language generation tasks, DTM achieves 100%

while existing baselines such as Transformer,

Tree Transformer, LSTM, and Tree2Tree LSTM

achieve less than 30%. DTM remains highly in-

terpretable in addition to its perfect performance.

1. Introduction

Reasoning within the symbolic space through discrete sym-

bolic operations can lead to improved out-of-distribution

(OOD) generalization and enhanced interpretability. Despite

the significant advances in representation learning made by

modern deep learning, learning to directly manipulate dis-

crete symbolic structures remains a challenge. One key

issue is the non-differentiability of discrete symbolic opera-

tions, which makes them incompatible with gradient-based

learning methods. Continuous representations offer greater

learning capacity, but often at the expense of interpretability

1Department of Cognitive Science, Johns Hopkins University,
Baltimore, MD, USA 2Mila, Université de Montreal, Montreal,
CA 3School of Informatics, University of Edinburgh, Edinburgh,
UK 4Department of Computer Science, Johns Hopkins Univer-
sity, Baltimore, MD, USA 5Microsoft Research, Redmond, WA,
USA. †Work partially carried out while at Microsoft Research.
Correspondence to: Paul Soulos <psoulos1@jhu.edu>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

Differentiable Tree Machine (DTM)

Neural

Tree 

Agent

Differentiable 

Tree 

Interpreter

Tree

Memory

Figure 1. A high level overview of our model which consists of

three modules. The Neural Tree Agent is a learnable component

which, at each step of processing, selects the operation to perform

and the arguments over which to operate. The Differentiable Tree

Interpreter is a closed-form function precomputed at initialization

which compiles high level symbolic operations into subsymbolic

matrix operations on tensors. The output of the interpreter is a

blended tree that is written to Tree Memory, which functions as a

working memory to hold various partial and candidate trees. The

final tree written to memory is the output tree. Blue represents

the component with learnable parameters, and green represents

components that operate in tree space.

and compositional generalization.

In this work, we focus on binary trees and three Lisp oper-

ators: car, cdr, and cons (Steele, 1990) (also known as

left-child, right-child, and construct new tree). Examples

of these operations are shown in Figure 3. Tensor Product

Representation (TPR) provides a general encoding of struc-

tured symbolic objects in vector space (Smolensky, 1990).

Crucially, within the TPR space, these symbolic operators

on discrete objects become linear operators on continuous

vectors (§2). Unlike normal symbolic structures, the vector

space nature of TPRs allows blending multiple symbolic

structures as interpolations between classic discrete struc-

tures. We restrict processing over our TPR encodings to the

interpretable linear operations implementing the three Lisp

operators and their interpolations, making the computation

differentiable and accessible to backpropagation. Gradients

can flow through our differentiable tree operations, allowing

1



Differentiable Tree Operations Promote Compositional Generalization

us to optimize the sequencing and blending of linear opera-

tions using nonlinear deep learning models to parameterize

the decision space.

Employing TPRs to represent binary trees, we design a novel

Differentiable Tree Machine architecture, DTM1 (§3), capa-

ble of systematically manipulating binary trees (overview

shown in Figure 1). The DTM architecture achieves near-

perfect out-of-distribution generalization for the examined

synthetic tree-transduction tasks, on which previous models

such as Transformers, LSTMs, and their tree variants exhibit

weak or no out-of-distribution generalization. A discussion

of related work can be found in Appendix B.

2. Differentiable Tree Operations

In this work, we use a lossless encoding for structure in

vector space. Given a tree depth limit of depth D, the

total number of tree nodes is N = (bD+1 − 1)/(b − 1)
where b is the branching factor. We generate a set of N
orthonormal role vectors of dimension dr = N . For a

particular position ri in a tree, a filler fi is assigned to this

role by taking the outer product of the embedding vectors

for the filler and the role: fi ⊗ ri. The embedding of the

entire structure is the sum over the individual filler-role

combinations T =
∑N

i=1 fi ⊗ ri. Since the role vectors

are orthonormal, a filler fi can be recovered from T by the

inner product between T and ri, fi = Tri.

Moving forward, we will focus on the case of binary trees

(b = 2), which serve as the foundation for a substantial

amount of symbolic AI research. From the orthonormal role

set, we can generate matrices to perform the Lisp operators

car, cdr, and cons. For a tree node reached from the

root by following the path x, denote its role vector by rx;

e.g., r011 is the role vector reached by descending from the

root to the left (0th) child, then the right (1st) child, then the

right (1st) child. Let P = {rx∥ |x| < D} be the roles for

all paths from the root down to a depth less than D.

In order to extract the subtree which is the left child of the

root (Lisp car), we need to zero out the root node and

the right child subtree while moving each filler in the left

subtree up one level. Extracting the right subtree (Lisp cdr)

is a symmetrical process. This can be accomplished by:

car(T )=D0T ; cdr(T )=D1T ; Dc=IF ⊗
∑

x∈P rxr
⊤
cx

where I is the identity matrix on filler space.

Lisp cons constructs a new binary tree given two trees to

embed as the left- and right-child. In order to add a subtree

as the cth child of a new root node, we define Ec to add c to

the top of the path-from-the-root for each position:

1Code available at https://github.com/psoulos/

dtm.

cons(T0, T1) = E0T0 + E1T1; Ec = IF ⊗
∑

x∈P rcxr
⊤
x

When performing cons, a new filler s can be placed at

the parent node of the two subtrees T0 and T1 by adding

s ⊗ rroot to the output of cons. Our model uses linear

combination to blend the results of applying the three Lisp

operations. The output of step l ∈ 1 : L, when operating on

the arguments T⃗ (l) = (T
(l)
car, T

(l)
cdr, T

(l)
cons0, T

(l)
cons1), is

O(l)(w⃗(l), T⃗ (l), s(l)) = w(l)
carcar(T

(l)
car) + w

(l)
cdrcdr(T

(l)
cdr)

+w(l)
cons

(

cons(T
(l)
cons0, T

(l)
cons1) + s(l) ⊗ rroot

)

(1)

The three operations are weighted by the level-specific

weights w⃗(l) = (w
(l)
car, w

(l)
car, w

(l)
cons), which sum to 1.

3. Differentiable Tree Machine (DTM)

Architecture for Binary Tree

Transformation

In order to actualize the theory described in Section 2, we

introduce the Differentiable Tree Machine (DTM), a model

that is capable of learning how to perform operations over

binary trees. Since the primitive functions car, cdr, and

cons are precomputed at initialization from the orthogo-

nally generated role vectors, this learning problem reduces

to learning which operations to perform on which trees in

Tree Memory to arrive at a correct output. A high-level

overview of our model is given in Figure 1. DTM consists

of a learned component (Neural Tree Agent), a differen-

tiable pre-designed tree interpreter described in Equation 1,

and an external Tree Memory for storing trees.

At a given timestep l, our agent selects the inputs to Equation

1: the tree arguments for the operations (T⃗ (l)), the new root

symbol for cons (s(l)) and how much to weight the output

of each operation (w⃗(l)). To select T⃗ (l), DTM produces coef-

ficients over the trees in Tree Memory, where the coefficients

across trees in T⃗ (l) sum to 1. For example, if Tree Memory

contains only T0 & T1, weights a⃗
(l)
car = (a

(l)
car,0, a

(l)
car,1)

are computed to define the argument to car: T
(l)
car =

a
(l)
car,0T0 + a

(l)
car,1T1, and similarly for cdr and the two

arguments of cons. a⃗
(l)
T = (⃗a

(l)
car; a⃗

(l)
cdr; a⃗

(l)
cons0; a⃗

(l)
cons1)

denotes all such weights.

These decisions are computed within the Neural Tree

Agent module of DTM using a standard Transformer layer

(Vaswani et al., 2017) consisting of multiheaded self-

attention, a feedforward network, residual connections, and

layer norm. Figure 4 shows the computation in a single

step of DTM. When a binary tree is read from Tree Mem-

ory, it is compressed from the TPR dimension dtpr to the

Transformer input dimension dmodel using a linear trans-

formation Wshrink ∈ R
dtpr×dmodel . We also feed in two

special tokens to encode the operation-weighting coeffi-

2

https://github.com/psoulos/dtm
https://github.com/psoulos/dtm


Differentiable Tree Operations Promote Compositional Generalization

DATA SET DTM TRANSFORMER LSTM TREE2TREE TREE TRANSFORMER

CAR CDR SEQ

-TEST OOD LEXICAL .94 ± .04 .66 ± .00 .66 ± .00 .66 ± .00 .66 ± .00

-TEST OOD STRUCTURAL .93 ± .04 .68 ± .01 .47 ± .03 .74 ± .02 .64 ± .01

ACTIVE↔LOGICAL

-TEST OOD LEXICAL 1.0 ± .00 .00 ± .00 .00 ± .00 .00 ± .00 .00 ± .00

-TEST OOD STRUCTURAL 1.0 ± .00 .00 ± .00 .00 ± .00 .10 ± .03 .03 ± .01

PASSIVE↔LOGICAL

-TEST OOD LEXICAL 1.0 ± .00 .00 ± .00 .00 ± .00 .00 ± .00 .00 ± .00

-TEST OOD STRUCTURAL 1.0 ± .00 .00 ± .00 .00 ± .00 .19 ± .02 .00 ± .00

ACTIVE & PASSIVE→LOGICAL

-TEST OOD LEXICAL 1.0 ± .00 .00 ± .00 .00 ± .00 .00 ± .00 .00 ± .00

-TEST OOD STRUCTURAL 1.0 ± .00 .00 ± .00 .00 ± .00 .10 ± .01 .01 ± .00

Table 1. Mean accuracy and standard deviation across five random initializations on synthetic tree-to-tree transduction tasks using different

model architectures. All architectures achieve near perfect accuracy (¿95%) on the train and test IID splits across all four tasks. Test sets

include in-distribution and out-of-distribution splits.

cients and the new root-symbol prediction. In addition to

the standard parameters in a Transformer layer, our model in-

cludes three additional weight matrices Wop ∈ R
dmodel×3,

Wroot ∈ R
dmodel×dsymbol , and Warg ∈ R

dmodel×4. Wop

projects the operation token encoding into logits for the

three operations which are then normalized via softmax.

Wroot projects the root symbol token encoding into the new

root symbol. Warg projects the encoding of each TPR in

memory to logits for the four tree arguments, the input to

car, cdr, and cons left and right. The arguments for

each operator are a linear combination of all the TPRs in

memory, weighted by the softmax of the computed logits.

These values are used to create the output for this step as de-

scribed in equation 1 and the output TPR is written into Tree

Memory at the next sequential slot. For the beginning of the

next step, the contents of the Tree Memory are encoded to

model dimension by Wshrink and appended to the Neural

Tree Agent Transformer input sequence. The input to the

Neural Tree Agent grows by one compressed tree encoding

at each time step to incorporate the newly produced tree, as

shown in Figure 5.

The tree produced by the final step of our network is used as

the output (predicted tree). We minimize the mean-squared

error between the predicted symbol at each node in the

predicted tree and the target tree for all non-empty nodes in

the target tree. We penalize the norm of filled nodes in the

predicted tree that are empty in the target tree. Additional

training details can be found in Appendix D.1.

4. Empirical Validation

4.1. Datasets and Baselines

We introduce four tree-to-tree transformation tasks inspired

by semantic parsing and language generation with active

and passive voice: CAR CDR SEQ, Active↔Logical,

Passive↔Logical, and Active & Passive→Logical. Each

task has two out-of-distribution splits to test lexical and

structural generalization. The train split has 10,000 samples;

all of the other splits have 1250 samples. Additional details

about the three tasks are available in Appendix E.

We compare against standard seq2seq (Sutskever et al.,

2014) models and tree2tree models as our baselines. For

seq2seq models, we linearize our trees by coding them as

left-to-right sequences with parentheses to mark the tree

structure. Our seq2seq models are an Encoder-Decoder

Transformer (Vaswani et al., 2017) and an LSTM (Hochre-

iter & Schmidhuber, 1997). We test two tree2tree models:

Tree2Tree LSTM (Chen et al., 2018) and Tree Transformer

Shiv & Quirk (2019). Training details for the baselines can

be found in Appendix D.

4.2. Results

The results for DTM and the baselines can be seen in Table

1. All architectures achieve near perfect accuracy (¿95%)

on the train and test IID splits across all four tasks. While

the baselines perform similarly to DTM when compared on

train and test IID, the results are drastically different when

comparing the results across OOD splits. Across all tasks,

DTM generalizes similarly regardless of the split, whereas

the baselines struggle with lexical generalization and fail

completely at structural generalization.

The baseline models perform the best on CAR CDR SEQ,

whereas this is the most difficult task for DTM. We sus-

pect that tuning the hyperparameters for DTM directly on

this task would alleviate the less-than-perfect performance.

Despite performing less than perfectly, DTM performance

3



Differentiable Tree Operations Promote Compositional Generalization

on the OOD splits of CAR CDR SEQ outperforms all of

the baselines. Whereas CAR CDR SEQ involves identi-

fying a subtree (or subsequence for the baselines) within

the input, the other four tasks involve reorganizing the in-

put and potentially adding additional tokens in the case of

Passive↔Logical. On these linguistically-motivated tasks,

the baselines mostly achieve 0% OOD generalization, with

a maximum of 19%.

DTM can be compared against the other tree models to see

the effects of structured processing in vector space. While

the Tree2Tree LSTM and Tree Transformer are both capable

of representing trees, the processing that occurs over these

trees is still black-box nonlinear transformations. DTM

isolates black-box nonlinear transformations to the Neural

Tree Agent, while the processing over trees is factorized

into interpretable operations over tree structures with excel-

lent OOD generalization. This suggests that it is not the

tree encoding scheme itself that is critical, but rather the

processing that occurs over the trees. Ablation experiments

are shown in Appendix C.1.

4.3. Interpreting Inference as Programs

The output of the Neural Tree Agent at each timestep can be

interpreted as routing data and performing a predefined op-

eration. At convergence, we find that the path from the input

tree to the output tree is defined by interpretable one-hot soft-

max distributions. An example of our model’s behavior over

28 steps on Logical→Passive can be seen in Figure 2. In

particular, we were excited to find an emergent operation in

our model’s behavior. Transducing from Logical→Passive

not only requires rearranging nodes but also inserting new

words into the tree, “was” and “by”. At first glance, car,

cdr, and cons do not appear to support adding a new node

to memory. The model learns that taking cdr of a tree with

only a single child returns an empty tree (Step 2 in Figure

2); the empty tree can then be used as the inputs to cons in

order to write a new word as the root node with no children

on the left or right (Step 3). The programmatic nature of our

network at convergence — the fact that the weighting co-

efficients w⃗, a⃗ become 1-hot — makes it trivial to discover

how an undefined operation emerged during training.

5. Conclusions, Limitations, and Future Work

We introduce DTM, an architecture for leveraging differen-

tiable tree operations and an external memory to achieve

compositional generalization. DTM achieves 100% out-of-

distribution generalization for both lexical and structural

distributional shifts across a variety of synthetic tree-to-tree

tasks and is highly interpretable. Future work will focus on

allowing DTM to work with unstructured data which will

allow it to be evaluated on more datasets.

car

Tree Memory

S
te

p
 0

S

cdr

cons

cons

S
te

p
 1

S
te

p
 2

7
S

te
p
 3

S
te

p
 2

Agent/

Interpreter

O
u
tp

u
t

S
te

p
 2

6

cons

VP

Figure 2. An interpretable transformation from logical form to

passive. For readability, trees are shown here symbolically, but

Tree Memory contains the vector embeddings (TPRs) of these

trees. At each step, all of the items in memory from previous steps

are available to the agent/interpreter. Reads are shown in green

and writes in blue. The interpretation is discussed in Section 4.3.

4



Differentiable Tree Operations Promote Compositional Generalization

Acknowledgements

We are grateful to the Johns Hopkins Neurocompositional

Computation group, the Microsoft Research Redmond Deep

Learning Group, and the anonymous reviewers for helpful

comments. We are also grateful for the feedback provided by

Colin Wilson, Ricky Loynd and Steven Piantadosi. Soulos

was partly supported by the Cognitive Science Department

at Johns Hopkins. Any errors remain our own.

References

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural

module networks. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 39–48, 2015.

Bošnjak, M., Rocktäschel, T., Naradowsky, J., and Riedel,

S. Programming with a differentiable forth interpreter.

In Precup, D. and Teh, Y. W. (eds.), Proceedings of

the 34th International Conference on Machine Learn-

ing, volume 70 of Proceedings of Machine Learn-

ing Research, pp. 547–556. PMLR, 06–11 Aug 2017.

URL https://proceedings.mlr.press/v70/

bosnjak17a.html.

Chen, K., Huang, Q., Palangi, H., Smolensky, P., Forbus,

K., and Gao, J. Mapping natural-language problems to

formal-language solutions using structured neural rep-

resentations. In III, H. D. and Singh, A. (eds.), Pro-

ceedings of the 37th International Conference on Ma-

chine Learning, volume 119 of Proceedings of Machine

Learning Research, pp. 1566–1575. PMLR, 13–18 Jul

2020. URL https://proceedings.mlr.press/

v119/chen20g.html.

Chen, X., Liu, C., and Song, D. Tree-to-tree neural networks

for program translation. Advances in neural information

processing systems, 31, 2018.

Csordás, R., Irie, K., and Schmidhuber, J. The devil is in the

detail: Simple tricks improve systematic generalization

of transformers. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing,

pp. 619–634, 2021.

Dong, L. and Lapata, M. Language to logical form with neu-

ral attention. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume

1: Long Papers), pp. 33–43, 2016.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T.,

DeWolf, T., Tang, Y., and Rasmussen, D. A

large-scale model of the functioning brain. Sci-

ence, 338(6111):1202–1205, 2012. doi: 10.1126/

science.1225266. URL https://www.science.

org/doi/abs/10.1126/science.1225266.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cogni-

tive architecture: A critical analysis. Cognition, 28(1-2):

3–71, 1988.

Gayler, R. W. Vector symbolic architectures answer jackend-

off’s challenges for cognitive neuroscience. In Slezak, P.

(ed.), Proceedings of the ICCS/ASCS Joint International

Conference on Cognitive Science (ICCS/ASCS 2003), pp.

133–138, Sydney, NSW, AU, jul 2003. University of New

South Wales. URL http://arxiv.org/abs/cs/

0412059.

Graves, A., Wayne, G., and Danihelka, I. Neural turing

machines. ArXiv, abs/1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-

helka, I., Grabska-Barwinska, A., Colmenarejo, S. G.,

Grefenstette, E., Ramalho, T., Agapiou, J. P., Badia, A. P.,

Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King,

H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and

Hassabis, D. Hybrid computing using a neural network

with dynamic external memory. Nature, 538:471–476,

2016.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blun-

som, P. Learning to transduce with unbounded memory.

ArXiv, abs/1506.02516, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.

Neural Computation, 9:1735–1780, 1997.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. Compo-

sitionality decomposed: How do neural networks gen-

eralise? Journal of Artificial Intelligence Research, 67:

757–795, 2020.

Jang, E., Gu, S., and Poole, B. Categorical reparameter-

ization with gumbel-softmax. In International Confer-

ence on Learning Representations, 2017. URL https:

//openreview.net/forum?id=rkE3y85ee.

Jiang, Y., Celikyilmaz, A., Smolensky, P., Soulos, P., Rao,

S., Palangi, H., Fernandez, R., Smith, C., Bansal, M., and

Gao, J. Enriching transformers with structured tensor-

product representations for abstractive summarization. In

Proceedings of the 2021 Conference of the North Amer-

ican Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, pp. 4780–4793,

2021.

Joulin, A. and Mikolov, T. Inferring algorithmic patterns

with stack-augmented recurrent nets. In NIPS, 2015.

Kanerva, P. Hyperdimensional computing: An introduc-

tion to computing in distributed representation with high-

dimensional random vectors. Cognitive computation, 1:

139–159, 2009.

5

https://proceedings.mlr.press/v70/bosnjak17a.html
https://proceedings.mlr.press/v70/bosnjak17a.html
https://proceedings.mlr.press/v119/chen20g.html
https://proceedings.mlr.press/v119/chen20g.html
https://www.science.org/doi/abs/10.1126/science.1225266
https://www.science.org/doi/abs/10.1126/science.1225266
http://arxiv.org/abs/cs/0412059
http://arxiv.org/abs/cs/0412059
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee


Differentiable Tree Operations Promote Compositional Generalization

Kim, N. and Linzen, T. COGS: A compositional general-

ization challenge based on semantic interpretation. In

Proceedings of the 2020 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP), pp. 9087–

9105, Online, November 2020. Association for Computa-

tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.

731. URL https://aclanthology.org/2020.

emnlp-main.731.

Kim, N., Linzen, T., and Smolensky, P. Uncontrolled

lexical exposure leads to overestimation of composi-

tional generalization in pretrained models, 2022. URL

https://arxiv.org/abs/2212.10769.

Kleyko, D., Rachkovskij, D. A., Osipov, E., and Rahimi,

A. A survey on hyperdimensional computing aka vector

symbolic architectures, part i: Models and data transfor-

mations. ACM Comput. Surv., 55(6), dec 2022. ISSN

0360-0300. doi: 10.1145/3538531. URL https:

//doi.org/10.1145/3538531.

Kurach, K., Andrychowicz, M., and Sutskever, I. Neural

random access machines. ICLR, 2016. URL http:

//arxiv.org/abs/1511.06392.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete

distribution: A continuous relaxation of discrete ran-

dom variables. In International Conference on Learning

Representations, 2017. URL https://openreview.

net/forum?id=S1jE5L5gl.

Marcus, G. F. The algebraic mind: Integrating connection-

ism and cognitive science. MIT press, 2003.

McCoy, R. T., Linzen, T., Dunbar, E., and Smolensky, P.

RNNs implicitly implement tensor-product representa-

tions. In International Conference on Learning Represen-

tations, 2019. URL https://openreview.net/

forum?id=BJx0sjC5FX.

Palangi, H., Smolensky, P., He, X., and Deng, L. Question-

answering with grammatically-interpretable representa-

tions. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018.

Plate, T. A. Holographic Reduced Representation: Dis-

tributed Representation for Cognitive Structures. CSLI

Publications, USA, 2003. ISBN 1575864290.

Reed, S. E. and de Freitas, N. Neural programmer-

interpreters. CoRR, abs/1511.06279, 2015.

Sartran, L., Barrett, S., Kuncoro, A., Stanojević, M., Blun-

som, P., and Dyer, C. Transformer grammars: Augment-

ing transformer language models with syntactic inductive

biases at scale. Transactions of the Association for Com-

putational Linguistics, 10:1423–1439, 2022.

Schlag, I. and Schmidhuber, J. Learning to reason with third

order tensor products. Advances in neural information

processing systems, 31, 2018.

Schlag, I., Smolensky, P., Fernandez, R., Jojic, N., Schmid-

huber, J., and Gao, J. Enhancing the transformer with

explicit relational encoding for math problem solving.

CoRR, abs/1910.06611, 2019. URL http://arxiv.

org/abs/1910.06611.

Shiv, V. and Quirk, C. Novel positional encodings to enable

tree-based transformers. Advances in neural information

processing systems, 32, 2019.

Smolensky, P. Tensor product variable binding and the

representation of symbolic structures in connectionist

systems. Artif. Intell., 46:159–216, 1990.

Soulos, P., McCoy, R. T., Linzen, T., and Smolensky, P.

Discovering the compositional structure of vector repre-

sentations with role learning networks. In Proceedings of

the Third BlackboxNLP Workshop on Analyzing and In-

terpreting Neural Networks for NLP, pp. 238–254, 2020.

Soulos, P., Rao, S., Smith, C., Rosen, E., Celikyilmaz, A.,

McCoy, R. T., Jiang, Y., Haley, C., Fernandez, R., Palangi,

H., et al. Structural biases for improving transformers on

translation into morphologically rich languages. Proceed-

ings of Machine Translation Summit XVIII, 2021.

Steele, G. Common LISP: the language. Elsevier, 1990.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence

to sequence learning with neural networks. In

Ghahramani, Z., Welling, M., Cortes, C., Lawrence,

N., and Weinberger, K. (eds.), Advances in Neural

Information Processing Systems, volume 27. Curran As-

sociates, Inc., 2014. URL https://proceedings.

neurips.cc/paper/2014/file/

a14ac55a4f27472c5d894ec1c3c743d2-Paper.

pdf.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-

tic representations from tree-structured long short-term

memory networks. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguis-

tics and the 7th International Joint Conference on Natu-

ral Language Processing (Volume 1: Long Papers), pp.

1556–1566, Beijing, China, July 2015. Association for

Computational Linguistics. doi: 10.3115/v1/P15-1150.

URL https://aclanthology.org/P15-1150.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,

I. Attention is all you need. In Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vish-

wanathan, S., and Garnett, R. (eds.), Advances in Neural

6

https://aclanthology.org/2020.emnlp-main.731
https://aclanthology.org/2020.emnlp-main.731
https://arxiv.org/abs/2212.10769
https://doi.org/10.1145/3538531
https://doi.org/10.1145/3538531
http://arxiv.org/abs/1511.06392
http://arxiv.org/abs/1511.06392
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=BJx0sjC5FX
https://openreview.net/forum?id=BJx0sjC5FX
http://arxiv.org/abs/1910.06611
http://arxiv.org/abs/1910.06611
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://aclanthology.org/P15-1150


Differentiable Tree Operations Promote Compositional Generalization

Information Processing Systems, volume 30. Curran As-

sociates, Inc., 2017. URL https://proceedings.

neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.

pdf.

Wang, Y., Lee, H.-Y., and Chen, Y.-N. Tree transformer:

Integrating tree structures into self-attention. In Pro-

ceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pp. 1061–1070, Hong Kong, China,

November 2019. Association for Computational Lin-

guistics. doi: 10.18653/v1/D19-1098. URL https:

//aclanthology.org/D19-1098.

Weston, J., Chopra, S., and Bordes, A. Memory networks.

CoRR, abs/1410.3916, 2014.

7

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/D19-1098
https://aclanthology.org/D19-1098


Differentiable Tree Operations Promote Compositional Generalization

A. DTM Figures

DET

my

N

dog

R

NP

DET

my

N

dog

NP

DET

my

N

dog

NP

DET

my

N

dog

conscdrcar

left 
argument

right 
argument

R

root
symbol

Figure 3. An example showing the output of our three operations.

cdr

car

Append

Tree 2

Differentiable
Tree
Interpreter

Multihead Attention(1)

Feedforward(1)

From previous Transformer layer

To next Transformer layer

Neural
Tree
Agent

St
ep

 1

Softmax

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Root Symbol
Encoding1

Operation
Encoding1

Tree 1
Encoding1

Tree 0
Encoding1

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Tree 2
Encoding2

Tree Memory

Tree 0

Tree 1

cons

Operation x Tree Arg LogitsOperation
Logits

Softmax

Figure 4. Step 1 of the DTM architecture is expanded to show the information flow. The yellow boxes identify the parameters that are

learnable. The blue box highlights the Neural Tree Agent, and the green boxes highlight components in tree space: the Differentiable

Tree Interpreter (Eq 1) and Tree Memory. The left side of the Neural Tree Agent is a standard transformer layer with self-attention and a

feedforward network. Residual connections and layer norm are not shown.

8



Differentiable Tree Operations Promote Compositional Generalization

Tree 0
Encoding0

Root
Symbol

Encoding0

Operation
Encoding0

Tree 0
Encoding1

Root
Symbol

Encoding1

Operation
Encoding1

Tree 0
Encoding2

Root
Symbol

Encoding2

Operation
Encoding2

Tree 0
Encoding3

Root
Symbol

Encoding3

Operation
Encoding3

Tree 1
Encoding1

Tree 2
Encoding2

Tree 3
Encoding3

Tree 2
Encoding3

Tree 1
Encoding3

Tree 1
Encoding2

Step 0

Step 1

Step 2

Step 3

Figure 5. Inputs to the Neural Tree Agent at each step of processing. The length of the input grows by one token each step to incorporate

the output of the previous step.

B. Related Work

B.1. Compositional Generalization

Research on compositional generalization has been one of the core issues in Machine Learning since its inception. Despite

improvements in architectures and scalability (Csordás et al., 2021), neural network models still struggle with out-of-

distribution generalization (Kim et al., 2022). The lack of robust compositional generalization has been a central argument

against neural networks as models of cognition for almost half a century by proponents of GOFAI systems that leverage

symbolic structures (e.g., Fodor & Pylyshyn, 1988; Marcus, 2003). These symbolic systems are brittle and face scalability

problems because their nondifferentiability makes them incompatible with gradient learning methods. Our work attempts to

bridge the neural network-symbolic divide by situating symbolic systems in vector space, where a first-order gradient can be

derived as a learning signal.

In practice, the term “compositional generalization” has been associated with a range of different tasks (Hupkes et al., 2020).

Kim & Linzen (2020) identify a key distinction relevant to natural language: lexical versus structural generalization. Lexical

generalization is required when a model encounters a primitive (e.g., a word) in a structural environment (e.g., a position in

a tree) where it has not been seen during training. Structural generalization is required when a model encounters a structure

that was not seen during training, such as a longer sentence or a syntactic tree with new nodes. Kim et al. (2022) demonstrate

that structural and lexical generalization remain unsolved: pretrained language models still do not consistently generalize

fully to novel lexical items and structural positions. The tasks we study below explicitly test both types of compositional

generalization (§4.1).

Our proposed DTM model encodes and manipulates data exclusively in the form of Tensor Product Representations (TPRs;

§B.2). This formalism inherently supports composition and decomposition through symbol-role bindings, creating an

inductive bias toward symbolic operations. Lexical generalization is straightforward when syntactic trees are encoded as

TPRs: a novel symbol can easily bind to any role. Structural generalization is possible through our linear representation

of the car, cdr, and cons functions, as these operators are not sensitive to the size or structure of the trees they take as

arguments. We evaluate DTM’s capacity for both types of compositional generalization in §4.2.

B.2. Tensor Product Representations (TPRs)

Tensor Product Representations have been used to enhance performance and interpretability across textual question-

answering (Schlag & Schmidhuber, 2018; Palangi et al., 2018), natural-language-to-program-generation (Chen et al., 2020),

math problem solving (Schlag et al., 2019), synthetic sequence tasks (McCoy et al., 2019; Soulos et al., 2020), summarization

(Jiang et al., 2021), and translation (Soulos et al., 2021). While previous work has focused on using TPRs to structure and

interpret representations, the processing over these representations was done using black-box neural networks. In this work,

we predefine structural operations to process TPRs and use black-box neural networks to parameterize the information flow

9



Differentiable Tree Operations Promote Compositional Generalization

and decision making in our network.

B.3. Vector Symbolic Architectures

Vector Symbolic Architecture (VSA) (Gayler, 2003; Plate, 2003; Kanerva, 2009) is a computing framework for realizing

classic symbolic algorithms in vector space. Our work bridges VSAs and Deep Learning by using black-box neural networks

to write differentiable vector-symbolic programs. For a recent survey on VSAs, see Kleyko et al. (2022), and for VSAs with

spiking neurons see Eliasmith et al. (2012).

B.4. Differentiable Computing

One approach to integrating neural computation and GOFAI systems is Differentiable Computing. In this approach,

components of symbolic computing are re-derived in a continuous and fully differentiable manner to facilitate learning with

backpropagation. In particular, neural networks that utilize an external memory have received considerable attention (Graves

et al., 2014; 2016; Weston et al., 2014; Kurach et al., 2016).

Another significant aspect of Differentiable Computing involves integrating structured computation graphs into neural

networks. Tree-LSTMs (Tai et al., 2015; Dong & Lapata, 2016; Chen et al., 2018) use parse trees to encode parent nodes in

a tree from their children’s representations or decode child nodes from their parent’s representations. Some Transformer

architectures modify standard multi-headed attention to integrate tree information (Wang et al., 2019; Sartran et al., 2022),

while other Transformer architectures integrate tree information in the positional embeddings (Shiv & Quirk, 2019). Neural

Module Networks (Andreas et al., 2015) represent a separate differentiable computing paradigm, where functions in a

symbolic program are replaced with black-box neural networks.

A few works have explored using differentiable interpreters to learn subfunctions from program sketches and datasets

(Bošnjak et al., 2017; Reed & de Freitas, 2015). Most similar to our work, Joulin & Mikolov (2015) and Grefenstette et al.

(2015) learn RNNs capable of leveraging a stack with discrete push and pop operations in a differentiable manner. While

they use a structured object to aid computation, the operations they perform involve read/write operations over unstructured

vectors, whereas the operations we deploy in this work consist of structured operations over vectors with embedded structure.

C. Ablation Experiments

C.1. Ablations

In order to examine how the components of our model come together to achieve compositional generalization, we run

several ablation experiments on Active↔Logical.

C.1.1. PRE-DEFINED STRUCTURAL OPERATIONS

What purpose do the car, cdr, and cons equations defined in Section 2 play in our network’s success? Instead of defining

the transformations with the equations, we can randomly initialize the D and E matrices and allow them to be learned

during training. The results of learning the D and E matrices are shown in Table 2. Since the D and E matrices, whether

predefined or learned, operate only on the role space, it is unsurprising that our model continues to achieve perfect lexical

generalization without the predefined equations for D and E. However, structural generalization suffers dramatically when

the D and E matrices are learned. This result indicates that the predefined tree operations are essential for our model to

achieve structural generalization.

PREDEFINED

TRANSFORMATIONS

LEARNED

TRANSFORMATIONS

-TRAIN 1.0± .00 1.0± .00

-TEST IID 1.0± .00 .99± .02

-LEXICAL 1.0± .00 .99± .01

-STRUCTURAL 1.0± .00 .35± .08

Table 2. Accuracy on Active↔Logical across five random initializations for models with predefined car, cdr and cons operations

versus learned transformations. Lexical and structural are test OOD splits.

10



Differentiable Tree Operations Promote Compositional Generalization

C.1.2. BLENDING VS. DISCRETE SELECTIONS

While our model converges to one-hot solutions where it chooses a single operation over a single tree in memory, it is not

constrained to do so, and it deploys heavy blending prior to final convergence. There are two sources of blending: the input

arguments to each operation can be a blend of trees in memory, and the output written to memory is a weighted blend of

the three operations. We can explore the importance of blending by restricting our model to make discrete decisions using

the Gumbel-Softmax distribution (Jang et al., 2017; Maddison et al., 2017). Table 3 shows the results of models trained

with (blend-producing) softmax or (discrete) Gumbel-Softmax for argument and operation selection. We observe that the

use of Gumbel-Softmax in either operation or argument sampling leads to a complete breakdown in performance. This

demonstrates that blending is an essential component of our model, and that our network is not capable of learning the task

without it.

ACTIVE↔LOGICAL OP (SOFTMAX)

ARG (SOFTMAX)

OP (SOFTMAX)

ARG (GUMBEL)

OP (GUMBEL)

ARG (SOFTMAX)

OP (GUMBEL)

ARG (GUMBEL)

-TRAIN 1.00± 0.00 .086± .172 0.00± 0.00 0.00± 0.00

-TEST IID 1.00± 0.00 .088± .176 0.00± 0.00 0.00± 0.00

-TEST OOD LEXICAL 1.00± 0.00 .094± .188 0.00± 0.00 0.00± 0.00

-TEST OOD STRUCTURAL 1.00± 0.00 .068± .136 0.00± 0.00 0.00± 0.00

Table 3. Accuracy on Active↔Logical across five random initializations for models which use varying combinations of softmax and

Gumbel-Softax for operation and argument selection.

D. Model Hyperparameter Selection

For all of the models we evaluated, the HP searching and training was done in 3 steps:

1. An optional exploratory random search over a wide range of HP values (using the Active↔Logical task)

2. A grid search (repeat factor=3) over the most promising HP values from step 1 (using the Active↔Logical task)

3. Training on the target tasks (repeat factor=5)

All of our models were trained on 1x V100 (16GB) virtual machines.

D.1. DTM

For the DTM models, we ran a 3x hyperparameter grid search over the following ranges. The best performing hyperparameter

values are marked in bold.

Computation Steps: [X+2, (X+2)*2] where X is the minimum number of steps required to complete a task

weight decay: [.1, .01]

Transformer model dimension: [32, 64]

Adam β2: [.98, .95]

Transformer dropout: [0, .1]

The following hyperparameters were set for all models

11



Differentiable Tree Operations Promote Compositional Generalization

lr warmup: [10000]

lr decay: [cosine]

training steps: [20000]

Transformer encoder layers per computation step: [1]

Transformer # of heads: [4]

Batch size: [16]

d symbol: # symbols in the dataset

d role: 2
D+1

− 1 where D is the max depth in the dataset

Transformer non-linearity: gelu

Optimizer: Adam

Adam β1: .9

Gradient clipping: 1

Transformer hidden dimension: 4x Transformer model dimension

Notes:

• For the Passive↔Logical task, a batch size of 8 was used to reduce memory requirements.

• Training runs that didn’t achieve 90% training accuracy were excluded from evaluation

12



Differentiable Tree Operations Promote Compositional Generalization

D.2. Baselines

We search over model and training hyperparameters and choose the combination that has the highest (and in the case of ties,

quickest to train) mean validation accuracy on Active & Passive→Logical. The best hyperparameter setting for each model

was then used to train that model on all four of our tasks.

D.2.1. TRANSFORMER

The Transformer 1x exploratory random search operated on the following HP values:

lr: [.0001, .00005]

lr warmup: [0, 1000, 3000, 6000, 9000]

lr decay: [none, linear, factor, noam]

lr decay factor: [.9, .95, .99]

lr patience: [0, 5000]

stop patience: [0]

weight decay: [0, .001, .01]

hidden: [64, 96, 128, 256, 512, 768, 1024]

n encoder layers: [1, 2, 3, 4, 5, 6, 7, 8]

n decoder layers: [1, 2, 3, 4, 5, 6, 7, 8]

dropout: [0, .1, .2, .3, .4]

filter: [256, 512, 768, 1024, 2048, 3096, 4096]

n heads: [1, 2, 4, 8, 16]

The Transformer 3x grid search operated on the following HP values:

hidden: [768, 1024]

n encoder layers: [1, 4]

n decoder layers: [3, 4]

dropout: [0]

filter: [768, 1024]

n heads: [2, 4]

The Transformer 5x training on the target tasks was done with these final HP values:

13



Differentiable Tree Operations Promote Compositional Generalization

n steps: 30 000

log every: 100

eval every: 1000

batch size per gpu: 256

max tokens per gpu: 20 000

lr: .0001

lr warmup: 1000

lr decay: linear

lr decay factor: .95

lr patience: 5000

stop patience: 0

optimizer: adam

weight decay: 0

max abs grad norm: 1

grad accum steps: 1

greedy must match tf: 0

early stop perfect eval: 0

hidden: 1024

n encoder layers: 1

n decoder layers: 3

dropout: 0

filter: 1024

n heads: 2

14



Differentiable Tree Operations Promote Compositional Generalization

D.2.2. LSTM

The LSTM 1x exploratory random search operated on the following HP values:

weight decay: [0, .001, .01]

lr: [.0001, .00005]

lr warmup: [0, 1000, 3000, 6000, 9000]

lr decay: [none, linear, factor, noam]

lr decay factor: [.9, .95, .99]

lr patience: [0, 5000]

hidden: [64, 96, 128, 256, 512, 768, 1024]

n encoder layers: [1, 2, 3, 4, 5, 6]

n decoder layers: [1, 2, 3, 4, 5, 6]

dropout: [0, .05, .1, .15, .2]

bidir: [0, 1]

use attn: [0, 1]

rnn fold: [min, max, mean, sum, hadamard]

attn inputs: [0, 1]

The LSTM 3x grid search operated on the following HP values:

lr decay: [linear, noam]

hidden: [512, 768, 1024]

n encoder layers: [1, 6]

n decoder layers: [1, 2, 3]

attn inputs: [0, 1]

The LSTM 5x training on the target tasks was done with these final HP values:

n steps: 30 000

log every: 200

eval every: 1000

stop patience: 0

optimizer: adam

max abs grad norm: 1

grad accum steps: 1

greedy must match tf: 0

early stop perfect eval: 0

batch size per gpu: 256

max tokens per gpu: 20 000

weight decay: 0

lr: .0001

lr warmup: 1000

lr decay: noam

lr decay factor: .95

lr patience: 5000

hidden: 512

n encoder layers: 6

n decoder layers: 1

dropout: .1

bidir: 0

use attn: 1

rnn fold: max

attn inputs: 1

15



Differentiable Tree Operations Promote Compositional Generalization

D.2.3. TREE2TREE

The Tree2Tree 1x exploratory random search operated on the following HP values:

lr: [.01, .005, .001, .0005]

lr decay factor: [.8, .9, .95]

max abs grad norm: [1, 5]

hidden: [64, 128, 256, 512, 768]

dropout: [0, .1, .2, .4, .5, .6]

lr decay: [none, linear, factor, patience, noam]

The Tree2Tree 3x grid search operated on the following HP values:

dropout: [0, .6]

hidden: [512, 768]

The Tree2Tree 5x training on the target tasks was done with these final HP values:

n steps: [10 000]

stop patience: [0]

early stop perfect eval: [0]

lr: [.0005]

lr decay: [patience]

lr warmup: [1000]

lr patience: [500]

lr decay factor: [.95]

batch size per gpu: [256]

max tokens per gpu: null

optimizer: [adam]

weight decay: [0]

max abs grad norm: [1]

grad accum steps: [1]

n encoder layers: [1]

n decoder layers: [1]

dropout: [0]

hidden: [512]

16



Differentiable Tree Operations Promote Compositional Generalization

D.2.4. TREETRANSFORMER

The TreeTransformer 1x exploratory random search operated on the following HP values:

dropout rate: [0, .05, .1, .2]

batch size: [64, 128, 256]

learning rate: [.0001, .0005, .001, .00001]

optimizer: [adam, sgd, momentum, adagrad, adadelta, rmsprop]

max gradient norm: [0.0, .05, .1]

momentum: [0.0, .1, .5, .9]

d model: [128, 256]

d ff: [128, 256, 512, 1024]

encoder depth: [1, 2, 3, 4]

decoder depth: [2, 4, 6, 8]

The TreeTransformer 3x grid search operated on the following HP values:

optimizer: [adagrad, adadelta]

max gradient norm: [.05, .1]

momentum: [0.0, .5]

d model: [256]

d ff: [256]

encoder depth: [1, 2]

decoder depth: [2, 4]

The TreeTransformer 5x training on the target tasks was done with these final HP values:

train batches: [30 000]

max eval steps: [2000]

dropout rate: [0]

batch size: [256]

learning rate: [.0001]

optimizer: [adagrad]

max gradient norm: [.05]

momentum: [.5]

num heads: [2]

d model: [256]

d ff: [256]

encoder depth: [1]

decoder depth: [2]

17



Differentiable Tree Operations Promote Compositional Generalization

E. Basic Sentence Transforms

We introduce the Basic Sentence Transforms dataset for testing tree-to-tree transformations. It contains various synthetic

tree-transform tasks, including a Lisp function interpreter task and several natural-language tasks inspired by semantic

parsing and language generation. This dataset is designed to test compositional generalization in structure transformations,

as opposed to most existing compositionality-related datasets, which focus on linear sequence transformations.

Each task in the dataset has five splits: train, validation, test, out-of-distribution lexical (OOD-lexical), and out-of-distribution

structural (OOD-structural). The OOD-lexical split tests a model’s ability to perform zero-shot lexical generalization to

new adjectives not seen during training. The OOD-structural split tests a model’s structural generalization by using longer

adjective sequences and new tree positions not encountered during training. The train split has 10,000 samples, while the

other splits have 1,250 samples each. Samples of these tasks are shown in Appendix E.2 and additional information about

the construction of the dataset is in Appendix E.1. We focus our evaluation on the following four tasks:

CAR-CDR-SEQ is a tree transformation task where the source tree represents a template-generated English sentence,

and the target tree represents a subset of the source tree. The target tree is formed from a sequence of Lisp car and cdr

operations on the source tree. The desired sequence of operations is encoded into a single token in the source tree root,

and the transformation requires learning how to interpret this root token and execute the associated sequence of actions.

Although its internal structure is not accessible to the model, the token is formed according to the Lisp convention for

combining these operations into a single symbol (starting with a c, followed by the second letter of each operation, and

terminated by an r, e.g., cdaadr denotes the operation sequence: cdr, car, car, cdr). This task uses sequences of 1-4

car/cdr operations (resulting in 30 unique functions).

Active↔Logical contains syntax trees in active voice and logical form. Transforming from active voice into logical form is

similar to semantic parsing, and transducing from logical form to active voice is common in natural language generation.

An example from this task is shown in Figure 1.

Passive↔Logical contains syntax trees in passive voice and logical form. This task is similar to the one above but is more

difficult and requires more operations. The passive form also contains words that are not present in logical form, so unlike

Active↔Logical, the network needs to insert additional nodes. At first glance, this does not seem possible with car, cdr,

and cons; we will show how our network manages to solve this problem in an interpretable manner in §4.3. An example

from this task is shown in Figure 2.

Active & Passive→Logical contains input trees in either active or passive voice and output trees in logical form. This tests

whether a model can learn to simultaneously parse different types of trees, distinguished by their structures, into a shared

logical form.

E.1. Dataset Construction

The Basic Sentence Transforms vocabulary size and tree depth are available below. The lexical splits are constructed by

using 1 set of adjectives for the Train, Dev, Test IID, and OOD Structural splits, and a disjoint set for the OOD Lexical split.

The structural splits are constructed by using 0-2 nested adjectives distributed randomly to the two noun phrases for train,

dev, and OOD Lexical splits, and 3-4 nested adjectives to the two noun phrases for the OOD Structural split. Adjective

phrases are nested within each other within a noun phrase, so each additional adjective increases the overall tree depth by 1.

Vocabulary Size

DATASET TRAIN/DEV/TEST TEST OOD LEXICAL TEST OOD STRUCTURAL

CAR CDR SEQ 142 153 142

ACTIVE↔LOGICAL 101 112 101

PASSIVE↔LOGICAL 107 118 107

ACTIVE & PASSIVE→LOGICAL 105 116 105

Tree Depth

18



Differentiable Tree Operations Promote Compositional Generalization

DATASET TRAIN/DEV/TEST TEST OOD LEXICAL TEST OOD STRUCTURAL

CAR CDR SEQ 10 10 12

ACTIVE↔LOGICAL 8 8 10

PASSIVE↔LOGICAL 10 10 12

ACTIVE & PASSIVE→LOGICAL 10 10 12

E.2. Dataset Samples

This appendix contains samples of the 4 tasks that we used from the Basic Sentence Transforms Dataset.

E.2.1. CAR-CDR-SEQ SAMPLES

Source Tree:

( CDDDDR ( NP ( DET the ) ( AP ( N goat ) ) ) ( VP ( AUXPS was ) ( VPPS ( V bought ) ( PPPS ( PPS by ) ( NP ( DET

the ) ( AP ( ADJ round ) ( AP ( N rose ) ) ) ) ) ) ) )

CDDDDR

NP

DET

the

AP

N

goat

VP

AUXPS

was

VPPS

V

bought

PPPS

PPS

by

NP

DET

the

AP

ADJ

round

AP

N

rose

Target (Gold) Tree:

( NP ( DET ( the ) ) ( AP ( ADJ ( round ) ) ( AP ( N ( rose ) ) ) ) )

NP

DET

the

AP

ADJ

round

AP

N

rose

E.2.2. ACTIVE↔LOGICAL SAMPLES

Source Tree:

19



Differentiable Tree Operations Promote Compositional Generalization

( S ( NP ( DET some ) ( AP ( N crocodile ) ) ) ( VP ( V washed ) ( NP ( DET our ) ( AP ( ADJ happy ) ( AP ( ADJ thin )

( AP ( N donkey ) ) ) ) ) ) )

S

NP

DET

some

AP

N

crocodile

VP

V

washed

NP

DET

our

AP

ADJ

happy

AP

ADJ

thin

AP

N

donkey

Target (Gold) Tree:

( LF ( V washed ) ( ARGS ( NP ( DET some ) ( AP ( N crocodile ) ) ) ( NP ( DET our ) ( AP ( ADJ happy ) ( AP ( ADJ

thin ) ( AP ( N donkey ) ) ) ) ) ) )

LF

V

washed

ARGS

NP

DET

some

AP

N

crocodile

NP

DET

our

AP

ADJ

happy

AP

ADJ

thin

AP

N

donkey

E.2.3. PASSIVE↔LOGICAL SAMPLES

Source Tree: ( S ( NP ( DET his ) ( AP ( N tree ) ) ) ( VP ( AUXPS was ) ( VPPS ( V touched ) ( PPPS ( PPS by ) ( NP (

DET one ) ( AP ( ADJ polka-dotted ) ( AP ( N crocodile ) ) ) ) ) ) ) )

20



Differentiable Tree Operations Promote Compositional Generalization

S

NP

DET

his

AP

N

tree

VP

AUXPS

was

VPPS

V

touched

PPPS

PPS

by

NP

DET

one

AP

ADJ

polka-dotted

AP

N

crocodile

Target (Gold) Tree: ( LF ( V touched ) ( ARGS ( NP ( DET one ) ( AP ( ADJ polka-dotted ) ( AP ( N crocodile ) ) ) ) (

NP ( DET his ) ( AP ( N tree ) ) ) ) )

LF

V

touched

ARGS

NP

DET

one

AP

ADJ

polka-dotted

AP

N

crocodile

NP

DET

his

AP

N

tree

E.2.4. ACTIVE & PASSIVE→LOGICAL SAMPLES

Source Tree: ( S ( NP ( DET a ) ( AP ( N fox ) ) ) ( VP ( AUXPS was ) ( VPPS ( V kissed ) ( PPPS ( PPS by ) ( NP (

DET my ) ( AP ( ADJ blue ) ( AP ( N giraffe ) ) ) ) ) ) ) )

21



Differentiable Tree Operations Promote Compositional Generalization

S

NP

DET

a

AP

N

fox

VP

AUXPS

was

VPPS

V

kissed

PPPS

PPS

by

NP

DET

my

AP

ADJ

blue

AP

N

giraffe

Target (Gold) Tree: ( LF ( V kissed ) ( ARGS ( NP ( DET my ) ( AP ( ADJ blue ) ( AP ( N giraffe ) ) ) ) ( NP ( DET a ) (

AP ( N fox ) ) ) ) )

LF

V

kissed

ARGS

NP

DET

my

AP

ADJ

blue

AP

N

giraffe

NP

DET

a

AP

N

fox

22


