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Abstract

Differentiable renderers provide gradients w.r.t.

arbitrary scene parameters, but the mere existence

of these gradients does not guarantee useful up-

date steps in an optimization. Instead, inverse

rendering might not converge due to plateaus, i.e.,

regions of zero gradient, in the objective func-

tion. We propose to alleviate this by convolv-

ing the rendering equation with an additional ker-

nel that blurs the parameter space. We describe

two Monte Carlo estimators to compute plateau-

reduced gradients efficiently, i.e., with low vari-

ance, and show that these translate into net-gains

in optimization error and runtime. Our approach

is a straightforward extension to both black-box

and differentiable renderers and enables optimiza-

tion of problems with intricate light transport,

such as caustics or global illumination, that ex-

isting differentiable renderers do not converge

on. Our code is at https://github.com/

mfischer-ucl/prdpt.

1. Introduction

Regressing scene parameters from 2D observations is a task

of significant importance in graphics and vision, but also a

hard, ill-posed problem. When all rendering steps are dif-

ferentiable, we can derive gradients of the final image w.r.t.

the scene parameters. However, differentiating through the

discontinuous rendering operator is not straightforward due

to, e.g., occlusion. The two prevalent rendering approaches

are path tracing and rasterization.

Path-tracing aims to solve the rendering equation by com-

puting a Monte Carlo (MC) estimate for each pixel. Unfortu-

nately, MC is only compatible with modern Automatic Dif-

ferentiation (AD) frameworks under continuous integrands,

e.g., color, but not for spatial derivatives.
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Figure 1. Optimization results with a differentiable path tracer (we

use Mitsuba 3 (Jakob et al., 2022)) and our proposed method. The

task is to rotate the cup around its z-axis to match the reference.

Due to a plateau in the objective function (when the handle is

occluded by the cup), regular methods do not converge.

To alleviate this, previous work uses re-sampling of sil-

houette edges and integrand reparametrizations (Li et al.,

2018; Loubet et al., 2019), which enable the optimization of

primitive- or light positions. For rasterization, differentiabil-

ity is achieved by replacing discontinuous edge- and z-tests

with hand-crafted derivatives (Loper & Black, 2014; Rhodin

et al., 2015; Liu et al., 2019; Le Lidec et al., 2021). Unfor-

tunately, rasterization by design does not capture complex

light transport effects, e.g., global illumination or caustics.

However, Metz et al. (2021) show that the mere existence of

gradients is no guarantee for an optimization’s convergence.

In fact, there are surprisingly many cases where they do not

lead to a successful optimization, due to a plateau in the

objective function. An example is the optimization of the

mug’s rotation in Fig. 1: As soon as the handle disappears

behind the cup, no infinitesimally small rotation change will

result in a reduced loss. We have hence reached a plateau in

the objective function, i.e., a region of zero gradients.

To alleviate this, we take inspiration from differentiable

rasterization, where discontinuities are replaced by smooth

approximations (Liu et al., 2019). This makes the edge- and

z-tests continuous and hence differentiable, and in passing

(and much less studied) removes plateaus. In this work, we

aim to find a way to apply the same concept to complex

light transport. We thus path-trace an alternative, smooth

version of the Rendering Equation (RE), which we achieve

by convolving the original RE with a smoothing kernel. Our

proposed method is a lightweight extension to (differen-

tiable) path tracers that extends the infinitely-dimensional

path integral to the product space of paths and scene param-

eters. We further show that the resulting double integral

can be MC-solved efficiently through our derived variance

reduction techniques, importance- and antithetic sampling.
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2. Background

2.1. Rendering equation

The RE (Kajiya, 1986) defines a pixel P as

P (θ) =

∫

Ω

f(x, θ)dx , (1)

an integral of the scene function f(x, θ), that depends on

scene parameters θ ∈ Θ, over all light paths x ∈ Ω. In

inverse rendering, we aim to find the parameters θ∗ that best

explain the pixels Pi in the reference image with

θ∗ = argmin
θ

∑

i

L (Pi(θ)− Pi(θref)) , (2)

where L is the objective function and Pi(θref) are the target

pixels created by the (unknown) parameters θref.

We will now discuss the two predominant ways to differ-

entiably solve the RE: path tracing, which can simulate all

forms of complex light transport but suffers from plateaus

(Sec. 2.2), and rasterization, which removes plateaus but

is limited to simple once-bounce light transport (Sec. 2.3).

Other renderers, e.g., volumetric rendering (Henzler et al.,

2019; Mildenhall et al., 2021) or neural rendering (Nalbach

et al., 2017; Sitzmann et al., 2021) are mostly limited to

simple, approximate light transport or come with their own

drawbacks (e.g., static scene constraints) and thus are not

within the scope of this work.

2.2. Path tracing

As there is no closed-form solution to Eq. 1, path tracing

uses MC to estimate the integral by sampling the integrand

at random paths xi:

P̂ ≈ 1

N

∑

i

f(xi, θ) (3)

We are interested in the partial derivatives of P with respect

to the scene parameters θ, i.e.,

∂P

∂θ
=

∂

∂θ

∫

Ω

f(x, θ)dx =

∫

Ω

∂

∂θ
f(x, θ)dx . (4)

In order to make Eq. 4 compatible with automatic differenti-

ation, Li et al. (2018) propose a re-sampling of silhouette

edges and Loubet et al. (2019) suggest a re-parametrization

of the integrand. Both approaches allow to MC-estimate the

gradient as

∂̂P

∂θ
≈ 1

N

N∑

i

∂

∂θ
f(xi, θ) . (5)

This is now standard practice in modern differentiable ren-

dering packages (Nimier-David et al., 2019; Li et al., 2018;

Zeltner et al., 2021; Zhang et al., 2021; 2020), none of which

attempt to actively resolve plateaus.

2.3. Rasterization

Rasterization is often used in practical applications due to

its simplicity and efficiency, but lacks the ability to readily

compute complex light transport phenomena, as it solves a

simplified version of the RE, where for every pixel, the light

path length is limited to one.

A rasterizer projects the a scene’s primitives to screen space

and then resolves occlusion. Both these operations are inher-

ently non-differentiable due to jump discontinuities, which

therefore – in order to backpropagate gradients through

them – need to be replaced with smooth approximations,

e.g., a Sigmoid. For a survey on differentiable rasterization

and the used employed smoothing approximations, we refer

to (Kato et al., 2020) and (Petersen et al., 2022).

Choosing smoothing functions with infinite support (for

instance, the Sigmoid), implicitly resolves the plateau prob-

lem as well. Our method (Sec. 3) draws inspiration from

this concept of “differentiating through blurring”. However,

most differentiable rasterizers make simplifying assump-

tions, e.g., constant colors, the absence of shadows or reflec-

tions, and no illumination interaction between objects. We

will see in later examples that this leads to non-convergence

in multi-bounce light transport scenarios, e.g., the optimiza-

tion from a scene’s global illumination. Our formulation, in

contrast, does not make such assumptions.

3. Plateau-reduced Gradients

As differentiable rasterization (cf. Sec. 2.3) has established,

the blurring of primitive edges is a viable means for differ-

entiation. But what if there is no “primitive edge” in the first

place, as we deal with general light paths instead of simple

rasterization? The edge of a shadow, for instance, is not

optimizable itself, but the result of a combination of light

position, reflection, occlusion, etc. Therefore, to achieve an

effect similar to that of differentiable rasterizers, we would

need a method that blurs the entire light path (instead of just

primitive edges) over the parameter space θ. If this method

used a blur kernel with infinite support (e.g., a Gaussian

distribution), the plateau in the objective would vanish, as

a small parameter change in any direction would induce a

change in the objective function.

In Fig. 2, we again aim to optimize the cup’s rotation around

its z-axis to have the handle point to the right, a 1D problem.

As we have seen previously, using an image-based objective

function leads to a plateau in the “hard” optimization set-

ting, i.e., without blur (the blue line in the plot). Blurring

the cup’s rotation parameter, on the other hand, leads to

θ continuously influencing the value of the objective and

therefore resolves the plateau (orange line in the plot). Nat-

urally, it is easy to descend along the gradient of the orange

curve, while the gradient is zero on the plateau of the blue

curve.
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Figure 2. Optimizing the cup’s rotation in the hard (left, blue) and

smooth (right, orange) setting (note the blurred handle). The image-

space loss is displayed on the right: blurring removes the plateau.

3.1. The Plateau-reduced Rendering Equation

We realize our blurring operation as a convolution of the

RE (Eq. 1) with a blur kernel κ over the parameter space Θ:

Q(θ) = κ ⋆ P (θ) =

∫

Θ

κ(τ)

∫

Ω

f(x, θ − τ) dxdτ

=

∫

Θ×Ω

κ(τ)f(x, θ − τ) dxdτ . (6)

While κ(τ) could be any symmetric monotonous decreasing

function, we here choose a Gaussian kernel. The kernel

acts as a weighting function that weights the contribution

of parameters θ that were offset by τ ∈ Θ. This means

that, in addition to integrating all light paths x over Ω, we

now also integrate over all parameter offsets τ in Θ. Note

that we do not convolve across the path space Ω but across

the parameter space θ, e.g., the cup’s rotation in Fig. 2.

Analogous to Eq. 3 and Eq. 4, we can estimate the integral

in Eq. 6 through an MC estimator and take its derivative as

∂̂Q

∂θ
=

∂

∂θ

1

N

N∑

i=1

κ(τi)f(xi, θ − τi) . (7)

Due to the linearity of differentiation and convolution, there

are two ways of computing Eq. 7: one for having a differen-

tiable renderer, and one for a renderer that is not differen-

tiable. We discuss both options next.

Plateau-reduced gradients if P is differentiable With

access to a differentiable renderer (i.e., access to ∂P/∂θ),

we can rewrite Eq. 7 as

∂̂Q

∂θ
=

1

N

N∑

i=1

κ(τi)
∂P

∂θ
(θ − τi)

︸ ︷︷ ︸
Diff. Renderer

. (8)

Therefore, all that that needs to be done is to classically

compute the gradients of a randomly perturbed rendering

and weight them by the blur kernel.

Plateau-reduced gradients if P is not differentiable In

several situations, we might not have access to a differen-

tiable renderer, or a non-differentiable renderer might have

advantages, such as computational efficiency or advanced

y=κ(τ)

a)

y=∇κ(τ)

b)

y~|∇κ(τ)|

d)c)

y=|∇κ(τ)|

Figure 3. Our kernel κ (a), its gradient ∇κ (b), the positivized

gradient (c) and samples drawn proportional thereto (d).

rendering features. Our derivation also supports this case,

as we can rewrite Eq. 7 as

∂̂Q

∂θ
≈ 1

N

N∑

i=1

∂κ

∂θ
(τi)

︸ ︷︷ ︸
Diff. Kernel

P (θ − τi)
︸ ︷︷ ︸

Renderer

, (9)

which equals sampling a non-differentiable renderer and

weighting the result by the gradient of the blur kernel. This

is possible due to the additional convolution we introduce:

prior work (Li et al., 2018; Loubet et al., 2019) must take

special care to compute derivatives (Eq. 5), as in their case,

optimizing θ might discontinuously change the pixel inte-

gral. We circumvent this problem through the convolution

with κ, which ensures that, in expectation, θ continuously

influences the pixel integral.

3.2. Variance Reduction

Drawing uniform samples from Θ× Ω will result in a sam-

ple distribution that is not proportional to the integrand

and hence lead to high-variance gradient estimates and ulti-

mately slow convergence for inverse rendering. In our case,

the integrand is the product the kernel κ and the scene func-

tion f , which Veach (Veach, 1998) showed how to optimally

sample for. As we generally consider the rendering operator

a black box, we can only reduce variance by sampling ac-

cording to the remaining function, the (differentiated) kernel

κ (Fig. 3b).

While importance-sampling for a Gaussian (τi ∼ κ,

required to reduce variance of Eq. 8) is easily done,

importance-sampling for the gradient of a Gaussian (τi ∼
∂κ/∂θ, to be applied to Eq. 9) is more involved, as the

gradient of our kernel

∂κ

∂θ
(τ) =

−τ
σ3
√
2π

exp

(−τ2
2σ2

)
(10)

is negative for τ > 0. We enable sampling proportional to

its Probability Density Function (PDF) by “positivization”

(Owen & Zhou, 2000), and hence sample for |∂κ
∂θ

(τ)| instead

(Fig. 3c). The kernel’s closed-form PDF allows us to use the

inverse Cumulative Distribution Function (ICDF) method

for importance sampling. The ICDF of Eq. 10 is

F−1(ξ) =
√
−2σ2 log(ξ) ,

into which we feed uniform random numbers ξ ∈ (0, 1) that

generate samples proportional to |∂κ
∂θ

(τ)| (Fig. 3d).
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Figure 4. We show the optimization tasks and results for Our∂κP (“Ours”, Eq. 9, orange) and our baseline Mitsuba 3 (“Diff. Path Tracer”,

blue). The right upper subfigure in each column depicts the scene setup, with the optimizable parameters colored in red. All methods

operate in image space only. We additionally plot parameter-space error as a quality control metric.

In order to obtain a zero-variance estimator, we allocate an

equal number of samples to the positivized and regular parts

(Owen & Zhou, 2000). As the function is point symmet-

ric around the origin, we use antithetic sampling to do so

(Hammersley & Mauldon, 1956), i.e., for each sample τ ,

we additionally generate its negated counterpart −τ .

Moreover, we decrease the amount of smoothing, the ker-

nel’s bandwidth σ, over time. For more information on

implementation as well as an outline of our plateau-reduced

gradient computation, please cf. Appendix A.

4. Results

We analyze our method and its variants on a variety of

tasks that feature advanced light transport, plateaus and

ambiguities (for detailed task descriptions, cf. Appendix B,

for task visualizations, cf. Fig. 4). We compare our method

(Eq. 9) against Mitsuba3 (Jakob et al., 2022) and show

numerical comparisons against other methods in Appendix

B. We run all methods for the same number of iterations

and with the same settings.

Performance As is evident from Fig. 4, our method con-

verges reliably on tasks where regular differentiation does

not converge due to plateaus in the objective. This is due to

our stochastic smoothing of the parameter space, which ef-

fectively allows the optimizer to descend a smoother version

of the loss landscape. Importantly, we effectively handle

complex light transport, as is evident from the rightmost col-

umn in Fig. 4, where out-of-view objects in the scene scene

are optimized solely from the global illumination scattered

from the walls. For a more detailed discussion of our results

on each task, cf. Appendix B.

Timing Additionally, we have found that our approach’s

runtime on average is 8× faster than differentiable rendering

with Mitsuba, as our stochastic gradient estimation through

the derivative-kernel allows us to skip the gradient computa-

tion step of the renderer, which leads to significant savings

in computation time. Moreover, as we do not need special

treatment of discontinuities (e.g., re-parametrization), we

can use Mitsuba’s regular forward path tracer at no addi-

tional runtime cost.

5. Discussion and Conclusion

Relation to Variational Optimization Indeed, the formal-

ism developed in Sec. 3.1 can be interpreted as a form of

variational optimization (Staines & Barber, 2012; 2013),

where one would descend along the (smooth) variational

objective instead of the true underlying function. As such,

Eq. 9 can be seen as an instance of a score-based gradient

estimator (Sutton et al., 1999), while Eq. 8 can be inter-

preted as reparametrization gradient (Kingma et al., 2015;

Schulman et al., 2015). Suh et al. (2022) provide intuition

on each estimator’s performance and align with our findings

of the score-based estimator’s superiority under a discontin-

uous objective. It is one of the contributions of this work to

connect these variational approaches with inverse rendering.

Conclusion In summary, we have proposed a method for

inverse rendering that convolves the rendering equation with

a smoothing kernel, which allows straight-forward differen-

tiation and removes plateaus. The idea combines strengths

of differentiable rasterization and differentiable path trac-

ing. Our approach is simple to implement, efficient, has

theoretical justification and optimizes tasks that existing

differentiable renderers so far have diverged upon.
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A. Implementation Details

A.1. Adaptive Bandwidth

Adjusting σ, the kernel’s spread, controls over how far from

the current parameter θ our samples will be spaced out. A

high σ may be useful in the early stages of the optimization,

when there still is a considerable difference between θ and

θref, whereas we want a low σ towards the end of the opti-

mization to zero-in on θref. Throughout the optimization,

we hence decay the initial σ0 according to a linear schedule,

i.e., σt+1 = σ0−t(σ0−σm), where σm is a fixed minimum

value we choose to avoid numerical instabilities that would

otherwise arise from σ → 0 in, e.g., Eq. 10.

A.2. Implementation

We outline our gradient estimator in pseudo-code in Alg. 1.

We importance-sample for our kernel with zero variance,

use antithetic sampling and adapt the smoothing strength

via σ. As Alg. 1 shows, our method is simple to implement

and can be incorporated into existing frameworks with only

a few lines of code. We implement our method in PyTorch,

with Mitsuba as rendering backbone, and use Adam as our

optimizer.

Algorithm 1 Gradient estimation of the scene function f at

parameters θ with perturbations τ ∼ N (0, σ) at N samples.

1: # Equation 9

2: procedure ESTIMATEGRADIENT(P , θ, σ, N )

3: G := 0

4: for i ∈ (1, N/2) do

5: ξ ← UNIFORM(0, 1)
6: τ ←

√
−2σ2 log(ξ)

7: G← G + P (θ + τ)− P (θ − τ)
8: end for

9: return G / N
10: end procedure

B. Tasks and Additional Results

The following will detail the task setup and our method’s

optimization performance on our evaluation tasks.

B.1. Tasks

CUP A mug is rotated around its vertical axis and as its han-

dle gets occluded, the optimization has reached a plateau.

Our method differentiates through the plateau. The differ-

entiable path tracer gets stuck in the local minimum after

slightly reducing the loss by turning the handle towards the

left, due to the direction of the incoming light.

SHADOWS An object outside of the view frustum is casting

a shadow onto a plane. Our goal is to optimize the hidden

object’s position. Differentiable rasterizers can not solve

this task, as they a) do not implement shadows, and b)

cannot differentiate what they do not rasterize. Again, our

method matches the reference position very well. Mitsuba

first moves the sphere away from the plane (in negative

z-direction), as this reduces the footprint of the sphere’s

shadow on the plane and thus leads to a lower error, and

then finally moves the sphere out of the image, where a

plateau is hit and the optimization can not recover. The blue

line in the image-space plot in Fig. 4 illustrates this problem,

as the parameter-error keeps changing very slightly, but the

image-space error stays constant.

GLOBAL ILLUMINATION We here show that our method

is compatible with the ambiguities encountered in advanced

light transport scenarios. The goal of this optimization task

is to simultaneously move the top-light to match the scene’s

illumination, change the left wall’s color to create the color

bleeding onto the box, and also to rotate the large box to an

orientation where the wall’s reflected light is actually visible.

The optimization only sees an inset of the scene (as shown

in Fig. 4) and hence only ever sees the scattered light, but

never the wall’s color or light itself. This task therefore is not

solvable for differentiable rasterizers, as they do not model

such advanced light transport. The differentiable path tracer,

on the other hand, cannot resolve the ambiguity between

the box’s rotation, the light position and the wall’s color, as

it is operating in a non-smoothed space. Our method finds

the correct combination of rotation, light position and wall

color.

We will now detail three additional tasks that we did not

include in the main text for brevity. Their qualitative results

are displayed in Fig. 5.

OCCLUSION Here, a sphere translates along the viewing

axis to match the reference. The challenge is that the sphere

initially is occluded by another sphere, i.e., we are on a

plateau as long as the occluder is closer to the camera than

the sphere we are optimizing. The baseline path tracer ini-

tially pushes the red sphere towards the back of the box,

as this a) reduces the error in the reflection on the bottom

glass plane, and b) lets the shadow of the red sphere (visi-

ble underneath the blue sphere in the initial configuration)

shrink, which again leads to a lower image-space error. Our

method, in contrast, successfully differentiates through both

the plateau (the red sphere has a negligible effect on the ob-

jective) and the discontinuity that arises when the red sphere

first moves closer to the camera than the blue occluder.

SORT: In this task, we need to sort a randomly perturbed

assortment of 75 colored primitives into disjoint sets. We

optimize the x- and y-coordinates of each cube, which leads

to a 150-dimensional setting, with a plateau in each dimen-

sion, as most of the cubes are initially not overlapping their

reference. Mitsuba cannot find the correct position of non-

overlapping primitives and moves them around to minimize
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Figure 5. We show the optimization tasks and results for Our∂κP (Eq. 9, orange) and our baseline Mitsuba 3 (“Diff. Path Tracer”, blue).

Table 1. Image- and parameter-space MSE of different methods (columns) on different tasks (rows). Lower is better for both metrics.

Rasterizer Path Tracer

SoftRas Mitsuba Our∂κP Ourκ∂P

Img. Para. Img. Para. Img. Para. Img. Para.

CUP 3.66×10−1 2.72×10−2 5.49×10−3 0.75×10−1
4.92×10

−6
4.18×10

−7 4.75×10−4 2.77×10−1

SHADOWS 1.64×10−3 1.42×10−1 1.64×10−3 5.06×10−0
1.74×10

−5
1.81×10

−3 5.12×10−4 1.28×10−0

OCCL. 5.33×10−2 7.18×10−3 5.85×10−2 5.23×10+1
2.34×10

−4
3.29×10

−3 5.37×10−2 1.87×10+1

GLOBAL ILL. – – 3.78×10−2 3.87×10−1
5.07×10

−5
8.71×10

−4 5.88×10−2 2.55×10−1

SORT 1.85×10−2 1.57×10−0 1.18×10−2 6.64×10−0
3.81×10

−3
4.19×10

−1 1.02×10−2 2.24×10−0

CAUSTIC – – 3.12×10−1 8.50×10−0
1.89×10

−5
9.76×10

−5 2.42×10−1 4.03×10−0

the image error, which is ultimately achieved by moving

them outside of the view frustum. Our method, admittedly

not perfect on this task, finds more correct positions, a result

more similar to the reference.

CAUSTIC Lastly, the CAUSTIC task features a light source

outside the view frustum illuminating a glass sphere, which

casts a caustic onto the ground. The goal is to optimize the

light’s position in order to match a reference caustic. As

the sphere does not change its appearance with the light’s

movement, the optimization has to solely rely on the caus-

tic’s position to find the correct parameters. Similar to the

GI task, this is not solvable for rasterizers. Our method

reaches the optimum position with high accuracy. For the

baseline path tracer, we see a failure mode that is similar

to the SHADOW task. In this case, the image space error

can be reduced by moving the light source far away, as most

of the error comes from the caustic not being at the correct

position. Moving the light source far away reduces this

error, but also leads into a local minimum where there is no

illumination at all, resulting in the gray image in Fig. 5.

B.2. Quantitative Results

Tab. 1 reports image- and parameter-space MSE and con-

firms what Fig. 4 conveyed visually: regular gradient-based

path tracers that operate on non-smooth loss landscapes fail

catastrophically on our tasks. SoftRas manages to over-

come some plateaus, but struggles with achieving accurate

results, as it blurs in image space but must compare to the

non-blurred reference, which leads to a notable difference

between the final state and the reference parameters. Our

method Our∂κP , in contrast, achieves errors of as low as

10−7, and consistently outperforms its competitors on all

tasks by several orders of magnitude. Interestingly, Ourκ∂P

(i.e., using the gradients from the differentiable renderer)

works notably worse than Our∂κP , which we attribute to

the fact that we cannot importance-sample for the gradient

here, as we do not know its PDF. Instead, we can only draw

samples proportional to κ(τ), which places many samples

where the kernel is high, i.e., at the current parameter. As we

can see from the rigid optimization by Mitsuba, the gradient

at the current position is not very informative, so placing

samples there is not very helpful.
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