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Abstract

Algorithms for node clustering typically focus on

finding homophilous structure in graphs. That is,

they find sets of similar nodes with many edges

within, rather than across, the clusters. However,

graphs often also exhibit heterophilous structure,

as exemplified by (nearly) bipartite and tripartite

graphs, where most edges occur across the clus-

ters. Grappling with such structure is typically left

to the task of graph simplification. We present a

probabilistic model based on non-negative matrix

factorization which unifies clustering and simpli-

fication, and provides a framework for modeling

arbitrary graph structure. Our model is based

on factorizing the process of taking a random

walk on the graph. It permits an unconstrained

parametrization, allowing for optimization via

simple gradient descent. By relaxing the hard clus-

tering to a soft clustering, our algorithm relaxes

potentially hard clustering problems to a tractable

ones. We illustrate our algorithm’s capabilities on

a synthetic graph, as well as simple unsupervised

learning tasks involving bipartite and tripartite

clustering of orthographic and phonological data.

1. Introduction

A core method of finding structure in networks is mapping

nodes to some smaller set of node clusters based on struc-

tural similarity. There are various algorithms for this task

of node clustering, one of the most well-known being the

normalized cuts algorithm (Shi & Malik, 2000), which as-

signs clusters based on an eigenvector of the normalized

graph Laplacian. This algorithm finds a hard clustering,

where each node is mapped to exactly one cluster; soft clus-

tering (Yu et al., 2005) relaxes this problem and instead

assigns nodes to clusters probabilistically, so that each node

is mapped to a categorical distribution over clusters.
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Clustering algorithms generally try to find groups of nodes

that are in line with graph homophily, wherein edges con-

nect nodes with similar attributes, and wedges tend to be

closed (“a friend of a friend is a friend”). Only a small

number of clustering algorithms can be seen as capturing

heterophilous structures, such as (near) bipartiteness: for

example, algorithms for the max-cut problem (Grötschel &

Pulleyblank, 1981) can find approximately bipartite struc-

ture in graphs. Approaches for the closely related task of

graph simplification (also called graph compression) are

often more amenable than typical clustering approaches to

addressing heterophilous structure. Like clustering, simpli-

fication is focused on finding structure in graphs, but with

the goal of minimizing reconstruction error from a com-

pressed representation. Algorithms for simplification work

by merging edges or nodes (Toivonen et al., 2011; Garg

& Jaakkola, 2019), or by approximate factorization of the

adjacency matrix (Nourbakhsh et al., 2014).

We present a probabilistic framework which unifies node

clustering and graph simplification and is applicable to both

homophilous and heterophilous structure. In particular, we

propose factoring an undirected graph A ∈ R
n×n
+ into two

components: a bipartite graph V ∈ R
n×m
+ , which connects

the n original nodes to m latent nodes, where m < n, and a

smaller undirected graph W ∈ R
m×m
+ , which is a graph on

the latent nodes. Intuitively, this factorization approximates

taking one step of a random walk on A as a three step

procedure: first taking one random step on V from the

original nodes to the latent nodes, then one random step

within the latent graph W , and finally one random step on

V back from the latent to the original nodes:

π(A) ≈ π(V )π(W )π(V ⊤), (1)

where π denotes dividing each row of a matrix by its sum,

yielding the random walk transition matrix corresponding

to the adjacency matrix. Figure 1 illustrates this process. As

we discuss in Section 3, this model permits a differentiable

parametrization, allowing for fitting via gradient descent on

a simple cross-entropy loss. Further, we can ensure that the

transition matrix on the right-hand side is reversible, mean-

ing that it corresponds exactly to one step of a random walk

on some undirected graph B ∈ R
n×n
+ . Our model allows

for retrieval of this B as a rank-m approximation of A,

connecting this clustering method to graph simplification.
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Figure 1. Diagram of the latent random step model. A random

step on a graph A with n nodes is approximated by a random step

forward on a bipartite graph V , then a random step on a smaller

graph W with m nodes, then a random step back on V .

Demonstrative Toy Graph. We construct a synthetic net-

work that exhibits both homophily and heterophily as a

concrete demonstration of how our model can adapt to both.

Consider a union of 3 bicliques, each with 10 nodes in ei-

ther set, for a total of 60 nodes. Figure 2 (left) is a plot of

this graph. We can naturally cluster the nodes in at least

two ways: either we find 3 homophilous clusters with most

edges within clusters (as in the min-cut task), or we find 2

heterophilous clusters with most edges across clusters (like

the max-cut task). As we discuss in Section 4, in our model,

this corresponds to fixing one of the following latent graphs

W , then finding a bipartite graph V that minimizes the

approximation error in Equation 1:

Wclique =
1

3





1 0 0
0 1 0
0 0 1



 Wbiclique =
1

2

(

0 1
1 0

)

.

In Figure 2 (right), we show the π(V ) matrices, which map

each node to a distribution over clusters, that result from

both ways of clustering the graph. The one with Wclique

indeed assigns each node to three clusters, corresponding to

the three bicliques, so that edges occur only within clusters;

whereas the one with Wbiclique assigns each node to one of

two clusters so as to split each biclique, such that edges

occur only across clusters. Each method also results in a

different simplified graph B: the former erases the biclique

structure and results in three cliques; whereas the latter

erases the distinction between the three disjoint bicliques,

resulting in a single large biclique. The latter clustering may

be more useful for mining data structure in some applica-

tions, but most algorithms only allow for the former.
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Figure 2. The synthetic graph A (left) and two different clusterings

(right), for which we show B (top) and π(V )⊤ (bottom).

Our key contributions can be summarized as follows:

• We present our latent random step model. To our

knowledge, this is the first probabilistic model for undi-

rected graph simplification that accommodates arbi-

trary homophilous and heterophilous structure.

• Unlike similar work, our model admits an uncon-

strained parametrization. Simple gradient descent (and

its variants) on a natural probabilistic loss can be used

to fit our model, allowing for flexible node cluster-

ing and low-rank approximation of a weighted graph.

Modifying the latent graph W ranges the type of node

clustering task through relaxations of potentially hard

problems like k-way max-cut.

• We apply our model and algorithm to real-world

data by simplifying weighted graphs constructed from

raw orthographic and phonological data. We find

that graphs with heterophilous structure naturally

arise when considering the sequences of letters and

phonemes in words. From these graphs, our unsuper-

vised algorithm finds heterophilous clusters that closely

align with ground-truth labels.

2. Related Work

Our model can be represented as an approximate graph fac-

torization of the form A ≈ UWU⊤, which has also been

employed in some prior works. Yu et al. (2005) present

such a model for use in soft clustering and also discuss its

interpretation in terms of random walks, but they focus on

the case where W is diagonal, that is, the homophilous case.

Perhaps the closest model to ours is that of Nourbakhsh

et al. (2014), who also allow their equivalent of W to be

non-diagonal. However, their experiments do not explore

non-homophilous clustering, and they do not work within

a fully probabilistic framework as we do; among other dif-

ferences, the loss they optimize is based on Frobenius norm

rather than cross-entropy. While these are the two models

that are closest to ours, all three models fit under the um-

brella of non-negative matrix factorization (NMF) for node

clustering and graph simplification, for which there is other

prior work (Ding et al., 2008; Kuang et al., 2012).

Our model, along with some of the other discussed models,

can be seen as a very generalized variant of the well-known

stochastic block model (SBM) (Holland et al., 1983). The

key differences are that: 1) nodes in the SBM are assigned

to exactly one community, as opposed to our model’s distri-

butional assignments; and 2) the central probability matrix

in the SBM gives probabilities of nodes in two communi-

ties being connected, which is slightly different from our

model, wherein the central matrix gives the proportion of

edges which occur between two communities; and 3) SBMs,

while capable of representing heterphilous structure, are
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also typically studied in the context of homophilous struc-

ture. As suggested by use of the term ‘latent’ states, our

model can also be seen as an instance of the Hidden Markov

Model (Baum & Petrie, 1966) to the process of taking a

random walk on a graph; unlike in most applications of

HMMs, here the analyzed process is explicitly first-order,

by construction. Finally, our fitting algorithm joins much

prior work as a relaxation of a computationally-hard node

partitioning problem; perhaps best-known is the work of

Goemans & Williamson (1995), which gives a spectral re-

laxation of the max-cut problem. Unlike that work, we

provide no theoretical guarantees of performance, though

we observe good performance in experiments. On the other

hand, our framework can go well beyond max-cut to unify

min-cut, k-way max-cut, and more, depending on how the

latent graph W is set.

3. Methodology

As stated in Section 1, we propose to approximately factor-

ize an undirected graph A ∈ R
n×n
+ into a bipartite graph

V ∈ R
n×m
+ and a smaller undirected graph W ∈ R

m×m
+ .

We seek

π(A) ≈ π(V )π(W )π(V ⊤) = π(B), (2)

where again π denotes dividing each row of a matrix by its

sum, yielding a random walk transition matrix. B, which is

a symmetric matrix in R
n×n
+ , is a rank-m reconstruction of

A (that is, a simplified version of A); like A, B can be seen

as an undirected, weighted graph on the original n nodes.

Reversibility Criterion. We first establish a condition on

V and W for the transition matrix π(B) from Equation 2

to be reversible, that is, to correspond to a random step in

an undirected graph B. This condition is crucial for fitting

the model to not only yield a clustering of the nodes (given

by π(V )), but also a simplified graph B. Reversibility is

satisfied iff there exists a diagonal matrix DB ∈ R
n×n
+ for

which the product DB π(B) is a symmetric matrix B. We

assume that V and W are not just non-negative, but strictly

positive; we will only parametrize such V and W anyway.

Let DV and D′
V denote the diagonal matrices whose di-

agonal elements are the row-sums and column-sums of V ,

respectively, and let DW denote the row-sums of W (which

are equivalent to the columns-sums since W is symmetric).

We have reversibility if, for some DB , the following matrix

is symmetric:

B = DB π(V )π(W )π(V ⊤)

= DB

(

D
−1
V V

) (

D
−1
W W

) (

D
′−1
V V

⊤
)

= DBD
−1
V

(

V D
−1
W WD

′−1
V V

⊤
)

.

The transpose of this matrix is

B
⊤ =

(

V D
′−1
V WD

−1
W V

⊤
)

D
−1
V DB.

Note that if D′
V = DW , then the parenthesized parts of the

final expressions are equivalent. Further, with DB = DV ,

the matrix is fully equal to its transpose and is therefore

symmetric. Explicitly, the matrix simplifies to the form

B = V D
−1
W WD

−1
W V

⊤.

Hence reversibility is satisfied if the column-sums of the

bipartite graph V are equal to the degrees of the latent

graph W . If this condition is satisfied, the degrees DB

of the reconstructed graph B, which corresponds to the

transition matrix π(B), are exactly the row-sums of V .

Parametrization. We can parametrize our model using

two matrices of free parameters, Wp ∈ R
m×m and Vp ∈

R
n×m, to represent the latent graph W and the bipartite

graph V , respectively. Let σmat and σcol denote functions

which take the softmax of a matrix over all elements and

over each column. We first construct W as follows:

W = σmat

(

Wp +W
⊤
p

)

,

which ensures both the positivity and the symmetry of W ;

the softmax also ensures that all entries of W sum to 1. Let

DW be the diagonal matrix containing the degrees of W .

We now construct V with:

V = (σcol(Vp))DW ,

which ensures the positivity of V and the reversibility cri-

terion, that the column-sums of V are equal to the degrees

W . Note that while we provide the full parametrization for

generality, in the experiments in this paper, we fix W and

find V , so Wp is not used.

Fitting. We can fit this model via gradient descent on a

simple and natural cross-entropy loss:

L = −

∑

i,j∈[n]

(

Āij log
(

B̄ij

))

, (3)

where an overline denotes dividing a matrix by the sum of

all of its elements. This loss views the adjacency matrix

of the original graph A and that of the reconstructed graph

B as probability distributions over pairs of nodes. Mini-

mizing it tries to place more mass in B among node pairs

which correspond to edges in A. We additionally use an L2

regularization penalty on the parameters.

Our implementation uses PyTorch (Paszke et al., 2019)

for automatic differentiation and minimizes the loss us-

ing the SciPy (Jones et al., 2001) implementation of the

L-BFGS (Liu & Nocedal, 1989; Zhu et al., 1997) algo-

rithm with default hyperparameters. The free parameters

are initialized uniformly at random on (−10−2,+10−2).
The regularization term for the loss is set to 10−1 times the

mean squared norm of the free parameters.
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Figure 3. Results of bipartite clustering of the orthographic adja-

cency graph. For each letter, we plot the probability of assignment

to the first of the two clusters, that is, the first column of π(V ).
Letters are sorted in ascending order of this probability.

4. Experiments on Real-World Networks

To illustrate the power of our model and algorithm, we per-

form some experiments on real-world datasets made from

English-language orthographic (spelling) and phonological

(pronunciation) data. In particular, to find structure in this

data in an unsupervised manner, we construct graphs from

it and factorize them using the following two latent graphs

to find (soft) bipartite and tripartite clusterings:

Wbi =
1

2

(

0 1
1 0

)

Wtri =
1

6





0 1 1
1 0 1
1 1 0



 .

Factorizing with both latent graphs corresponds to finding

clusters such that intra-cluster edges are minimized: with

Wbi, we find two clusters, and with Wtri, we find three clus-

ters such that roughly one-third of the total edge weight is

assigned to each of the three pairs of clusters. These cluster-

ing tasks can be seen as soft relaxations of the standard and

3-way max-cut problems.

Orthographic Adjacency. We construct a graph based on

spellings of common English language words. The nodes of

the graph correspond to the 26 letters, and the edge weights

correspond to the number of times, across all common

words, that two letters are directly adjacent. For the list

of words, we use the 20K most frequently-used English

words as determined by the Google Books Ngram Viewer 1.

We perform a bipartite clustering of this graph using Wbi

based on the intuition that the spelling of words very roughly

tends to alternate between vowels and consonants. See

Figure 3 for the results. Indeed, the resulting clustering

reflects the intuition: if we convert the soft clustering π(V )
into a hard clustering by assigning each letter to the cluster

for which it has higher probability, this clustering cleanly

divides the letters into vowels and consonants. (The letter

‘y’, which can act as both, is placed into the vowel cluster,

but with the least probability among the vowels.)

Phonological Adjacency. We now construct a graph

based on pronunciations of English language words. Using

the same list of common words as for the orthographic data,

1Specifically, we use the list on the google-10000-english repo.
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Figure 4. Results of tripartite clustering of the phonological adja-

cency graph. This ternary plot projects the 3D categorical distribu-

tions given by the cluster affinities π(V ) onto a 2D space. Each

corner corresponds to a different cluster.

we convert these words to sequences of phonemes as deter-

mined by the CMU Pronouncing Dictionary 2. We use the

NLTK API (Bird et al., 2009) to access the dictionary. The

graph is similar to the orthographic one: the nodes of this

graph correspond to 39 English language phonemes, and

the edge weights correspond to the number of times, across

all common words in the dictionary, that two phonemes are

directly adjacent.

While applying a bipartite node clustering to phonological

data also separates vowel sounds as with the orthographic

data, we find that significantly more interesting structure

can be extracted with a tripartite clustering, using the latent

graph Wtri. See Figure 4 for a plot of the resulting cluster

affinities π(V ). The clustering strongly reflects ground-

truth categorizations of the phonemes. Most striking is that

one of the clusters is dominated by vowel sounds, and that

vowel, stop, and nasal/liquid sounds have high affinities for

three distinct clusters.

5. Conclusion

We propose our latent random step model and perform node

clustering on a synthetic graph and real-world orthographic

and phonological graphs, finding structure in the graphs that

goes beyond typical homophilous clusterings. The simplic-

ity and flexibility of the model suggests several directions

for extension of this work. We focus here on the setting

where the latent graph W is fixed and the bipartite graph V

is fit. We could instead attempt to fit both at once, yielding

the full graph simplification setting. Besides this, there may

be a straightforward extension to data and graphs of greater

scale than we consider here: the cross-entropy loss (Equa-

tion 3) could be approximated by sampling of node pairs

based on the weights of Ā, allowing for an SGD fitting algo-

rithm. More broadly, we hope that considering latent graphs

beyond homophilous clusters can expand the applicability

of node clustering, out to new problems and fields.

2This resource is hosted online at the speech.cs.cmu website.
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