
PDP: Parameter-free Differentiable Pruning is All You Need

Minsik Cho 1 Saurabh Adya 1 Devang Naik 1

Abstract

In this paper, we propose an efficient yet effec-

tive train-time pruning scheme, Parameter-free

Differentiable Pruning (PDP), which offers state-

of-the-art qualities in model size, accuracy, and

training cost. PDP uses a dynamic function of

weights during training to generate soft pruning

masks for the weights in a parameter-free man-

ner for a given pruning target. While differen-

tiable, the simplicity and efficiency of PDP make

it universal enough to deliver state-of-the-art ran-

dom/structured/channel pruning results on various

vision models. For example, for MobileNet-v1,

PDP can achieve 68.2% top-1 ImageNet1k ac-

curacy at 86.6% sparsity, which is 1.7% higher

accuracy than those from the state-of-the-art algo-

rithms. PDP also improved the top-1 ImageNet1k

accuracy of ResNet18 by over 3.6% and reduced

the top-1 ImageNet1k accuracy of ResNet50 by

0.6% from the state-of-the-art.

1. Introduction

Deep neural networks (DNN) have shown human perfor-

mance on complex cognitive tasks (Silver et al., 2018), but

their deployment onto mobile/edge devices for enhanced

user experience (i.e., reduced latency and improved pri-

vacy) is still challenging. Most such on-device DNN sys-

tems are heavily resource-constrained, thus requiring high

power/compute/storage efficiency (Howard et al., 2017;

Vasu et al., 2023; Wang et al., 2019; Wu et al., 2018).

Such efficiency can be accomplished by mixing and match-

ing various techniques, such as designing efficient DNN ar-

chitectures like MobileNet/MobileViT/ MobileOne (Mehta

& Rastegari, 2022; Sandler et al., 2018; Vasu et al.,

2023), distilling a complex DNN into a smaller archi-

tecture (Polino et al., 2018), quantizing/compressing the

weights of DNNs (Cho et al., 2022; Han et al., 2016; J. Lee,

1Apple. Correspondence to: Minsik Cho <min-
sik@apple.com>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

2021; Li et al., 2019; Park & Yoo, 2020; Zhao et al., 2019),

and pruning near-zero weights (Kusupati et al., 2020; Liu

et al., 2021; Peste et al., 2021; Sanh et al., 2020; Wortsman

et al., 2019; Zafrir et al., 2021; Zhang et al., 2022; Zhu &

Gupta, 2018). Also, pruning is known to be highly comple-

mentary to quantization/compression (Wang et al., 2020b)

when optimizing a DNN model. However, pruning comes

at the cost of degraded model accuracy, and the trade-off is

not straightforward (Kusupati et al., 2020).

Hence, a desirable pruning algorithm should achieve high

accuracy and accelerate inference for various types of net-

works without significant training overheads in costs and

complexity. In this work, we propose a simple yet effective

pruning technique, Parameter-free Differentiable Pruning

or PDP, which uses a dynamic function of weights to gen-

erate soft pruning masks for the weights themselves. PDP

requires neither additional learning parameters (Zhang et al.,

2022) nor complicated training flows (Peste et al., 2021),

yet offers precise control on the target sparsity level (Kusu-

pati et al., 2020), while pushing the state-of-the-arts in ran-

dom/structured/channel pruning.

• PDP outperforms the state-of-the-art schemes on a va-

riety of models and tasks by being differentiable and

parameter-free without complex techniques.

• PDP offers a universal approach for efficient ran-

dom/structured/channel pruning, while delivering a high-

quality model optimization for a given pruning target.

• With a dynamic function of weights, PDP generates a

soft pruning mask without training, and thus does not

require gradient synchronization and SGD-update.

2. PDP: Parameter-free Differentiable Pruning

Complex pruning schemes do not always yield the best qual-

ity results, and their complexity and cost can make them

impractical and difficult to use. The proposed Parameter-

free Differentiable Pruning (PDP) is a highly effective and

efficient scheme that generates soft pruning masks using a

dynamic function of weights in a parameter-free and differ-

entiable fashion. Since PDP is differentiable, the task loss

can directly guide the pruning decision, offering an effec-

tive pruning solution. Simultaneously, being parameter-free,

PDP can be fast and less intrusive to the existing training

flow. Overall, PDP finds a weight distribution that is best

1

Submission and Formatting Instructions for ICML 2023

(a) PDP training flow (b) Probability plot by w ∈ R[0,1] with t = 0.6

Figure 1. Computing z(w),m(w) for the chances for Z and M with t for the equal chance to be in Z and M .

for task loss and pruning. Instead of having extra parame-

ters, PDP indirectly influences the weight distribution for

high-quality pruning. For example, if a weight w is des-

tined to be pruned for some reason, instead of having a new

parameter to denote "to-prune", PDP lets SGD gradually

make w itself smaller relatively against other parameters

in the same entity, increasing its chance to be pruned over

time. We will first discuss the benefits of PDP over existing

differentiable pruning approaches in Section 2.1, present

PDP in Section 2.2, then show the extension to structured

and channel pruning in Section 2.3.

2.1. PDP Benefits

Learning/generating pruning masks with extra parameters al-

lows the pruning decision to be driven by a task loss through

back-propagation rather than the weight value itself (i.e., a

hard mask will zero out the gradient of a pruned weight),

but comes with the following issues.

• A pruning mask is (or derives from) a learnable parame-

ter, increasing the trainable parameter count significantly

and making the training process slow and complex (Elk-

erdawy et al., 2022; Romero et al., 2022; Sanh et al.,

2020; Savarese et al., 2020; Zhang et al., 2022).

• A hard mask is approximated into a soft mask using

a differentiable function, without guaranteeing the key

properties of a pruning mask, such as the [0,1] value

range or monotonicity (Ramakrishnan et al., 2020).

2.2. PDP Algorithm

To address the drawbacks of existing differentiable pruning

algorithms, we propose PDP. A soft mask should ideally

represent the chance of a weight w being in one of two

symbolic states, "to-prune" (noted as Z) or "not-to-prune"

(noted as M), without requiring extra parameters or expen-

sive book-keeping. While the chance of w being in either

state is not straightforward to compute, PDP generates a

soft mask based on the fact that there exists an equal chance

point for both states. Let us consider differentiable func-

tions, z,m : R[0,∞] 7→ R[0, 1], to compute the chances

of being in Z and M , which must satisfy the following

conditions as a soft mask for magnitude-based pruning:

• z(|a|) < z(|b|) for |a| > |b|: a weight with a smaller

magnitude has a higher chance to be in Z.

• m(|a|) > m(|b|) for |a| > |b|: a weight with a larger

magnitude has a higher chance to be in M .

• z(w) +m(w) = 1 for any w: the total probability is 1.

z(w) =

1 if w = 0

0 if |w| = ∞
1

2
if |w| = t

Then, by the mono-

tonicity and continu-

ity, there exists t ∈
R≥0 such that z(t) =

m(t) = 0.5 (the equal chance for Z and M), which leads

to the following boundary conditions on the left. Any func-

tion that satisfies these conditions can be used to compute

m(w) as a soft mask of w for train-time pruning. Let denote

that topK(X, k) is selecting the largest k elements from a

matrix X , abs(X) is an element-wise absolute operation,

and n(X) returns the element count. In PDP, we uniquely

identify t for a given prune ratio r ∈ [0, 1) for a layer with

a weight matrix W as in Fig. 1 (a).

• The sparsity r for each W can be easily obtained by

sorting the weights from the network by magnitude after

a few epochs w.r.t the global target sparsity as a one-time

task, or set by a user.

• Right after the SGD weight update, t is computed for

the weights W in each layer or entity. The role of t

is to abstract the current weight distribution of each

layer/entity for pruning.

• During forward-pass, a soft mask, m(w) for the weight

w is computed and applied for the masked weight ŵ,

which is differentiable. τ is the temperature parameter.

• Computing t and generating ŵ repeat iteratively to adapt

to the updated weight distribution.

Figure 1 (b) shows how the value of t is obtained in PDP

and a soft mask is computed. Specifically, t is set to the

value that is halfway between the largest pruned weight and

the smallest unpruned weight when a hard mask is applied

for a given sparsity ratio r. This ensures that each weight

2

Submission and Formatting Instructions for ICML 2023

(a) ResNet18 (sparsity: 85.5%) (b) ResNet50 (sparsity: 89.8%) (c) MobileNet-v1 (sparsity: 86.6%)

Figure 2. PDP-powered pruning (in white box markers) delivers the Pareto superiority to the other schemes (i.e., the top-bottom corner

is the best trade-off) for ResNet18, ResNet50, and MobileNet-v1 on ImageNet1k. The size of markers indicates the relative training

overheads. The detailed numbers are in Table 5 in Appendeix.

has an equal probability of being pruned or kept. As a result,

PDP satisfies all the constraints for z and m. More details

on PDP training flow are in Section C in Appendix.

PDP uses a dynamic function of t to generate soft pruning

masks of W without the need for any extra trainable param-

eters. Instead, PDP lets the weights of the network adjust

themselves such that the information that would otherwise

be learned by the extra trainable parameters is instead fused

into the weights themselves and their distribution. This is

possible because each weight w is not only a coefficient in

a layer, but also an indicator of the relative chance of that

weight being pruned against the other weights in W . This

relative chance is from the value of t in Figure 1 (b).

2.3. PDP for Structured and Channel Pruning

The simplicity and non-intrusive nature of PDP make it

readily applicable to differentiable structured and channel

pruning. As an example of structured pruning, we consider

N:M pruning, where only N weights are kept out of every

M consecutive weights. N:M pruning is attracting high re-

search and industrial attention because top-of-the-line GPUs

support 2:4 configuration (Jeff Pool, 2021). To apply PDP to

N:M pruning, we apply it to every M consecutive weights

of the layer, as if the layer were composed of many sub-

layers, each with M weights. Since N:M dictates the target

sparsity, we can easily find the threshold t and generate the

soft mask, as shown in Figure 1 (a).

Channel pruning is another type of structured pruning that

can be easily applied to PDP with minor modifications. To

do this, we first compute the L2 norm of each channel in

the layer, and then use these norm values (in place of the

absolute values of the weights in Figure 1(a)) to compute a

soft mask for each channel. Using the soft mask to prune

all the corresponding weights in the channel will make the

channel pruning process differentiable. For the illustrations

on N:M and channel pruning usine PDP, please refer to

Fig. 7 in Appendix.

3. Experimental Results

We compared PDP with state-of-the-art random, structured,

and channel pruning schemes on various computer vision

models. We used two x86 Linux nodes with 8 NVIDIA

V100 GPUs on each in cloud. All cases were trained

from scratch. More experimental results and the hyper-

parameters are in Section E and Table 3 in Appendix.

Random Pruning: We compared PDP with the latest prior

arts, STR (Kusupati et al., 2020), GMP (Zhu & Gupta,

2018), DNW (Wortsman et al., 2019), GraNet (Liu et al.,

2021), OptG (Zhang et al., 2022), and ACDC (Peste et al.,

2021) on ResNet18, ResNet50, and MobileNet-v1 (He

et al., 2016; Howard et al., 2017) with the ImageNet1k

dataset (Deng et al., 2009). Since all of these schemes have

been experimented only with ResNet50 and/or MobileNet-

v1, we reproduced the pruning results in our controlled

environment with the identical data augmentations by run-

ning the official implementations from the authors (Kusu-

pati et al., 2020; Liu et al., 2021; Peste et al., 2021; Zhang

et al., 2022) or verified implementations from the prior

arts (Wortsman et al., 2019; Zhu & Gupta, 2018) as in

Section F in Appendix. We measured the accuracies and

Multiply-Accumulate Operation (MAC) during inference on

each experiment with layer fusion (i.e., BatchNorm folding),

and mainly focused on the high-sparsification cases. In our

experiments with ImageNet1k, all layers are pruned.

Since each algorithm used a different number of epochs and

showed results at different sparsity levels, a) we ran STR

first to set the target sparsity levels for all the networks for

fair comparisons, because all other schemes can control the

sparsity level precisely, b) we trained ResNet18/50 for 100

epochs and MobileNet-v1 for 180 epochs following (Kusu-

pati et al., 2020; Liu et al., 2021; Peste et al., 2021; Zhang

et al., 2022) except STR (which diverged with more epochs

for MobileNet-v1). For PDP, we fixed the target sparsity

for each layer based on the global weight magnitude at the

epoch 16 and started pruning at the rate of 1.5% of the target

3

Submission and Formatting Instructions for ICML 2023

Network Method Batch size #epochs
N:M avg GPU

2:4 4:8 1:4 2:8 cost ($)

ResNet18
LNM 256 120 69.6 70.2 65.1 68.4 395

PDP 1024 100 70.2 70.1 68.7 69.1 275

ResNet50
LNM 256 120 74.6 75.1 74.1 75.0 812

PDP 1024 100 75.9 75.8 75.0 75.3 380

Table 1. Structured Pruning: PDP can be directly to do N:M pruning due to its generality. PDP delivers the superior results than the latest

N:M pruning in (Zhou et al., 2021) at 46% less training cost.

Method Batch size #epochs Top-1 (%) MAC drop (%)

NISP ? 90 75.3 44.0

DCP 256 60 75.0 55.0

SCP 256 100 75.3 54.3

PDP 1024 100 75.9 54.9

* SCP, DCP, and NISP reported only ResNet50 results with MAC drop instead of sparsity.

Hence, for PDP, we report the nearest MAC drop we obtained (54.9%) at 57% channel sparsity.

Table 2. Channel Pruning: the generality of PDP helps deliver the state-of-the-art results without modifications.

sparsity per epoch for all the experiments which correspond

to s = 16 and ϵ = 0.015 in Algorithm 1 in Appendix. For

detailed experiment configurations, please refer to Table 3.

Every experiment began with a randomly initialized model

(i.e., no pre-trained model). For PDP, we had the following

variants to show the value of PDP with the same training

overhead or per-layer pruning budgets.

• PDP-base globally computes the target sparsity by

abs(W) at epoch 16 across all the layers.

• PDP-base+ is the same as PDP-base yet with more

epochs to match the GPU cost of ACDC.

• PDP-str/optg uses the per-layer sparsity from

STR/OptG as input to normalize the MAC.

Our experimental results are highlighted in Fig. 2, where the

size of circles indicates the relative training overhead due

to pruning. Note that we used only one single node with 8

GPUs due to the limitation in the official implementations

for GraNet and OptG, thus both have the advantage of

not having the inter-node communication cost. Also, each

approach imposes a different level of training-time overhead,

mainly due to the various complexities of training flow and

pruning itself as captured in Fig. 2. Overall results can be

summarized as follows:

• PDP showed the best the model accuracy: PDP-base

on ResNet18 delivered 69% Top-1 accuracy which is

superior to other schemes but at higher MAC than only

STR and OptG.

• PDP offered the better model accuracy for a given prun-

ing target: With the custom sparsification target for each

layer, PDP-str/optg demonstrated the 2-3% higher Top-

1 accuracy at the same MAC, demonstrating the effec-

tiveness of the proposed method.

• When we use the similar GPU budget for additional

epochs with ACDC which is noted as PDP-base+, our

method further improved the Top-1 accuracy from 69%

to 69.5% for ResNet18 and from 74.7% to 75.3% for

ResNet50 with slight fewer MACs.

Structured/Channel Pruning: We compared PDP-driven

N:M pruning and channel pruning on the ImageNet1k

dataset (Deng et al., 2009). For N:M pruning, we repro-

duced the LNM (Zhou et al., 2021) results using the public

code base but without the color augmentation to keep the

experimental environment normalized. For PDP, we sim-

ply reused the hyper-parameters and configurations as in

Table 3 in our Appendix, and the top-1 accuracies by var-

ious N:M configs with ImageNet1k on ResNet18/50 are

presented in Table 1. We can observe that PDP outperforms

LNM on all the test cases, even with 4x larger batch size in

20 fewer epochs. LNM training cost is also much higher

than PDP because of its costly weight regularization and

complex back-propagation scheme.

For channel pruning, we compared PDP with SCP (Kang

& Han, 2020a), NISP (Yu et al., 2018), and DCP (Zhuang

et al., 2019). Note that SCP uses the β in BatchNorm to

select the channels to prune (i.e., beta ≤ ϵ), hence appli-

cable to limited types of networks only. We again reused

the hyper-parameters and configurations as in Table 3 in our

Appendix for PDP, and the top-1 accuracy with ImageNet1k

on ResNet50 is reported in Table 2 where we can see that

PDP shows superior performance for channel pruning.

4. Conclusion

We showed that a simple and universal pruning method PDP

can yield the state-of-the-art random/structured/channel

pruning quality on popular computer vision models. Our

method requires no additional learning parameters, yet

keeps the training flow simple and straightforward, mak-

ing it a practical method for real-world scenarios.

4

Submission and Formatting Instructions for ICML 2023

References

Anwar, S., Hwang, K., and Sung, W. Structured pruning

of deep convolutional neural networks. ACM Journal on

Emerging Technologies in Computing Systems, 2017.

Bengio, Y., Léonard, N., and Courville, A. C. Estimating

or propagating gradients through stochastic neurons for

conditional computation. CoRR, 2013.

Cho, M., Alizadeh-Vahid, K., Adya, S., and Rastegari, M.

DKM: differentiable k-means clustering layer for neural

network compression. In International Conference on

Learning Representations, 2022.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-

Fei, L. ImageNet: A Large-Scale Hierarchical Image

Database. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2009.

Elkerdawy, S., Elhoushi, M., Zhang, H., and Ray, N. Fire

together wire together: A dynamic pruning approach with

self-supervised mask prediction. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,

E. Rigging the lottery: Making all tickets winners. In

International Conference on Machine Learning, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:

Finding sparse, trainable neural networks. In Interna-

tional Conference on Learning Representations, 2019.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in

deep neural networks. CoRR, 2019.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both

weights and connections for efficient neural network. In

Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,

and Garnett, R. (eds.), Advances in Neural Information

Processing Systems, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:

Compressing deep neural network with pruning, trained

quantization and huffman coding. In International Con-

ference on Learning Representations, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for accelerat-

ing very deep neural networks. In The IEEE International

Conference on Computer Vision, Oct 2017.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:

Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861, 2017.

J. Lee, D. Kim, B. H. Network quantization with element-

wise gradient scaling. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2021.

Jeff Pool, C. Y. Channel permutations for n:m sparsity.

In Advances in Neural Information Processing Systems,

2021.

Kang, M. and Han, B. Operation-aware soft channel pruning

using differentiable masks. In International Conference

on Machine Learning, 2020a.

Kang, M. and Han, B. Operation-aware soft channel pruning

using differentiable masks. In International Conference

on Machine Learning, 2020b.

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M.,

Jain, P., Kakade, S., and Farhadi, A. Soft threshold weight

reparameterization for learnable sparsity. In International

Conference on Machine Learning, July 2020.

Lagunas, F., Charlaix, E., Sanh, V., and Rush, A. M. Block

pruning for faster transformers. In The Conference on Em-

pirical Methods in Natural Language Processing, 2021.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.

Pruning filters for efficient convnets. In International

Conference on Learning Representations, 2017.

Li, Y., Dong, X., and Wang, W. Additive powers-of-two

quantization: An efficient non-uniform discretization for

neural networks. In International Conference on Learn-

ing Representations, 2019.

Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou,

H., Shen, L., Pechenizkiy, M., Wang, Z., and Mocanu,

D. C. Sparse training via boosting pruning plasticity with

neuroregeneration. In Advances in Neural Information

Processing Systems, 2021.

Liu, Z., Whatmough, P. N., Zhu, Y., and Mattina, M. S2ta:

Exploiting structured sparsity for energy-efficient mobile

cnn acceleration. In 2022 IEEE International Symposium

on High-Performance Computer Architecture (HPCA),

2022.

Mehta, S. and Rastegari, M. Mobilevit: Light-weight,

general-purpose, and mobile-friendly vision transformer.

In International Conference on Learning Representations,

2022.

Mishra, A. K., Latorre, J. A., Pool, J., Stosic, D., Stosic, D.,

Venkatesh, G., Yu, C., and Micikevicius, P. Accelerating

sparse deep neural networks. CoRR, 2021.

5

Submission and Formatting Instructions for ICML 2023

Park, E. and Yoo, S. Profit: A novel training method for

sub-4-bit mobilenet models. In European Conference on

Computer Vision, 2020.

Peste, A., Iofinova, E., Vladu, A., and Alistarh, D. AC/DC:

alternating compressed/decompressed training of deep

neural networks. In Advances in Neural Information

Processing Systems, 2021.

Polino, A., Pascanu, R., and Alistarh, D. Model compres-

sion via distillation and quantization. In International

Conference on Learning Representations, 2018.

Ramakrishnan, R. K., Sari, E., and Nia, V. P. Differentiable

mask for pruning convolutional and recurrent networks.

In International Conference on Computer and Robot Vi-

sion, 2020.

Romero, D. W., Bruintjes, R., Tomczak, J. M., Bekkers,

E. J., Hoogendoorn, M., and van Gemert, J. C. Flexconv:

Continuous kernel convolutions with differentiable kernel

sizes. 2022.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and

Chen, L.-C. Mobilenetv2: Inverted residuals and linear

bottlenecks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, June 2018.

Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adap-

tive sparsity by fine-tuning. In Advances in Neural Infor-

mation Processing Systems, 2020.

Savarese, P., Silva, H., and Maire, M. Winning the lottery

with continuous sparsification. In Advances in Neural

Information Processing Systems, 2020.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,

M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-

pel, T., et al. A general reinforcement learning algorithm

that masters chess, shogi, and go through self-play. Sci-

ence, 362(6419):1140–1144, 2018.

Tanaka, H., Kunin, D., Yamins, D. L. K., and Ganguli, S.

Pruning neural networks without any data by iteratively

conserving synaptic flow. In Advances in Neural Infor-

mation Processing Systems, 2020.

Vasu, P. K. A., Gabriel, J., Zhu, J., Tuzel, O., and Ranjan,

A. An improved one millisecond mobile backbone. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2023.

Wang, C., Zhang, G., and Grosse, R. B. Picking winning

tickets before training by preserving gradient flow. In

International Conference on Learning Representations,

2020a.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. Haq:

Hardware-aware automated quantization with mixed pre-

cision. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2019.

Wang, Y., Lu, Y., and Blankevoort, T. Differentiable joint

pruning and quantization for hardware efficiency. In

European Conference on Computer Vision, 2020b.

Wortsman, M., Farhadi, A., and Rastegari, M. Discover-

ing neural wirings. In Advances in Neural Information

Processing Systems, 2019.

Wu, J., Wang, Y., Wu, Z., Wang, Z., Veeraraghavan, A., and

Lin, Y. Deep k-means: Re-training and parameter sharing

with harder cluster assignments for compressing deep

convolutions. In International Conference on Machine

Learning, 2018.

Yu, R., Li, A., Chen, C., Lai, J., Morariu, V. I., Han, X., Gao,

M., Lin, C., and Davis, L. S. NISP: pruning networks

using neuron importance score propagation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2018.

Zafrir, O., Larey, A., Boudoukh, G., Shen, H., and

Wasserblat, M. Prune once for all: Sparse pre-trained

language models. In Advances in Neural Information

Processing Systems, 2021.

Zhang, Y., Lin, M., Chen, M., Xu, Z., Chao, F., Shen, Y., Li,

K., Wu, Y., and Ji, R. Optimizing gradient-driven criteria

in network sparsity: Gradient is all you need. In CoRR,

2022.

Zhao, X., Wang, Y., Cai, X., Liu, C., and Zhang, L. Lin-

ear symmetric quantization of neural networks for low-

precision integer hardware. In International Conference

on Learning Representations, 2019.

Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K.,

Sun, W., and Li, H. Learning n:m fine-grained structured

sparse neural networks from scratch. In International

Conference on Learning Representations, 2021.

Zhou, H., Lan, J., Liu, R., and Yosinski, J. Deconstructing

lottery tickets: Zeros, signs, and the supermask. In Ad-

vances in Neural Information Processing Systems, 2019.

Zhu, M. and Gupta, S. To prune, or not to prune: Explor-

ing the efficacy of pruning for model compression. In

Workshop, International Conference on Learning Repre-

sentations, 2018.

Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q.,

Huang, J., and Zhu, J. Discrimination-aware channel

pruning for deep neural networks. In Advances in Neural

Information Processing Systems, 2019.

6

Submission and Formatting Instructions for ICML 2023

N
et

w
o

rk
M

et
h

o
d

B
at

ch
si

ze
#

ep
o

ch
s

#
w

u
#

G
P

U
s

#
N

o
d

es
M

ai
n

o
p

ti
m

iz
er

,
sc

h
ed

u
le

r
M

as
k

o
p

ti
m

iz
er

,
sc

h
ed

u
le

r
o

th
er

p
ar

am
s

C
S

1
2

8
8

5
x

5
0

1
1

S
G

D
0

.9
0

.1
,

m
u

lt
i-

st
ep

5
6

,7
5

b
y

0
.1

sa
m

e
as

th
e

m
ai

n
in

it
v
al

u
e:

-1

R
es

N
et

2
0

P
D

P
1

2
8

1
2

0
5

1
1

S
G

D
0

.9
1

e-
4

,
co

si
n

e
0

.4
n

/a
τ
:
1e

−
4
,ϵ

:
0.
0
1
5

G
ra

N
et

1
2

8
1

0
0

5
8

1
S

G
D

0
.9

1
e-

4
(0

.0
fo

r
B

N
),

co
si

n
e

0
.1

n
/a

in
it

d
en

si
ty

:
0

.5

G
M

P
1

2
8

1
0

0
5

1
6

2
S

G
D

0
.8

7
5

1
e-

5
,

co
si

n
e

0
.2

5
6

sa
m

e
as

th
e

m
ai

n

R
es

N
et

1
8

S
T

R
2

5
6

1
0

0
5

1
6

2
S

G
D

0
.8

7
5

2
.2

5
1

7
5

7
8

1
3

e-
5

,
co

si
n

e
0

.2
5

6
sa

m
e

as
th

e
m

ai
n

in
it

v
al

u
e:

-3
2

0
0

O
p

tG
2

5
6

1
0

0
5

1
6

2
S

G
D

0
.9

1
e-

4
,

co
si

n
e

0
.1

S
G

D
0

.9
0

,
co

si
n

e
0

.1
β
:
1.
0

A
C

D
C

2
5

6
1

0
0

5
8

1
S

G
D

0
.8

7
5

3
.0

5
1

7
5

7
8

1
3

e-
4

,
co

si
n

e
0

.2
5

6
n

/a
8

al
te

ra
ti

o
n

s

P
D

P
-b

as
e/

st
r/

o
p

tg
1

0
2

4
1

0
0

5
1

6
2

S
G

D
0

.9
1

.4
e-

5
,

co
si

n
e

1
.8

n
/a

τ
:
1e

−
4
,ϵ

:
0.
0
1
5

P
D

P
-b

as
e+

1
0

2
4

2
0

0
5

1
6

2
S

G
D

0
.9

1
.4

e-
5

,
co

si
n

e
1

.8
n

/a
τ
:
1e

−
4
,ϵ

:
0.
0
1
5

G
ra

N
et

1
2

8
1

0
0

5
8

1
S

G
D

0
.9

1
e-

4
(0

.0
fo

r
B

N
),

co
si

n
e

0
.1

n
/a

in
it

d
en

si
ty

:
0

.5

G
M

P
1

2
8

1
0

0
5

1
6

2
S

G
D

0
.8

7
5

1
e-

5
,

co
si

n
e

0
.2

5
6

sa
m

e
as

th
e

m
ai

n

R
es

N
et

5
0

S
T

R
2

5
6

1
0

0
5

1
6

2
S

G
D

0
.8

7
5

2
.2

5
1

7
5

7
8

1
3

e-
5

,
co

si
n

e
0

.2
5

6
sa

m
e

as
th

e
m

ai
n

in
it

v
al

u
e:

-3
2

0
0

O
p

tG
2

5
6

1
0

0
5

1
6

2
S

G
D

0
.9

1
e-

4
,

co
si

n
e

0
.1

S
G

D
0

.9
0

,
co

si
n

e
0

.1
β
:
1.
0

A
C

D
C

2
5

6
1

0
0

5
8

1
S

G
D

0
.8

7
5

3
.0

5
1

7
5

7
8

1
3

e-
4

,
co

si
n

e
0

.2
5

6
n

/a
8

al
te

ra
ti

o
n

s

P
D

P
-b

as
e/

st
r/

o
p

tg
1

0
2

4
1

0
0

5
1

6
2

S
G

D
0

.9
1

.4
e-

5
,

co
si

n
e

1
.8

n
/a

τ
:
1e

−
4
,ϵ

:
0.
0
1
5

P
D

P
-b

as
e+

1
0

2
4

2
0

0
5

1
6

2
S

G
D

0
.9

1
.4

e-
5

,
co

si
n

e
1

.8
n

/a
τ
:
1e

−
4
,ϵ

:
0.
0
1
5

G
ra

N
et

1
2

8
1

8
0

5
8

1
S

G
D

0
.9

1
e-

4
(0

.0
fo

r
B

N
),

co
si

n
e

0
.1

n
/a

in
it

d
en

si
ty

:
0

.5

M
o

b
il

eN
et

-v
1

S
T

R
2

5
6

1
0

0
5

1
6

2
S

G
D

0
.8

7
5

3
.7

5
1

7
5

7
8

1
3

e-
5

,
co

si
n

e
0

.2
5

6
sa

m
e

as
th

e
m

ai
n

in
it

v
al

u
e:

-1
2

8
0

0

O
p

tG
2

5
6

1
8

0
5

1
6

2
S

G
D

0
.9

4
e-

4
,

co
si

n
e

0
.1

S
G

D
0

.9
0

,
co

si
n

e
0

.1
β
:
1.
0

A
C

D
C

2
5

6
1

8
0

5
8

1
S

G
D

0
.8

7
5

3
.0

5
1

7
5

7
8

1
3

e-
4

,
co

si
n

e
0

.2
5

6
n

/a
8

al
te

ra
ti

o
n

s

P
D

P
-b

as
e/

st
r/

o
p

tg
1

0
2

4
1

8
0

5
1

6
2

S
G

D
0

.9
1

.4
e-

5
,

co
si

n
e

1
.8

n
/a

τ
:
1e

−
4
,ϵ

:
0.
0
1
5

G
ra

N
et

1
2

8
1

8
0

5
8

1
S

G
D

0
.9

1
e-

4
(0

.0
fo

r
B

N
),

co
si

n
e

0
.1

n
/a

in
it

d
en

si
ty

:
0

.5

M
o

b
il

eN
et

-v
2

S
T

R
2

5
6

1
0

0
5

1
6

2
S

G
D

0
.8

7
5

3
.7

5
1

7
5

7
8

1
3

e-
5

,
co

si
n

e
0

.2
5

6
sa

m
e

as
th

e
m

ai
n

in
it

v
al

u
e:

-1
2

8
0

0

O
p

tG
2

5
6

1
8

0
5

1
6

2
S

G
D

0
.9

4
-e

4
,

co
si

n
e

0
.0

5
S

G
D

0
.9

0
,

co
si

n
e

0
.0

5
β
:
1.
0

A
C

D
C

2
5

6
1

8
0

5
8

1
S

G
D

0
.8

7
5

3
.0

5
1

7
5

7
8

1
3

e-
4

,
co

si
n

e
0

.2
5

6
n

/a
8

al
te

ra
ti

o
n

s

P
D

P
-b

as
e/

st
r/

o
p

tg
1

0
2

4
1

8
0

5
1

6
2

S
G

D
0

.9
8

e-
6

,
co

si
n

e
0

.8
n

/a
τ
:
1e

−
4
,ϵ

:
0.
0
1
5

S
G

D
:

m
o

m
en

tu
m

,
w

ei
g

h
t

d
ec

ay
,

co
si

n
e:

le
ar

n
in

g
_

ra
te

,
A

d
am

W
:

ep
si

lo
n

,
m

u
lt

ip
li

ca
ti

v
e:

le
ar

n
in

g
ra

te
,

g
am

m
a,

#
w

u
:

th
e

n
u

m
b

er
o

f
w

ar
m

-u
p

ep
o

ch
s.

T
ab

le
3

.
T

h
e

h
y

p
er

-p
ar

am
et

er
s

in
S

ec
ti

o
n

s
2

an
d

3
.

7

Submission and Formatting Instructions for ICML 2023

(a) ResNet18

(b) ResNet50

(c) MobileNet-v1

(d) MobileNet-v2

Figure 3. Layer-wise sparsity allocation from the experiments in Table 2.

8

Submission and Formatting Instructions for ICML 2023

(a) ResNet18

(b) ResNet50

(c) MobileNet-v1

(d) MobileNet-v2

Figure 4. Layer-wise Inference MAC distribution from the experiments in Table 2.

9

Submission and Formatting Instructions for ICML 2023

Dense GraNet STR OptG ACDC PDP

0
.0

1
.0

1
.3

2
.0

2
.3

3
.0

3
.3

4
.0

4
.3

5
.0

5
.3

6
.0

6
.3

7
.0

7
.3

8
.0

8
.3

9
.0

9
.3

1
0

.0
1

0
.3

fc

Table 4. The weight histograms in log scale for MobileNet-v1 in Table 2.

10

Submission and Formatting Instructions for ICML 2023

A. Training Configurations and Hyper-parameters

Since some techniques in Sections 2 and 3 require extra training parameters and pruning scheduling as shown in Table ??,

we disclose the training configurations and hyper-parameters we found the best in Table 3.

B. Trade-off in Pruning

Pruning for DNN requires exploring a good trade-off between model accuracy and inference latency under a given pruning

target. Such a challenge can be elaborated with the MobiletNet-v1 Dense case in Fig. 5 where the following observations

can be made:

• The earlier layers have significantly fewer parameters than the later layers while still having comparable inference

MACs as shown in (a). For example, the final classifier, which is a linear layer, has the lowest inference MAC but the

2nd largest parameters.

• When per-parameter inference MAC is computed as in (b) (which is in log-scale), we can easily see that the parameters

in the earlier layers get much more involved in the inference than those in the later layers. For example, the MAC-per-

parameter for the last classifier is only 1.

Then, with a given pruning target, one pruning scheme can favor heavily pruning the classifier, as it is easier to hit the target

without affecting model accuracy much (i.e., each parameter shows up only once in the forward pass), but this would fail to

reduce the inference MAC enough. Then, the other scheme may favor aggressively pruning the earlier layers to significantly

minimize the inference latency at a much greater risk of degrading the model accuracy. Therefore, it is critical to find a good

balance between accuracy and inference speed. According to our experimental results, PDP can accomplish such a balance

using differential pruning w.r.t. the task loss. Such trade-off can be optimized differently depending on whether a particular

sparsity pattern or structure is enforced.

(a) Normalized inference MAC and parameter count for each layer.

(b) The inference MAC per parameter for each layer.

Figure 5. Layer-wise Inference MAC and Parameters from the MobileNet-v1 Dense case in Table 2.

11

Submission and Formatting Instructions for ICML 2023

Network
Method

Top-1 GPU$ MAC Network
Method

Top-1 GPU$ MAC

Sparsity (%) cost($) (×e6) Sparsity (%) cost ($) (×e6)

Dense 69.8 167 1814.1 Dense 76.1 248 4089.2

GMP 65.2 217 263.5 GMP 73.6 483 419.0

DNW 64.4 206 263.5 DNW 70.7 466 419.0

GraNet∗ 66.0 198 539.6 GraNet∗ 72.5 321 868.0

ResNet18 STR 66.7 171 334.6 ResNet50 STR 72.8 417 373.7

85.5% OptG∗ 65.5 277 223.7 89.8% OptG∗ 72.1 591 333.0

ACDC 68.7 356 502.8 ACDC 74.7 635 735.6

PDP-base 69.0 169 408.6 PDP-base 74.7 325 502.8

PDP-base+ 69.5 336 405.1 PDP-base+ 75.3 610 483.0

PDP-str 68.6 169 334.7 PDP-str 74.0 325 373.7

PDP-optg 68.5 174 223.7 PDP-optg 74.2 332 332.9

Dense 70.9 277 568.7 Dense 71.9 297 300.8

GraNet∗ 61.4 367 145.7 GraNet∗ 56.3 439 103.4

MobileNet-v1 STR 61.7 176 47.2 MobileNetv-2 STR 60.0 285 40.6

86.6% OptG∗ 66.3 340 87.4 80.2% OptG∗ 65.4 545 76.8

ACDC 66.5 641 124.5 ACDC 64.1 812 93.9

PDP-base 68.2 281 88.3 PDP-base 66.8 354 95.3

PDP-str 65.3 307 47.2 PDP-str 60.7 307 40.6

PDP-optg 68.2 297 87.3 PDP-optg 66.5 343 76.6

$ the GPU cost ($) is based on a commercial cloud spot instance pricing.
* used only one with 8 GPUs due to the limitations in the public code.

Table 5. PDP compared with other unstructured pruning algorithms on ImageNet1K shows the best trade-off among accuracy, inference

MAC, and training overheads. More results are available in Section E in Appendix.

Random Pruning: Unstructured schemes make individual and independent pruning decision for each weight to maximize

the flexibility and minimize the accuracy degradation. Simple and gradual/iterative pruning based on the weight magnitude

has been studied extensively (Frankle & Carbin, 2019; Gale et al., 2019; Han et al., 2015; Zhu & Gupta, 2018). In these

schemes, once a weight is pruned, it does not have the second chance to become unpruned and improve the model quality.

To address such challenges, RigL (Evci et al., 2020) proposes to grow a sparse network by reallocating the removed weights

based on their dense gradients. Applying brain-inspired neurogeneration (i.e., unpruning some weights based on gradients)

and leveraging pruning plasticity is proposed (Liu et al., 2021). Altering the phase of dense and sparse training to accomplish

co-training of sparse and dense models is studied, which results in good model accuracies on vision tasks (Peste et al., 2021).

Unlike other magnitude-driven pruning, supermask training (Zhou et al., 2019) integrated with gradient-driven sparsity

is proposed in (Zhang et al., 2022), where accumulated gradients are used to generate binary masks and straight-through

estimator (Bengio et al., 2013) is used for backward propagation. Based on the lottery hypothesis (Frankle & Carbin, 2019),

pruning in one-shot with heuristics (Tanaka et al., 2020) or gradient-driven metrics (Wang et al., 2020a) is explored.

Structured/Channel Pruning: Unstructured pruning limits inference latency speedup as it suffers from poor memory

access performance, and does not fit well on parallel computation (Anwar et al., 2017; Liu et al., 2022). Recent research

extends unstructured pruning by imposing a particular sparsity pattern during pruning at the cost of lower model predictive

power, but increases the hardware performance during inference. One popular and effective form of structured pruning is

channel pruning, where some channels with negligible effects on the model accuracy are discarded (He et al., 2017; Kang &

Han, 2020b; Li et al., 2017). Using regularization to prune weights in a block is proposed in (Lagunas et al., 2021). (Kang &

Han, 2020a) leverages the β in BatchNorm to select the channels to prune (i.e., beta ≤ ϵ) with ReLU assumed, which limits

its applicability to wider set of DNNs. N:M pruning enforces that there are N non-zero weights out of every consecutive M

weights (Zhou et al., 2021) which enables a compact memory layout and efficient inferences on hardware (Jeff Pool, 2021;

Mishra et al., 2021; Zhou et al., 2021). A non-differentiable method for N:M pruning with complex back-prorogation based

on STE is presented in (Zhou et al., 2021).

12

Submission and Formatting Instructions for ICML 2023

Algorithm 1 Training flow for PDP

1: procedure TRAIN(ϵ, s, r,W = [W0,W1, ...])
2: for epoch e in [0, 1, 2, s) do

3: for each mini-batch do

4: forward with [W0,W2, ...]
5: backward-pass and update W

6: end for

7: end for

8: Wp = topK(−abs(W), r · n(W))

9: [r0, r1, ...] = [
n(Wp∩W0)

n(W0)
,
n(Wp∩W1)

n(W1)
, ...]

10: for epoch e in [s, s+ 1, s+ 2, ...] do

11: [r̂0, r̂1, ...] = min(1, ϵ · (e− s)) · [r0, r1, ...]
12: for each mini-batch do

13: for i ∈ {0, 1, ...} do

14: Wh = topK(abs(Wi), (1− r̂i) · n(Wi))
15: Wl = topK(−abs(Wi), r̂i · n(W)i)
16: ti = 0.5{min(Wh) +max(Wl)}
17: end for

18: for i ∈ {0, 1, ...} do

19: [Zi,Mi] = softmax(
[t2i J,Wi◦Wi]

τ
) //element-wise

20: Ŵi = Mi ◦Wi //element-wise

21: forward-pass with Ŵi

22: end for

23: backward-pass and update W

24: end for

25: end for

26: Wi = ⌊Mi⌉ ◦Wi, ∀i ∈ {0, 1, ..}
27: end procedure

C. PDP Algorithm and Training Flow

In order to obtain t in Fig 1, PDP needs a target pruning ratio r. The pruning ratio can be computed by selecting the

top weights with larger magnitudes across all the layers and then instantly convert the selections into the per-layer ratios.

Another way is to handcraft per-layer ratios, or reuse an existing configuration. Also, PDP is using the softmax operation

which makes the softness concentrated over the weights around the t (as shown in Fig. 1). Hence, we gradually increase the

target pruning ratio from 0 to r so that all low magnitude weights in the pruning range have a chance to use a soft-mask and

settle down smoothly. For that purpose, we introduce a scaling step ϵ to let each weight have opportunities to leverage a

soft-mask at least once, which leads to the training flow in Algorithm 1.

In lines 2-7, a normal training is performed for the first s epochs. Then, in lines 8 and 9, the per-layer target pruning ratio is

computed by selecting the bottom r · n(W) weights globally in terms of the magnitude. Then, in the remaining epochs,

we use PDP to generate soft-masks as in the line 15, while gradually increasing the target ratio as in lines 10 and 11. The

updated weight distribution is captured by updating ti as in the line 16 for all weight matrices. Once the entire training is

over, we binarize the last mask for each weight to output the fully pruned weight for inference as in the line 26.

Overall, the average runtime complexity of PDP is O(W), as we only need to exercise topK algorithm (i.e, sorintg W is

not necessary).

D. Ablation Study: Hyper-Parameter τ search

In the current PDP implementation, we use a global τ to control the level of softness in the pruning mask. Therefore, the

selection of τ affects the model predictive power and should be carefully tuned. In order to explore the methodology for the

τ search, we tried various values for MobileNet-v2 training, and the results are plotted in Fig. 6. The selection of τ affects

13

Submission and Formatting Instructions for ICML 2023

the model predictive power as shown in Fig. 6 where there appears to be an optimal τ . For examples of MobileNet-v2,

τ = 1e− 4 is the best value and is used for all the experiments in Section 3.

Figure 6. MobileNet-v2 with varying τ values.

Since, Fig. 6 shows a concave curve, one could use a binary search to find the best τ values w.r.t. the top-1 accuracy. Also, it

could be possible to cast τ as a learnable parameter for each layer or apply some scheduling to improve the model accuracy

further (as future work), but still both approaches need an excellent initial point which can be found using a binary search

technique.

E. Additional Result for Section 3.

Different approaches made different sparsity allocations per the characteristics of the algorithm for a given pruning target,

which results in complex trade-offs between model accuracy and inference speed. We report the detailed sparsity and

inference MAC break-down for each layer in Fig. 3 and Fig. 4 on ImageNet1k and summarize our observations as follows:

• OptG prunes the early convolution layers quite aggressively in ResNet18 and ResNet50, which leads to very low

inference MACs as shown in Fig. 2 (a) and (b), yet at the cost of the worse Top-1 accuracy. For example, the inference

MAC of ResNet18 from OptG is more than 2x less than that from ACDC,

• Interestingly, STR becomes aggressive in pruning the early convolution layers in MobileNet-v1/v2, while OptG does

not expose such behavior to MobileNet-v1/v2 (unlike it did for ResNet18/50). Such characteristics also favor the

low inference latency over the model accuracy. Also, STR tends not to prune the last linear layer much as discussed

in (Kusupati et al., 2020).

• Unlike OptG and STR, ACDC does not prune the early convolution layers much for the tested networks, but prunes

somewhat actively for the late convolution and linear layers, which leads to high model accuracies at the cost of higher

inference latencies.

• PDP is somewhat between STR and ACDC and modest across all layers in pruning allocation for all the networks,

leading to superior accuracy and inference trade-offs. For example, the layers model.13.3 of MobileNet-v1 and

features.17.conv.1.0 of MobileNet-v2 have the most difference among algorithms, and PDP is modest in pruning these

two layers.

• OptG has very low inference MACs on the earlier layers of ResNet18 and ResNet50 due to its aggressive pruning on

these as seen in Fig. 3 (a) and (b), which leads to the extremely low inference latencies as shown in Fig. 2 (a) and (b).

• GraNet tends to prune the earlier layers less but the later layers more in general which explains why GraNet shows

the highest inference MACs in Fig. 2.

Table. 4 shows the pruned weight histograms of MobileNet-v1 from Table 2. We can observe that each algorithm affects the

weight distribution in a slightly different way.

• STR prefers to split the distribution more widely than others. For the example of the layer 5.0, STR clearly separated

the positive and negative weights with a wide gap centered at the zero, while others sis not, except PDP created a slight

dip around the zero to create mild separation.

14

Submission and Formatting Instructions for ICML 2023

Network Method
Sparsity (%)

80 70 60 50

MobileNet-v1

PDP 69.5 71.0 71.6 71.9

OptG 68.1 69.1 69.6 69.7

ACDC 68.5 69.9 70.9 71.4

ResNet-18
PDP 69.8 70.8 71.0 71.3

ACDC 69.4 70.3 70.6 70.8

Table 6. Top-1 accuracy with ImageNet1k: PDP outperforms other schemes with various pruning rates.

Network Method
Validation Sparsity (%)

dataset 80 70 60 50

Bert

PDP
matched 83.7 84.0 84.3 84.7

mismatched 83.4 83.8 84.4 84.5

OptG
matched 80.3 80.7 81.3 81.2

mismatched 80.1 80.7 80.5 81.0

Table 7. Accuracies with MNLI benchmark: PDP maintains the similar accuracy lead over other schemes.

(a) 1:4 pruning (75% sparsity) (b) Channel pruning (50% sparsity)

Figure 7. PDP is simple and universal enough to be applied directly to structured and channel pruning.

• PDP tends to spread out the sparsified weight distributions more than others. For the example of the fc layer, the

weights from PDP range from -0.5 to 2.0, while those from others are from -0.5 to 1.5. On the other hand, GraNet

tends to keep the weight distributions tight.

We also experimented with varying pruning rates for PDP, OptG and ACDC for MobiletNet-v1 and ResNet-18 with

ImageNet1k, and Bert with MNLI benchmark under the same configurations as in Section 3. Overall, all tested schemes

delivered higher accuracy with lower pruning rate, yet we can observe that PDP keeps its superiority to other schemes over

all the tested pruning rates.

F. Code References

• Dense https://pytorch.org/vision/stable/index.html

• GradNet https://github.com/VITA-Group/GraNet

• OptG https://github.com/zyxxmu/OptG

• ACDC https://github.com/IST-DASLab/ACDC

• STR https://github.com/RAIVNLab/STR

• GMP https://github.com/RAIVNLab/STR

• DNW https://github.com/RAIVNLab/STR

• CS https://github.com/lolemacs/continuous-sparsification

• LNM https://github.com/NM-sparsity/NM-sparsity

15

