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Abstract

Data-driven deep learning has been successfully

applied to various computed tomographic recon-

struction problems. The deep inference models

may outperform existing analytical and iterative

algorithms, especially in ill-posed CT reconstruc-

tion. However, those methods often predict im-

ages that do not agree with the measured pro-

jection data. This paper presents an accurate

differentiable forward and back projection soft-

ware library to ensure the consistency between the

predicted images and the original measurements.

The software library efficiently supports various

projection geometry types while minimizing the

GPU memory footprint requirement, which fa-

cilitates seamless integration with existing deep

learning training and inference pipelines. The

proposed software is available as open source:

https://github.com/LLNL/LEAP.

1. Introduction

X-ray Computed Tomography (XCT) is a 3D noninva-

sive/nondestructive imaging modality that has applications

in healthcare, security, and industry (H. E. Martz et al.,

2016). X-ray projections are recorded by an x-ray detector

opposite of an x-ray source over a range of angles. The

XCT inverse problem attempts to reconstruct the 3D volume

of x-ray linear attenuation coefficients from this collection

of x-ray projections. The XCT reconstruction problem has

been extensively studied for several decades. Recently, deep

learning (DL)-based inference models have successfully

tackled more challenging reconstruction problems, such as

scenarios where x-ray projections are only collected over a

small range of angles (limited-angle CT) or where few pro-
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jections are collected (sparse-view or few-view CT) which

are characterized as ill-posed inverse problems (Han & Ye,

2018; Zhou & Horstmeyer, 2020; Zhang et al., 2020; 2021;

Gao et al., 2022; Hu et al., 2022).

While recent advancements in deep neural network trained

models have been shown to outperform existing numerical

optimization methods in some applications, they often suf-

fer from a lack of data consistency to check whether the

predicted images agree with the measured X-ray projection

data (sinogram). Moreover, those inference models rely

mainly on the training data distribution with the loss func-

tions typically based on the reconstruction error between

the predicted images and the ground-truth images. In these

XCT inverse problems, it is crucial to incorporate the data

consistency step into the inference models to suppress po-

tential artifacts and hallucinated regions. To enable this,

a proper forward model needs to be incorporated into the

training pipeline or the inference step.

One way to facilitate this is the use of an additional data

consistency step with a loss function in the training or infer-

ence pipeline. The loss functions typically aim to minimize

the difference between the forward-projected data of the

predicted volume and the original projection data (Zhou

et al., 2021; Liu et al., 2022; Lahiri et al., 2023). In this

setup, a differentiable forward projection model needs to

be integrated into the neural network framework. Another

way is to use the predicted volumes from the inference

models as a prior (initial guess) in additional reconstruction

algorithms (Kim et al., 2019; Anirudh et al., 2019; Zhou

& Horstmeyer, 2020). Similarly, the inferred volumes are

forward projected to complete the projection data in limited-

angle CT applications (Anirudh et al., 2018). Although

the additional reconstruction algorithms and the sinogram

completion step can be performed separately, an integrated

end-to-end pipeline including the neural network inference

models and following reconstruction processes make the

application more cohesive and practical.

Despite the increased demand for differentiable projectors

in a wide range of XCT applications, existing solutions for

differentiable projections are somewhat limited and imprac-

tical. The Radon Transform is widely used, but works only

with the parallel beam geometry. One could pre-compute

and store the projection matrix for any desired CT geometry
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(Lahiri et al., 2023), but this method utilizes an enormous

amount of memory (even though it is a sparse matrix) and

is significantly inefficient because fetching the system ma-

trix values from memory is much slower than computing

these coefficient on the fly. In the case of cone-beam CT

or high-resolution image reconstruction, the matrix size

becomes excessively large, which makes the forward projec-

tion impractical. A neural network-based projector method

(Gupta et al., 2018) is also less practical, due to the training

requirement for each geometry. Most CT systems have a

configurable geometry to optimize image quality and it is

impractical to retrain with each configuration. The absence

of a widely applicable, memory-efficient differentiable CT

projection software tool remains a significant limitation.

This paper presents a new software library tool called Liver-

morE AI Projector (LEAP), providing differentiable CT for-

ward projections to be easily integrated into neural network-

based inference models. This tool provides both CPU- and

GPU-based forward and back projections, utilizing a signifi-

cantly small memory footprint, particularly with extensive

GPU memory demands during neural network training and

inference time. The main contributions are summarized as:

• The proposed tool provides differentiable projections

to enable an end-to-end neural network training or

inference pipeline for CT applications, without the

need for significant memory footprint requirements.

• This supports forward and back projections for three

widely used 3D scanner geometry types: parallel-beam,

cone-beam, and a method to specify arbitrary locations

and orientations of a set of source/detector pairs.

• This utilizes the highly accurate Separable Footprint

(SF) projector model. Our implementation is also quan-

titatively accurate and all numerical values scale appro-

priately when changing the voxel sizes, detector sizes,

etc.

• The proposed differentiable CT projections lever-

age the PyTorch interface and tensor formats, en-

abling seamless integration into existing neural net-

work frameworks.

• The proposed tool is made available as open-source

software, which can play a crucial role in driving inno-

vation in various DL-based CT applications.

• The proposed tool can be used for implementing an-

alytical or iterative reconstruction algorithms, which

facilitates an integration of DL-driven reconstructions

with conventional optimization-based methods.

2. Method

The proposed differentiable CT projectors are based on

the core C++/CUDA module, Python binding and PyTorch

interfaces, as shown in Figure 1. This section describes the

projection models with the individual modules.

CT Scanner Geometry

Parallel     Cone     Modular

Forward and Back Projector

CPU                    GPU (CUDA)

Parameter Set

Python API
PyTorch Classes

(torch.nn.Module)

Python Bindings and Extension

CT Applications PyTorch Neural Networks

Figure 1: Overview of the proposed differentiable CT projector
software architecture.

2.1. CT Projection Models and Geometries

The XCT forward model is given by the X-ray Transform

which is a collection of line integrals through the unknown

3D volume (Natterer, 1986). The XCT model can be for-

mulated as y = Ax where x ∈ R
n is the volume of x-ray

linear attenuation coefficients and y are the measured pro-

jection data. The forward model is denoted by A ∈ R
m×n

where the coefficients model the measurement process with

the geometry of the CT system. XCT reconstruction is an

inverse problem to recover the volume x. Accurate recon-

struction requires knowledge of the 3D position of every

x-ray source and x-ray detector pixel pair which describes

the geometry of a single measurement. Thus XCT forward

models must be developed for the specific geometry of the

imaging system. We will now discuss the CT geometries

that our software package supports and provide some details

on the algorithms we implemented.

We chose to implement three different 3D XCT geometry

types in this software package: parallel-beam, axial cone-

beam (planar or curved detector), and a flexible cone-beam

geometry where uses may place x-ray sources and detectors

at any position and orientation in space. These geometry

types cover most XCT applications and future releases will

include fan-beam and helical cone-beam geometries.

In practice, the reconstruction volume is composed of a 3D

collection of voxels. Several mathematical models have

been developed that model the XCT line integrals through

a voxelized volume. The most popular and effective mod-

els are the Siddon method (Siddon, 1985), Joseph method

(Joseph, 1982), Distance Driven (DD) method (Man & Basu,

2004), and the SF method (Long et al., 2010). The second

two of these methods, DD and SF, model the finite width of

the detector pixels and volume voxels, while the first two of

these methods do not. Thus, although they are more com-

putationally expensive to compute, the DD and SF methods
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are more accurate and other methods have been shown to

produce artifacts in some cases (Man & Basu, 2004). We

chose to implement the Siddon and SF projector methods in

our software package.

Any optimization-based method that relies on the calcula-

tion of gradients requires one to calculate the adjoint (or in

the discrete case, the transpose) of the X-ray Transform (Bar-

rett & Myers, 2013). The adjoint of the X-ray Transform is

commonly referred to as backprojection. With some caveats

(Zeng & Gullberg, 2000), one should employ methods for

backprojection that are the exact transpose of the forward

projection, referred to as matched projectors. Although

there are some XCT reconstruction packages that utilize

match projectors (Champley et al., 2022), most reconstruc-

tion packages (Aarle et al., 2015) violate this requirement

because exact transposes are typically not as computation-

ally efficient as other methods and if one stops the iterative

reconstruction process early enough, artifacts will not ap-

pear. Since our goal here is to implement methods that are

stable after over a thousand or more iterations, we chose

to implement methods where the exact transpose is used.

As an example of why the adjoint is needed, consider the

following least squares x̂LS := argmin
x

1

2
∥Ax− y∥2. Then

the gradient of this cost function is given by AT (Ax− y).

All of our projectors are quantitatively accurate. The detec-

tor pixels and reconstruction voxels are specified in mm and

the reconstruction volume units are in mm−1.

Our parallel- and cone-beam implementations allow for a

flexible specification of the geometry, including arbitrary

3D detector shifts and non-equispaced projection angles. If

these still do not offer a flexible enough geometry, the user

can specify the 3D location of every source-detector pair, as

well as an arbitrary orientation of the detector.

Lastly, we also implemented forward/ back projector pairs

for objects with cylindrical symmetry (Champley & Mad-

dox, 2021). A special case of this is the Abel Transform

which applies to parallel-beam geometries.

2.2. Core CUDA Implementation

Forward and back projection implementations are available

for the three CT geometries described in the previous subsec-

tion using both the Siddon and SF projector models. These

algorithms are implemented for the CPU using C/C++ and

for NVIDIA GPUs using CUDA. Parallelization is done

over the samples in the output space (CT projections for

forward projection and reconstruction voxels for backpro-

jection). Our CUDA implementation utilizes 3D threads

and 3D texture memory is used for the input data (recon-

struction volume for forward projection and CT projections

for backprojection).

Differentiable
 CT Projectors

Neural Networks

! "! #

CT Parameters
(Scanner Geometry, 

Detector Spec.)

Figure 2: Model training and inference with our CT Projectors

CT projection data and the reconstruction volumes are both

stored as contiguous 32-bit floating point arrays. Users sim-

ply provide the software with pointers to the relevant arrays.

If the data are already on the GPU, then the appropriate

method is implemented on this data, but if the data is not

on the GPU (and the user want the calculation done on the

GPU), the software copies the data to the GPU, performs

the calculation, and then copies the result back to the CPU.

2.3. PyTorch Interfaces and CT Parameters

The forward and back projection in the core C++/CUDA

module are provided as Python functions using the Python

binding and the custom C++/CUDA extensions (Paszke

et al., 2019). The main class is “Projector” which is derived

from torch.nn.Module to enable automatic differentiation

with PyTorch and the Python implementation.

The forward and back projections in the proposed library

require a set of parameters specifying the CT scanner sys-

tem. These CT parameters include scanner geometry type,

number of projections, angular range or list of projection

angles, detector pixel width and heights, source-to-detector

distance, source-to-object distance, horizontal/vertical de-

tector shift, number of voxels in each dimension, voxel sizes,

and volume center position. They can be specified using set

functions or a configuration file.

3. Sample Usage

Integration with Model Training and Inference A few

recent DL methods addressing ill-posed CT reconstructions

use forward projection models for data consistency (Zhou

et al., 2021; Liu et al., 2022; Lahiri et al., 2023). These

methods utilize a forward model as a loss function in the

training or inference pipelines. While the detailed formula-

tions differ from each other, the basic idea is to minimize the

difference between the forward-projected data and original

projection data, as illustrated in Figure 2. The loss function

can be formulated as: argmin
x∈Rn |Ax− y∥2

2
.

Our proposed software library can be utilized as a differ-

entiable forward model in existing DL frameworks. The

provided PyTorch class enables seamless integration into

existing torch.nn.Module classes. The Python code snippet

below illustrates how to utilize our projection library during

training or inference time:

1 import torch
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2 from {our_projector_name} import Projector

3

4 proj = Projector(use_gpu=True, gpu_device="

cuda:0", batch_size=1)

5 proj.load_param("parallel_beam.cfg")

6

7 for ind in range(0, n_iters):

8 X, Y = data # retrieve data

9 X_pred = model(X) # forward pass

10 Y_pred = proj(X_pred) # forward project

11 loss = loss_func(Y, Y_pred)

Listing 1: Example of our projector with a PyTorch model

End-to-End Reconstruction Pipeline While the pro-

posed software library is primarily designed for forward

modeling in neural network models, it can also be utilized

for additional reconstruction processes or standalone recon-

struction applications. The majority of the neural network

inference-based methods in CT applications aims to improve

ill-posed input images from conventional reconstruction al-

gorithms (e.g., Filtered Backprojection (FBP)) by removing

artifacts and noise (Han & Ye, 2018; Zhou et al., 2021;

Liu et al., 2022). In general, these initial reconstruction

processes are performed using separate CT applications.

Yet, the initial reconstruction process using our library has

several advantages. First, it enables an integrated training

pipeline with efficient memory usage. Second, this method

enables to augment diverse, ill-posed input images given

the training projection data. One can easily randomize the

angular range (limited-angle CT) or the number of views

(few-view CT) to generate diverse ill-posed input images.

Moreover, the predicted images from the inference models

can be further improved by additional reconstruction algo-

rithms (Kim et al., 2019). Our tool can also facilitate the

seamless implementation of an end-to-end pipeline for the

sinogram completion (Anirudh et al., 2018).

4. Experiments

Data Consistency with Inference Models We performed

limited-angle CT experiments to demonstrate the benefit of

the data consistency with the proposed differentiable projec-

tors. We used a publicly available airport luggage dataset

for automatic threat recognition (of Excellence at Northeast-

ern University, 2014) that we split into 165 bags for training

and the remaining 25 bags for test. The image dimension is

5122 and the number of projections is 720 (parallel beam).

To demonstrate the limited-angle CT, we randomly masked

120◦ out of 180◦ (60◦ available). We implemented a neural

network model combining CT-Net (Anirudh et al., 2018)

and U-Net (Han & Ye, 2018). Once the model was trained,

we performed the sinogram completion and the iterative data

consistency step using our projectors during the inference

time. We compared the predicted images from the inference

model and the final images after the sinogram completion

Before After Data Consistency Ground-Truth

29.453/0.816 30.708/0.841

Figure 3: One of the predicted images from the inference model
and its final image after the data consistency-based refinement with
our projector. The PSNR/SSIM values are indicated at the bottom.

Geometry Parallel Cone

Dimension 5123/180 10243/720 5123/180 10243/720

Ours 0.5/1.8 (1.5) 11.5/15.4 (8) 1.4/2.8 (1.5) 37.1/39.2 (11.1)

LTT 4.2 (-) 17.4 (-) 4.5 (-) 38.9 (-)

Table 1: Performance comparison (sec) between ours and LTT. (·)
indicates the memory usage (GB). In our method, we report the
times without and with the CPU-GPU data transfer. The dimension
refers to the image dimension and the number of projections.

and iterative refinement, with the ground truth images. The

signal-to-noise-ratio score (PSNR) and structural similarity

(SSIM) were used as the image quality metric. Figure 3

shows one of the predicted images directly from the model

and its final image after the refinement. The refinement step

with our projector led to an improvement in the averaged

PSNR (dB) and SSIM from 35.486 and 0.905 to 36.350 and

0.911, respectively.

Performance and Memory Usage We report the forward

projection time of our library and another publicly available

reconstruction software tool (LTT) (Champley et al., 2022)

on NVIDIA Tesla P100 with 16GB, as shown in Table 1.

The angular ranges for parallel and cone beams are 180 and

360, respectively. Note that we did not list the memory

usage for LTT because it is a user-specified parameter. The

most GPU memory that LTT would use is enough to hold

one copy of the projection data and volume data stored as

32-bit floats. This is also how much GPU memory LEAP

requires as well. This small memory footprint requirement

enables easy integration with existing neural network mod-

els on GPUs.

5. Conclusion

We presented an open-source software library providing

differentiable XCT projectors. This library allows us to

integrate forward modeling into DL frameworks as an end-

to-end pipeline. This library enables fast forward and back

projections with small memory footprint requirements.
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