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Abstract

We introduce Koopman Constrained Policy Opti-

mization (KCPO), combining implicitly differen-

tiable model predictive control with a deep Koop-

man autoencoder for robot learning in unknown

and nonlinear dynamical systems. KCPO is a

new policy optimization algorithm that trains neu-

ral policies end-to-end with hard box constraints

on controls. Guaranteed satisfaction of hard con-

straints helps ensure the performance and safety

of robots. We perform imitation learning with

KCPO to recover expert policies on the Simple

Pendulum, Cartpole Swing-Up, Reacher, and Dif-

ferential Drive environments, outperforming base-

line methods in generalizing to out-of-distribution

constraints in most environments after training.

1. Introduction

The problem of real-world control presents difficulties from

nonlinearity and unknown dynamics. One possible solution

is via model-based optimal control. Optimal control in an

unknown system requires system identification, or the data-

driven estimation of a mathematical model characterizing

a system’s dynamics (Fasel et al., 2021). Yin et al. (2022)

use differentiable Riccati solving to obtain optimal controls

with a Koopman autoencoder-based model, which learns

a linear model from data in order to solve the classical

control problem of Linear Quadratic Regulator (LQR). Like

our work, Yin et al. (2022) is interested in box-constrained

control trajectories, using the hyperbolic tangent function to

squash the output of their LQR solver.

Trajectory optimization for nonlinear dynamical systems

typically relies on local linearization. Koopman opera-

tor theory (Koopman, 1931; Koopman & Neumann, 1932;

Budišić et al., 2012; Mezic, 2013; Otto & Rowley, 2021;
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Brunton et al., 2022; Colbrook & Townsend, 2021; Col-

brook et al., 2023), on which Yin et al. (2022) relies, may

provide an alternative path via global linearization: every

point in state space shares one linear model of the dynamics

(Brunton et al., 2022, Section 1.1). It is possible to employ

functions that lift from the original state space, where the

dynamics are nonlinear and difficult to both predict and

control, to a new space where a linear model is sufficient to

characterize the dynamics everywhere. Once dynamics have

been linearized globally, the strong guarantees of optimality

from classical control theory become available.

Koopman operator theory has recently been employed in

many domains in robotics and control (Surana, 2016; Korda

& Mezić, 2018; Peitz et al., 2020; Folkestad et al., 2020a;b;c;

Peitz & Klus, 2020; Folkestad & Burdick, 2021; Wang et al.,

2023; Calderón et al., 2021; Junker et al., 2022). This paper

focuses on one approach to apply Koopman operator theory,

a neural network architecture called a Koopman autoen-

coder that learns the lifting functions and linear operator

from data (Lusch et al., 2018; Takeishi et al., 2017; Yeung

et al., 2017; Mardt et al., 2018; Otto & Rowley, 2019; Mardt

et al., 2020). While the first Koopman autoencoders sim-

ply predict dynamics, later works besides Yin et al. (2022)

have successfully used Koopman autoencoders for optimal

control (Korda & Mezić, 2018; Han et al., 2022; Li et al.,

2020; King et al., 2022). These other works either are

unconstrained control methods, or they have probabilistic

constraints that are learned incrementally through training

instead of being enforced from the start as hard constraints.

Choosing a loss for learning a quality Koopman embedding

space is an open research topic. Most existing Koopman

autoencoder methods use a combination of prediction loss

and task loss, pre-training the Koopman model before using

it for a policy trained separately, although Yin et al. (2022)

learns the autoencoder end-to-end with task loss. Yin et al.

(2022)’s differentiable LQR solver enables the use of task

losses for learning Koopman dynamics.

Yin et al. (2022) does not explicitly consider the control

constraints in the Koopman embedding space. Constraining

the actions is crucial for safety in the control of robotic

systems for flying and locomotion tasks. Serious damage

to the robots or to surrounding humans and property could
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result if robots exceed their physical limits (Gu et al., 2022).

Contributions. We propose to use Koopman embeddings

for learning dynamics for Constrained Policy Optimization

(CPO) , e.g. as in Achiam et al. (2017), which we refer

to as KCPO. KCPO performs constrained policy optimiza-

tion, optimizing a policy that respects hard box constraints

during both training and inference. KCPO generates box-

constrained control trajectories for robots, bounding be-

tween an upper and lower limit. We experimentally study

KCPO in fully-observable and deterministic environments

(where perception is not a point of concern).

2. Background & Preliminaries

2.1. Model Predictive Control (MPC)

We solve a trajectory optimization problem with convex

cost function c(τt), nonconvex dynamics f(τt), and box

constraints u and u, where τt := {xt, ut}:

τ⋆1:T = argmin
τ1:T

T∑

t=1

c(τt)

subject to x1 = xinit,xt+1 = f(τt),u ≤ u ≤ u.

(1)

MPC, cf. (Tedrake, Chapter 10), solves eq. (1) for u∗
1 with

a finite horizon T and then advances the limited horizon

forward and solves eq. (1) in the next timestep.

2.2. Implicitly Differentiable Model Predictive Control

Amos et al. (2018), whose work KCPO builds upon, use

an implementation of MPC with box-constrained controls,

modifying the Control-Limited Differential Dynamic Pro-

gramming heuristic (also known as Box-DDP) (Tassa et al.,

2014). Appendix A.5 further describes their formulation.

Amos et al. (2018)’s implementation of Box-DDP uses first-

order linearization instead of the second-order linearization

in Tassa et al. (2014). Following Amos et al. (2018), we

will refer to the first-order iLQR version as “Box-DDP”.

Although linearization and quadratization are not needed for

KCPO, linearization is required to generate a dataset from a

Box-DDP-based expert for imitation learning, in which the

expert can access to the true nonlinear dynamics equations.

2.3. Koopman Autoencoders

Koopman operator theory offers hope that it may be feasible

to extend the benefits of existing linear control theory tech-

niques to nonlinear dynamical systems. In 1931, Bernard

Koopman showed that it is possible to diffeomorphically

lift an original state x, which has nonlinear dynamics, into

a new space with linear dynamics (Koopman, 1931). The

Koopman operator is a linear operator that completely char-

acterizes the original nonlinear dynamics. In this newly

lifted space, classical linear control techniques like LQR

could be used (Brunton et al., 2022, Section 6).

The key challenge in Koopman theory is that the operator

is infinite-dimensional that lives in a Hilbert space of mea-

surement functions g(x), also called observables. This is an

obstacle indeed, as LQR only applies to finite-dimensional

matrices. Thus, many researchers have focused on how to

approximate Koopman operators with finite-dimensional

matrices and also approximate the Koopman operator’s true

infinite-dimensional Hilbert space in finite dimensions .

Koopman autoencoders like those used in KCPO combine

Koopman operator theory with the traditional autoencoder

neural network architecture to learn approximate, finite-

dimensional observables and the Koopman operator simul-

taneously from data.

A finite Koopman operator is likely to be limited compared

to an infinite-dimensional operator. We use the Koopman au-

toencoder architecture from Lusch et al. (2018), which over-

comes the limitations of an autoencoder’s finite-dimensional

bottleneck by using an auxiliary neural network to model the

entire continuous spectrum of Koopman operator’s eigenval-

ues. This allows the latent space to use significantly fewer

dimensions than the true infinite-dimensional Koopman op-

erator. We augment Lusch et al. (2018)’s original design

with auxiliary neural networks to generate cost matrices for

the optimal control problem formulation presented in eq. (1).

KCPO’s autoencoder extends Lusch et al. (2018)’s auxiliary

network design from dynamics prediction to control tasks.

2.4. Koopman Dynamics for Control

The paradigm of end-to-end differentiable Koopman poli-

cies comes from Yin et al. (2022), who use analytical Ric-

cati solving to obtain optimal controls with their Koop-

man autoencoder-based model, and they impose box con-

straints on the output of the solver with a hyperbolic tan-

gent squashing function. However, squashing functions

often lead to poor performance in practice; a numerical

optimization method with built-in support for box con-

straints may be more appropriate (Tassa et al., 2014, Section

III.A). Problematically, numerical optimization is not easily

or efficiently differentiable. We propose to retain end-to-

end differentiability in a box-constrained Koopman policy

by replacing Yin et al. (2022)’s analytical Riccati solver

layer with the implicitly differentiable constrained numeri-

cal MPC layer of Amos et al. (2018).

Unlike Lusch et al. (2018) and our work, the Koopman

autoencoder of Yin et al. (2022) does not parameterize the

continuous spectrum of the Koopman operator’s eigenvalues.

As a consequence, Yin et al. (2022)’s embedding space is

much higher dimensional and requires far more parameters

to model the dynamics than our work.

Watter et al. (2015); Banijamali et al. (2018) and follow-
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up works also explore the idea of learning latent linear

dynamics for end-to-end differentiable visual control. Al-

though Watter et al. (2015); Banijamali et al. (2018) are not

inspired by Koopman operator theory and do not label their

autoencoder a Koopman autoencoder, their design is similar

to ours in that they each rely on local linearization prior to

iLQR or iLQG (iterative-Linear Quadratic Gaussian, which

is iLQR with Gaussian noise). However, their iLQR layers

are not differentiable and do not impose box constraints

on controls. They also are focused on the dual problem of

control and perception, while we restrict ourselves to just

control by assuming full observability and determinism.

3. Koopman Constrained Policy Optimization

Our method estimates Koopman dynamics for control by

combining a Koopman autoencoder with differentiable MPC

and differentiating end-to-end through these components.

3.1. Combining Koopman Autoencoders with

Differentiable MPC

The original differentiable MPC introduced by Amos et al.

(2018) had a great limitation specifically when using neural

networks to approximate the dynamics and cost function.

The nonlinear neural networks introduce strong nonconvex-

ity that prevents MPC from reaching a fixed point solution

to eq. (1) (Amos et al., 2018). The requirement for fixed

point solutions to trajectory optimization arises inherently

when using the IFT to differentiate through MPC. If neu-

ral networks cannot be used in MPC, then the scope of

applicability for differentiable MPC becomes limited.

Combining implicitly differentiable MPC with a Koopman

autoencoder addresses this issue by producing linear dy-

namics without Taylor expansion. With linear dynamics,

constrained MPC optimization provably converges to a fixed

point, assuming the feasible set is nonempty and the cost

function is convex. In most trajectory optimization, the

cost function is convex: the quadratic distance function

from current state to goal. We enable end-to-end training in

the KCPO algorithm by composing the Koopman autoen-

coder and implicitly differentiable MPC (see algorithm 1

and fig. 1). Additional details on Amos et al. (2018)’s sta-

bility issues may be found in appendix A.6.

The positive semi-definiteness of Ct is a critical assumption

for the feasibility of the trajectory optimization; otherwise,

a solution will likely not exist. Ensuring that cost matrix

Ct for the KCPO algorithm is positive semi-definite, the

auxiliary neural network outputting the parameters for the

cost function (AUXILIARYCOSTNN in algorithm 1) gen-

erates the lower triangle of C’s Cholesky decomposition:

C = LL
⊤. Thus, the cost C from AUXILIARYCOSTNN is

positive semi-definite (Golub & Van Loan, 1996).

Figure 1. Koopman Constrained Policy Optimization architecture.

An autoencoder transforms an observed state X into latent state

vector Z. Auxiliary neural networks generate dynamics and cost

matrices for MPC, solving eq. (1) for optimal controls U∗.

Algorithm 1 Koopman Constrained Policy Optimization

T is the MPC horizon length.

x ∈ R
n is a state vector.

u ∈ R
m is a control vector.

u,u ∈ R
m are the constraints on controls (eq. (1)).

C ∈ R
T×n+m×n+m and c ∈ R

T×n+m are objective cost terms.

Ct must be positive semi-definite.

F ∈ R
T×n×n+m and f ∈ R

T×n are dynamics cost terms.

1: function KCPO(x1:T ,u,u; θ)

2: // Obtain the Koopman cost, dynamics, and states

3: C, c← AUXILIARYCOSTNN(x1; θ)
4: F, f ← AUXILIARYDYNAMICSNN(x1; θ)
5: z1:T ← ENCODER(x1:T ; θ)
6: // Solve for the controls in the Koopman space

7: u
⋆
1:T ← DIFFERENTIABLEMPCT,u,u(z1,C, c,F, f)

8: // Decode back to the original space

9: x̂1:T ← DECODER(z1:T ; θ)
10: return u

⋆
1:T , x̂1:T

11: end function

3.2. Learning & Backpropagation

Training KCPO requires backpropagating through a task-

specific policy loss and an autoencoding reconstruction loss.

ℓ = ℓpolicy(u
⋆
1:T ) + ℓreconstr(x̂1:T ). (2)

Equation (2) differs from Yin et al. (2022)’s loss by lacking

Koopman operator regularization and dynamics prediction

error terms. In-loss regularization is unnecessary because

we train with AdamW, a regularizing optimizer (Loshchilov

& Hutter, 2014). We do not find the prediction error term

helpful and omit it, noting that Yin et al. (2022) heav-

ily downweight it. ∇θℓreconstr is backpropagated through

KCPO(xinit; θ) with explicit differentiation, and∇θℓpolicy is

backpropagated through KCPO(xinit; θ) in two parts. Using

the chain rule, PyTorch seamlessly connects two derivatives:

first, the derivative of the MPC layer w.r.t. the loss, and
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second, the derivative of the previous layers w.r.t. their in-

puts and parameters, even as those layers are differentiated

using distinct methods (implicit and explicit, respectively)

(Paszke et al., 2019).

4. Experiments & Results

We evaluate KCPO’s efficacy with imitation learning to

recover expert policies in the Simple Pendulum, Cartpole

Swing-Up, Differential Drive (LaValle, 2006), and Reacher

environments. The Reacher experiments were conducted

using a custom environment inspired by the implementation

of the Reacher task from Ivy Gym (Lenton et al., 2021).

We compare with three baselines, each using the hyperbolic

tangent activation function to squash input between (−1, 1)
before scaling to fit box constraints.

The first baseline is a Long Short-Term Memory-based Re-

current Neural Network (RNN) (Hochreiter & Schmidhuber,

1997). The initial state is given to the RNN and inputted

recurrently until a control trajectory is fully generated. The

second baseline modifies the “ReflexNet” of (Kurtz et al.,

2022) to enforce hard constraints using hyperbolic tangent.

The ReflexNet architecture is a multilayer perceptron and

outputs the entire trajectory given the initial state:

u1:T = πθ(x0). (3)

The last baseline, “RiccatiNet” is inspired by Yin et al.

(2022). It slightly modifies our specific autoencoder archi-

tecture so as to work with Yin et al. (2022)’s approach of

differentiable Riccati solving and squashing function. This

enables a head-to-head comparison of implicitly differen-

tiable MPC against Yin et al. (2022)’s Riccati solving and

squashing function while holding the autoencoder constant.

These are good baselines for assessing KCPO because they

can generate full box-constrained control trajectories given

initial states. Hyperparameters are in appendix A.1. The

source code to reproduce our experiments is available at

https://github.com/mhr/kcpo-icml.

4.1. Out-of-Distribution Generalization

Our first experiment measures imitation loss through Mean

Squared Error (MSE) between the expert and the trained

policy π in the Differential Drive environment averaged

over ten trials, each deterministically reproducible with a

separate pseudo-random seed.

Figure 2 shows KCPO typically performing worse with

baselines for a test set with constraints identical to those

seen during training, but KCPO beats baseline performance

for a test set with constraints different than those seen during

training. This suggests the baselines may be overfitting to

the training data. Similar generalization results exist for

Simple Pendulum and Cartpole Swing-Up, while Reacher

KCPO RNN ReflexNet RiccatiNet
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Figure 2. Test imitation loss at last epoch for Differential Drive.

Left panel tests with in-distribution constraints. Right panel tests

with new, out-of-distribution constraints unseen during training.

(lower=better).

results in similar generalization within the margin of error, to

be found in appendix A.3. Details on which constraints were

used for each experiment can be found in appendix A.2.

4.2. Speed

We timed one batch of KCPO during training and inference

for the Cartpole Swing-Up environment using each model

with MPC horizon T = {10, 20} for ten batches (figures

included in appendix A.4). An entire second of wall clock

time is required for inference on a KCPO network with a

horizon of 20 on a 13th Gen Intel(R) Core(TM) i9 with

32 GB of RAM. Thus, it is impractical to use KCPO for

real-time control, but with a future improvement in speed,

the control performance of KCPO would be valuable.

5. Conclusion

We have presented a new method for constrained policy op-

timization in unknown, highly nonlinear systems: Koopman

Constrained Policy Optimization (KCPO). KCPO harnesses

Koopman autoencoders’ linearized dynamics with differen-

tiable trajectory optimization for end-to-end trainable con-

strained policy optimization. KCPO exceeds or matches

baseline performance in the Simple Pendulum, Cartpole

Swing-Up, Reacher, and Differential Drive environments

when tested with constraints unseen during training. KCPO

is a new policy optimization algorithm that trains end-to-end

with inviolable, hard box constraints on controls.

Future Extensions. KCPO is limited to applying only box

constraints to controls. One approach for state constraints

is Shi & Meng (2022), who concatenate the state vector with

the latent embedding vector. Another approach could be to

use a linear decoder like Korda & Mezić (2018) and Han

et al. (2022). King et al. (2022) achieve state and control

constraints, but these constraints are probabilistic, so the ar-

chitecture is safe only for offline training. Another extension

could borrow from Han et al. (2022) to achieve stochastic

control robust to random perturbations in dynamics. How-

ever, Box-DDP (an extension of LQR) is already optimal

for stochastic dynamics with a Gaussian noise distribution

(Tedrake, Chapter 14).
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A. Appendix

A.1. Hyperparameters

Table 1 displays the hyperparameters for the experiments described in section 4. Please note that the choice of hidden layer

activation functions differ between models because we observed these functions to be most optimal empirically.

Table 1. Hyperparameters

MPC Horizon Length 10

Epochs 250

Total Training Samples 1000

Total Testing Samples 100

Total Validation Samples 100

State Dimensions 2 (Pendulum), 5 (Cartpole), 4 (Reacher), 3 (Differential Drive)

Control Dimensions 1 (Pendulum), 1 (Cartpole), 2 (Reacher), 2 (Differential Drive)

Koopman Operator Dimensionality 2× 2 (Pendulum), 6× 6 (Cartpole), 4× 4 (Reacher), 6× 6 (Differential Drive)

Control Matrix Dimensionality 2× 1 (Pendulum), 6× 1 (Cartpole), 4× 1 (Reacher), 6× 6 (Differential Drive)

RNN Hidden Layer Activation Function ReLU

ReflexNet & KCPO Hidden Layer Activation Function GELU (Hendrycks & Gimpel, 2016)

Optimizer AdamW (Loshchilov & Hutter, 2014)

Learning Rate 1× 10−3

A.2. In-Distribution and Out-of-Distribution Constraints

Table 2 contains the box constraints used in the generalization experiments described in section 4.1 for the Simple Pendulum,

Cartpole Swing-Up, Reacher, and Differential Drive environments.

Table 2. Test Constraints
Environment In-Distribution Out-of-Distribution

Simple Pendulum (-2, 2) (-1, 1)

Cartpole Swing-Up (-10, 10) (-5, 5)

Reacher (-1, 1) (-0.5, 0.5)

Differential Drive (-100, 100) (-80, 80)

A.3. Additional experimental results for out-of-distribution generalization using new constraints

Figures 3 to 5 depict our generalization experiments described in section 4.1 for the Simple Pendulum, Cartpole Swing-Up,

and Reacher environments, respectively. In these experiments, unlike with our Differential Drive experiment, KCPO

performs roughly on par or slightly worse than the baselines for in-distribution constraints, but the trend discussed in

section 4.1 of KCPO performing better than baselines with out-of-distribution constraints continues in these other three

environments.
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Figure 3. Test imitation loss at last epoch for Simple Pendulum. Left panel tests with in-distribution constraints. Right panel tests with

new, out-of-distribution constraints unseen during training. (lower=better).
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Figure 4. Test imitation loss at last epoch for Cartpole Swing-Up. Left panel tests with in-distribution constraints. Right panel tests with

new, out-of-distribution constraints unseen during training. (lower=better).
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Figure 5. Test imitation loss at last epoch for Reacher. Left panel tests with in-distribution constraints. Right panel tests with new,

out-of-distribution constraints unseen during training. (lower=better).

A.4. Timing

Figure 6 depicts our timing experiments described in section 4.2.
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Figure 6. The X-axis is separated into categories for training and inference forward passes of each method (KCPO, RNN, ReflexNet, and

RiccatiNet), and the Y-axis is time in seconds per forward pass of a single batch of data (lower=better). A black line is drawn where the

time reaches one second to demonstrate when a given controller’s speed becomes far too slow for real-time control. The top row is with

horizon=10, while the bottom row is with horizon=20.

A.5. Differentiable MPC with Implicit Function Theorem

In practice, most constrained MPC solvers are not explicitly differentiable, making it difficult to use them to train neural

policies with hard constraints. Following Amos et al. (2018) and Kolter & Duvenaud, let us treat a constrained MPC

solver as a function z
⋆(x), with x being the input state and z

⋆ being the optimal outputs (both the optimal primal and dual

variables). In practice, z⋆(x) does not easily admit an explicit definition in terms of x. A consequence of lacking such

a definition is that
∂z⋆(x)

∂x
cannot be computed using the typical automatic differentiation pipeline. One could compute

∂z⋆(x)
∂x

by programming an MPC solver with differentiable operations and unrolling all the operations into a differentiable

computational graph. However, computing that Jacobian via unrolling is prohibitively slow in practice because it often

requires hundreds of iterations for an MPC solver to reach a fixed point.

Fortunately, the Implicit Function Theorem (IFT) provides an alternative differentiation method (Krantz & Parks, 2002).

The constrained MPC solver may be considered to be an implicit function g(x, z⋆), which parameterizes a new function in

terms of both the independent and dependent variable. Intuitively, our choice of g(x, z⋆) is an optimality function where

suboptimal inputs u will result in g(x,u) > 0, but the root g(x, z⋆) = 0 exists for the fixed point solution to the MPC

optimization.

With this implicit formulation of the constrained MPC solver function,
∂g(x,z⋆)

∂x
can be solved for, under the condition that

g(x, z⋆) = 0. First, let us define the optimality function, which is at a root at MPC’s optimal fixed point z⋆, satisfying the

aforementioned condition.

g(x, z⋆(x)) = 0 (4)

In the next step of the theorem, both sides may be differentiated w.r.t. x.
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∂g(x, z⋆(x))

∂x
= 0 (5)

The chain rule expands the partial derivative of eq. (5) into two new partial derivatives, each w.r.t. x. Because g(x, z⋆) is a

multivariate function, both terms must be summed together.

∂g(x, z⋆)

∂x
+

∂g(x, z⋆)

∂z⋆
∂z⋆(x)

∂x
= 0 (6)

Because this differentiation takes place at a root, a linear system of equations can be set up, and
∂z⋆(x)

∂x
can be solved for.

∂z⋆(x)

∂x
= −

(

∂g(x, z⋆)

∂z⋆

)

−1
∂g(x, z⋆)

∂x
(7)

A.6. Preventing Unstable Training via Koopman Operator Theory

There are two issues where training in Amos et al. (2018) became unstable.

First, there were occasions during training when MPC optimization fails to reach a fixed point for some or all samples in

a batch. Amos et al. (2018) designed their training procedure to detach from the ruined, unconverged samples to prevent

spoiling of the training with a runtime exception.

Second, for a task involving simultaneous system identification and cost function learning when imitating an expert policy,

training did not converge. The authors found that cycling between training the cost function parameters and training their

system parameters was the only path to solve the task. Even the method of detaching unconverged samples was unhelpful.

KCPO addresses both instability issues by eliminating the nonconvexity of the dynamics via Koopman operator theory:

linearity implies MPC always converges. Batch gradient descent therefore can be used for constrained policy optimization

with deep neural networks.

Empirically, we did find that there was an issue with reaching fixed points on occasion during experiments with Differential

Drive only.
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