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Abstract

Deep learning methods are highly accurate, yet

their opaque decision process prevents them from

earning full human trust. Concept-based mod-

els aim to address this issue by learning tasks

based on a set of human-understandable concepts.

However, state-of-the-art concept-based models

rely on high-dimensional concept embedding rep-

resentations which lack a clear semantic mean-

ing, thus questioning the interpretability of their

decision process. To overcome this limitation,

we propose the Deep Concept Reasoner (DCR),

the first interpretable concept-based model that

builds upon concept embeddings. In DCR, neural

networks do not make task predictions directly,

but they build syntactic rule structures using con-

cept embeddings. DCR then executes these rules

on meaningful concept truth degrees to provide

a final interpretable and semantically-consistent

prediction in a differentiable manner. Our ex-

periments show that DCR improves up to +25%
w.r.t. state-of-the-art interpretable concept-based

models on challenging benchmarks, and discovers

meaningful logic rules matching known ground

truths even in the absence of concept supervision

during training.

1. Introduction

The opaque decision process of deep learning (DL) models

has failed to inspire human trust despite their state-of-the-art

performance across multiple tasks (Rudin, 2019; Bussone

et al., 2015). Concept-based models (Kim et al., 2018; Chen

et al., 2020) aim to increase human trust in deep learning
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Saclay, Thiverval-Grignon, France 5KU Leuven, Leuven, Belgium.
Correspondence to: Pietro Barbiero <pb737@cam.ac.uk>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

models by using human-understandable concepts to train in-

terpretable models—such as logistic regression or decision

trees (Rudin, 2019; Koh et al., 2020; Kazhdan et al., 2020).

This approach significantly increases human trust in the AI

predictor (Rudin, 2019; Shen, 2022) as it allows users to

clearly understand a model’s decision process. However,

state-of-the-art concept-based models, which rely on con-

cept embeddings (Yeh et al., 2020; Kazhdan et al., 2020;

Mahinpei et al., 2021; Espinosa Zarlenga et al., 2022) to

attain high performance, are not completely interpretable.

Indeed, concept embeddings lack clear semantics on individ-

ual dimensions, e.g., ĉyellow = [2.3, 0.3,−3.5, . . . ]T does

not have semantics assigned to each of its dimensions. This

sacrifice of interpretability in favour of model capacity leads

to a possible reduction in human trust when using these

models, as argued by Rudin (2019); Mahinpei et al. (2021).

In this paper, we propose the Deep Concept Reasoner (DCR,

Section 3), the first interpretable concept-based model build-

ing on concept embeddings. DCR applies differentiable

and learnable modules on concept embeddings to build a

set of fuzzy rules which can then be executed on semanti-

cally meaningful concept truth degrees to provide a final

interpretable prediction.

2. Preliminaries

Concept-based models Concept-based models f : C →
Y learn a map from a concept space C to a task space

Y (Yeh et al., 2020). If concepts are semantically mean-

ingful, then humans can interpret this mapping by tracing

back predictions to the most relevant concepts (Ghorbani

et al., 2019a). When the features of the input space are

hard for humans to reason about (such as pixel intensities),

concept-based models work on the output of a concept-

encoder mapping g : X → C from the input space X to

the concept space C (Ghorbani et al., 2019b; Koh et al.,

2020). In general, training a concept-based model may

require a dataset where each sample consists of input fea-

tures x ∈ X ⊆ R
n (e.g., an image’s pixels), k ground

truth concepts c ∈ C ⊆ {0, 1}k (i.e., a binary vector

with concept annotations, when available) and o task la-

bels y ∈ Y ⊆ {0, 1}o (e.g., an image’s classes). During
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training, a concept-based model is encouraged to align its

predictions to task labels i.e., y ≈ ŷ = f(g(x)). Similarly,

a concept encoder can be supervised when concept labels

are available i.e., c ≈ ĉ = g(x). When concept labels are

not available, they can still be extracted from pre-trained

models associating concept labels to clusters found in their

embeddings as proposed by Ghorbani et al. (2019b); Magis-

ter et al. (2021). We indicate concept and task predictions

as ĉi = (g(x))i and ŷj = (f(ĉ))j respectively.

Concept truth values vs. concept embeddings Usually,

concept-based models represent concepts using their truth

degree, that is, ĉ1, . . . , ĉk ∈ [0, 1]. However, this repre-

sentation might significantly degrade task accuracy as ob-

served by Mahinpei et al. (2021) and Espinosa Zarlenga

et al. (2022). To overcome this issue, concept-based mod-

els may represent concepts using concept embeddings

ĉi ∈ R
m alongside their truth degrees ĉi ∈ [0, 1].1 While

this increases task accuracy of concept-based models (Es-

pinosa Zarlenga et al., 2022), it also weakens their inter-

pretability as concept embeddings lack clear semantics.

Fuzzy logic rules Continuous fuzzy logics (Hájek, 2013;

van Krieken et al., 2022; Petersen et al., 2022) extend

Boolean logic by relaxing discrete truth-values in {0, 1}
to truth degrees in [0, 1], and Boolean connectives to

(differentiable) real-valued operators. In particular, a

t-norm ∧ : [0, 1]× [0, 1]→ [0, 1] generalises the Boolean

conjunction while a t-conorm ∨ : [0, 1]× [0, 1]→ [0, 1]
generalises the disjunction. These two operators are con-

nected by the strong negation ¬, defined as ¬x = 1 − x.

For example, the product (fuzzy) logic can be defined by

the operators x ∧ y := x · y and x ∨ y := x+ y − xy. As

in Boolean logic, the syntax of a t-norm fuzzy rule includes:

(i) Atomic formulas consisting of propositional variables z,

and logical constants ⊥ (false, “0”) and ⊤ (true, “1”),

(ii) Literals representing atomic formulas or their negation,

and (iii) Logical connectives ¬,∧,∨,⇒,⇔ joining formu-

las in arbitrarily complex compound formulas.

3. Deep Concept Reasoning

Here we describe the “Deep Concept Reasoner” (DCR, Fig-

ure 1), the first interpretable concept-based model based on

concept embeddings. In DCR, high-dimensional concept

representations are only used to compute a logic rule. The

final prediction is then obtained by evaluating such rules on

the concepts’ truth values and not on their embeddings, thus

maintaining clear semantics and providing a totally inter-

pretable decision. Being differentiable, DCR is trainable as

an independent module on concept databases, but it can also

1With an abuse of notation, we use the same symbol for a
concept embedding and its corresponding truth degree, with the
former in bold to distinguish it.
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Figure 1. Deep Concept Reasoner (DCR) generates fuzzy logic

rules using neural models on concept embeddings. Then DCR

executes the rule using the concept truth degrees to evaluate the

rule symbolically.
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Figure 2. Schema of DCR modules: first neural models ϕ and ψ

generate the rule, and then the rule is executed symbolically.

be trained end-to-end with differentiable concept encoders.

3.1. Rule syntax

To understand the rationale behind DCR’s design, we begin

with an illustrative toy example.

Example: Consider the problem of defining the fruit “banana”

given the vocabulary of concepts “soft”, “round”, and “yellow”.

A simple definition can be ybanana ⇔ ¬cround ∧ cyellow. From this

rule we can deduce that (i) being “soft” is irrelevant for being a

“banana” (indeed bananas can be both soft or hard), and (ii) being

both “not round” and “yellow” is relevant to being a “banana”.

As in this example, DCR rules can express whether a con-

cept is relevant or not (e.g., “soft”), and whether a con-

cept plays a positive (e.g., “yellow”) or negative (e.g., “not

round”) role. To formalize this description of rule syntax,

we let lji denote the literal of concept ci (i.e., ĉi or ¬ĉi)
representing the role of the concept i for the j-th class.

Similarly, we let rji ∈ {0, 1} representing whether ĉi is

relevant for predicting the class yj . For each sample x and

predicted class ŷj , DCR learns a rule with the following

syntax ŷj ⇔
∧

i: rji=1 lji. Such a rule defines a logical

statement for why a given sample is predicted to have label

ŷj using a conjunction of relevant concept literals (i.e., ĉi or

¬ĉi).
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3.2. Rule generation and execution

Having defined the syntax of DCR rules, we describe how

to generate and execute these rules in a differentiable way.

We split this process into three steps: (i) learning each

concept’s roles, (ii) learning each concept’s relevance, and

(iii) predicting the task using the relevant concepts.

Concept role Generation: To determine the role (posi-

tive/negative) of a concept, we use a feed-forward neural

network ϕj : Rm → [0, 1], with m being the dimension

of each concept embedding. The neural model ϕj takes as

input a concept embedding ĉi ∈ R
m and returns a soft indi-

cator representing the role of the concept in the formula, that

is, whether in literal lji the concept should appear negated

(e.g., ϕbanana(ĉround) = 0) or not (e.g., ϕbanana(ĉyellow) = 1).

Execution: When we execute the rule, we need to compute

the actual truth degree of a literal lji given its role ϕ(ĉi).
We define this truth degree ℓji ∈ [0, 1]. In particular, we

want to (i) forward the same truth degree of the concept, i.e.

ℓji = ĉi, when ϕ(ĉi) = 1, and (ii) negate it, i.e. ℓji = ¬ĉi,
when ϕ(ĉi) = 0. This behaviour can be generalized by a

fuzzy equality⇔ when both ϕj and ĉ are fuzzy values, i.e.:

ℓji = (ϕj(ĉi)⇔ ĉi) (1)

Example: Consider ĉround = 0 and ϕbanana(ĉround) = 0. Then

we get ℓbanana,round = (ϕbanana(ĉround) ⇔ ĉround) = ¬ĉround =

1. If instead we had ϕbanana(ĉround) = 1, then ℓbanana,round =

(ϕbanana(ĉround) ⇔ ĉround) = 0.

Concept relevance. Generation: To determine the rele-

vance of a concept ĉi, we use another feed-forward neu-

ral network ψj : R
m → [0, 1]. The model ψj takes as

input a concept embedding ĉi ∈ R
m and returns a soft

indicator representing the likelihood of a concept being rel-

evant for the formula (e.g., ψbanana(ĉsoft) = 1) or not (e.g.,

ψbanana(ĉyellow) = 0). Execution: When we execute the rule,

we need to compute the truth degree of a literal given its

relevance rji. We define the truth degree of a relevant literal

as ℓrji ∈ [0, 1], where r stands for “relevant”. In particular,

we want to (i) filter irrelevant concepts when ψj(ĉi) = 0
by setting ℓrji = 1, and (ii) retain relevant literals when

ψj(ĉi) = 1 by setting ℓrji = ℓji. This behaviour can be

generalized to fuzzy values of ψj as follows:

ℓrji = (ψj(ĉi)⇒ ℓji) = (¬ψj(ĉi) ∨ ℓji) (2)

Note that setting ℓrji = 1 makes the literal lji irrelevant

since “1” is neutral w.r.t. the conjunction.

Example: For a given object of type “banana”, let the con-

cept “soft” be irrelevant, that is ψbanana(ĉsoft) = 0. Then we get

ℓrbanana,soft = (ψbanana(ĉsoft) ⇒ ℓbanana,soft) = 1, independently

from the content of ĉsoft or ℓbanana,soft. Conversely, let the concept

“yellow” by relevant, that is ψbanana(ĉyellow) = 1, and let its con-

cept literal be ℓbanana,yellow = ĉyellow = 1. As a result, we get

ℓrbanana,yellow = (ψbanana(ĉyellow) ⇒ ℓbanana,yellow) = 1.

Task prediction Finally, we conjoin the relevant literals

ℓrji to obtain the task prediction: ŷj =
∧k

i=1 ℓ
r
ji.

Example: For a given object of type “banana”, consider the
following truth degrees for the concepts: ĉsoft = 1, ĉround =
0, ĉyellow = 1. Consider also the following values for the role
and relevance of the class “banana”: ϕbanana(ĉi) = [0, 0, 1] and
ψbanana(ĉi) = [0, 1, 1] for i ∈ {soft, round, yellow}. Then, we
obtain the final prediction for class banana as:

ŷbanana =
∧

3

i=1
(¬ψbanana(ĉi) ∨ (ϕbanana(ĉi) ⇔ ĉi)) =

= (1 ∨ (0 ⇔ 1)) ∧ (0 ∨ (0 ⇔ 0)) ∧ (0 ∨ (1 ⇔ 1)) =
= (1 ∨ 0) ∧ (0 ∨ 1) ∧ (0 ∨ 1) = 1 ∧ 1 ∧ 1 = 1

We remark that the models ϕj and ψj : (a) generate fuzzy

logic rules using concept embeddings which might hold

more information than just concept truth degrees, and (b) do

not depend on the number of input concepts which makes

them applicable—without retraining—in testing environ-

ments where the set of concepts available differs from the

set of concepts used during training. We also remark that the

whole process is differentiable as the neural models ϕj and

ψj are differentiable as well as the fuzzy logic operations as

we will see in the next section.

3.3. Fuzzy semantics

To create a semantically valid model, we enforce the same

semantic structure in all logic and neural operations. More-

over, to train our model end-to-end, we need these semantics

to be differentiable in all its operations, including logic func-

tions. Marra et al. (2020) describe a set of possible t-norm

fuzzy logics which can serve the purpose. In our experi-

ments, we use the Gödel t-norm. With this semantics, we

can rewrite Equation 1 as:

ℓji = ϕj(ĉi)⇔ ĉi = (ϕj(ĉi)⇒ ĉi) ∧ (ĉi ⇒ ϕj(ĉi)) =
= (¬ϕj(ĉi) ∨ ĉi) ∧ (¬ĉi ∨ ϕj(ĉi)) =
= min{max{1− ϕj(ĉi), ĉi},max{1− ĉi, ϕ(ĉi)}}

and ŷj = minki=1{max{1− ψj(ĉi), ℓji}}.

3.4. Global and counterfactual explanations

Interpreting global behaviour In general, DCR rules

may have different weights and concepts for different sam-

ples. However, we can still globally interpret the predictions

of our model without the need for an external post-hoc ex-

plainer. To this end, we collect a batch of (or all) fuzzy rules

generated DCR on the training data Xtrain. Following Bar-

biero et al. (2022), we then Booleanize the collected rules

and aggregate them with a global disjunction to get a single
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logic formula valid for all samples of class j:

ŷCj =
∨

x∈Xtrain

ŷj(x) (3)

This way we obtain a global overview of the decision pro-

cess of our model for each class.

4. Experiments

DCR outperforms interpretable models (Figure 3) Our

experiments show that DCR generalizes significantly bet-

ter than interpretable benchmarks in our most challenging

datasets. This improvement peaks when concept embed-

dings hold more information than concept truth degrees,

as in the CelebA and Dot tasks where this deficit of in-

formation is imposed byconstruction (Espinosa Zarlenga

et al., 2022). This grants DCR a significant advantage (up

to ∼ 25% improvement in ROC-AUC) over the other in-

terpretable baselines. This phenomenon confirms the find-

ings by Mahinpei et al. (2021) and Espinosa Zarlenga et al.

(2023). In particular, the concept shift in CelebA causes

interpretable models to behave almost randomly as the set

of test concepts is different from the set of train concepts

(despite being correlated). DCR however still generalizes

well as the mechanism generating rules only depends on

concept embeddings and the embeddings hold more infor-

mation on the correlation between train and test concepts

w.r.t. concept truth degrees. To further test this hypothesis,

we compare DCR against XGBoost, decision trees (DTs),

and logistic regression trained on concept embeddings. In

most cases, concept embeddings allow DTs and logistic re-

gression to improve task generalization, but the predictions

of such models are no longer interpretable.

DCR matches the accuracy of neural-symbolic systems

trained using human rules (Table 2) Our experiments

show that DCR generates rules that, when applied, obtain

accuracy levels close to neural-symbolic systems trained

using human rules, currently representing the gold standard

to benchmark rule learners. We show this result on the

MNIST-Addition dataset (Manhaeve et al., 2018), a standard

benchmark in neural-symbolic AI, where the labels on the

concepts are not available. We learn concepts without su-

pervision by adding another task classifier, which only uses

very crisp ĉi to make the task predictions (see Appendix F).

DCR achieves similar performance to state-of-the-art neural-

symbolic baselines (within 1% accuracy from the best base-

line). However, DCR is the only system discovering logic

rules directly from data, while all the other baselines are

trained using ground-truth rules. Therefore, this experiment

indicates how DCR can learn meaningful rules also without

concept supervision while still maintaining state-of-the-art

performance.

Table 1. Error rate of Booleanised DCR rules w.r.t. ground truth

rules. Error rate represents how often the label predicted by a

Booleanised rule differs from the fuzzy rule generated by our

model.
GROUND-TRUTH RULE PREDICTED RULE ERROR (%)

XOR

y0 ← ¬c0 ∧ ¬c1 y0 ← ¬c0 ∧ ¬c1 0.00± 0.00
y0 ← c0 ∧ c1 y0 ← c0 ∧ c1 0.00± 0.00
y1 ← ¬c0 ∧ c1 y1 ← ¬c0 ∧ c1 0.02± 0.02
y1 ← c0 ∧ ¬c1 y1 ← c0 ∧ ¬c1 0.01± 0.01

Trigonometry

y0 ← ¬c0 ∧ ¬c1 ∧ ¬c2 y0 ← ¬c0 ∧ ¬c1 ∧ ¬c2 0.00± 0.00
y1 ← c0 ∧ c1 ∧ c2 y1 ← c0 ∧ c1 ∧ c2 0.00± 0.00

MNIST-Addition

y18 ← c′9 ∧ c
′′
9 y18 ← c′9 ∧ c

′′
9 0.00± 0.00

y17 ← c′9 ∧ c
′′
8 y17 ← c′9 ∧ c

′′
8 0.00± 0.00

y17 ← c′8 ∧ c
′′
9 y17 ← c′8 ∧ c

′′
9 0.00± 0.00

DCR discovers semantically meaningful logic rules (Ta-

ble 1) Our experiments show that DCR induces logic rules

that are both accurate in predicting the task and formally

correct when compared to ground-truth logic rules. We

evaluate the formal correctness of DCR rules on the XOR,

Trigonometry, and MNIST-Addition datasets where we have

access to ground-truth logic rules. We report a selection

of Booleanized DCR rules with the corresponding ground

truth rules in Table 1. Our results indicate that DCR’s rules

align with human-designed ground truth rules, making them

highly interpretable. For instance, DCR predicts that the

sum of two MNIST digits is 17 if either the first image is

a (i.e., c′9) and the second is an (i.e., c′′8 ) or vice-

versa which we can interpret globally using Equation 3 as:

y17 ⇔ (c′9 ∧ c
′′
8) ∨ (c′8 ∧ c

′′
9). We list all logic rules discov-

ered by DCR on the MNIST-Addition dataset in Appendix F.

It is interesting to investigate the potential of DCR also in

settings where we do not have access to the ground-truth

logic rules, such as the Mutagenicity dataset. Here, not only

there is no supervision on the concepts, but we don’t even

know which are the concepts. Many of DCR’s rules pre-

dicting mutagenic effects include functional groups such as

phenols (Hättenschwiler and Vitousek, 2000) and dimethy-

lamines (ACGIH®, 2016), which can be toxic.

5. Conclusion

This work presents the Deep Concept Reasoner (DCR), the

new state-of-the-art of interpretable concept-based models.

While the global behaviour of the model is still not directly

interpretable, our results show how aggregating Boolean

DCR rules provides an approximation for the global be-

haviour of the model which matches known ground truth

relationships. As a result, our experiments indicate that

DCR represents a significant advance over the current state-

of-the-art of interpretable concept-based models, and thus

makes progress on a key research topic within the field of

explainability.
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Pietro Lió, Marco Gori, and Stefano Melacci. Entropy-

based logic explanations of neural networks. In Proceed-

ings of the AAAI Conference on Artificial Intelligence,

volume 36, pages 6046–6054, 2022.

Adrian Bussone, Simone Stumpf, and Dympna O’Sullivan.

The role of explanations on trust and reliance in clinical

decision support systems. In 2015 international confer-

ence on healthcare informatics, pages 160–169. IEEE,

2015.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening

for interpretable image recognition. Nature Machine

Intelligence, 2(12):772–782, 2020.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele

Ciravegna, Giuseppe Marra, Francesco Giannini,

Michelangelo Diligenti, Zohreh Shams, Frederic Pre-

cioso, Stefano Melacci, Adrian Weller, et al. Concept

embedding models. Advances in Neural Information Pro-

cessing Systems, 35, 2022.

Mateo Espinosa Zarlenga, Pietro Barbiero, Zohreh Shams,

Dmitry Kazhdan, Umang Bhatt, Adrian Weller, and

Mateja Jamnik. Towards robust metrics for concept rep-

resentation evaluation. AAAI, 2023.

Matthias Fey and Jan Eric Lenssen. Fast graph represen-

tation learning with pytorch geometric. arXiv preprint

arXiv:1903.02428, 2019.

Edward W Forgy. Cluster analysis of multivariate data:

efficiency versus interpretability of classifications. bio-

metrics, 21:768–769, 1965.

Amirata Ghorbani, Abubakar Abid, and James Zou. Inter-

pretation of neural networks is fragile. In Proceedings of

the AAAI conference on artificial intelligence, volume 33,

pages 3681–3688, 2019a.

Amirata Ghorbani, James Wexler, James Zou, and Been

Kim. Towards automatic concept-based explanations.

arXiv preprint arXiv:1902.03129, 2019b.
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A. Datasets & Experimental Setup

XOR dataset The first dataset used in our experiments is inspired by the exclusive-OR (XOR) problem proposed

by (Minsky and Papert, 1969) to show the limitations of Perceptrons. We draw input samples from a uniform distribution

in the unit square x ∈ [0, 1]2 and define two binary concepts {c1, c2} by using the Boolean (discrete) version of the input

features ci = ⊮xi>0.5. Finally, we construct a downstream task label using the XOR of the two concepts y = c1 ⊕ c2.

Trigonometric dataset The second dataset we use in our experiments is inspired by that proposed by Mahinpei et al.

(2021) (see Appendix D of their paper). Specifically, we construct synthetic concept-annotated samples from three

independent latent normal random variables hi ∼ N (0, 2). Each of the 7 features in each sample is constructed via a

non-invertible function transformation of the latent factors, where 3 features are of the form (sin(hi) + hi), 3 features

of the form (cos(hi) + hi), and 1 is the nonlinear combination (h21 + h22 + h23). Each sample is then associated with 3

binary concepts representing the sign of their corresponding latent variables, i.e. ci = (hi > 0). In order to make this task

Boolean-undecidable from its binary concepts, we modify the downstream task proposed by Mahinpei et al. (2021) by

assigning each sample a label y = ⊮(h1+h2)>0 indicating whether h1 + h2 is positive or not.

Vector dataset As much as the Trigonometric dataset is designed to highlight that fuzzy concept representations generalize

better than Boolean concept representations, we designed the Vector dataset to show the advantage of embedding concept

representations over fuzzy concept representations. The Vector dataset is based on four 2-dimensional latent factors from

which concepts and task labels are constructed. Two of these four vectors correspond to fixed reference vectors w+ and w−

while the remaining two vectors {vi}
2
i=1 are sampled from a 2-dimensional normal distribution. We then create four input

features as the sum and difference of the two factors vi. From this, we create two binary concepts representing whether

or not the latent factors vi point in the same direction as the reference vectors wj (as determined by their dot products).

Finally, we construct the downstream task as determining whether or not vectors v1 and v2 point in the same direction (as

determined by their dot product).

MNIST Addition In the MNIST addition dataset (Manhaeve et al., 2018), MNIST images are paired and the pair is

labelled with the sum of the two corresponding digits. There are 30000 labelled pairs. The two images are given as two

separate inputs to the model (i.e. they are not concateneted).

Mutagenicity The Mutagenicity dataset (Morris et al., 2020) is a labelled graph classification dataset, where a graph

represents a molecule. The task is to predict whether the molecule is mutagenic or non-mutagenic. The dataset has 4337

graphs. We use the version available as part of the PyTorch Geometric (Fey and Lenssen, 2019) library.

CelebA We use the CelebA dataset to simulate a real-world condition where the set of training and test concepts is not

the same, though the embeddings of training and test concepts are still correlated. To this end, we work using pre-trained

embeddings generated by a Concept Embedding Model in the setting described by Espinosa Zarlenga et al. (2022). We then

select the 3 most frequent concepts and train DCR and all the other baseline models on these concepts. However, at test time

shift the set of concepts and we use the 3rd, 4th, and 5-th most frequent concept to make predictions. While all the first 5
concepts are highly correlated being attributes in human face images, the shift in distribution is quite significant. DCR can

cope with this shift without any modification. However, usually AI models require a fixed number of features at training and

test time. For this reason, we use zero-padding on training and test concepts to allow the other baselines to be trained and

tested.

B. Training details

B.1. Deep Concept Reasoner

For all datasets we train DCR using a Godel t-norm semantics. We also implement the neural modules ϕ and ψ as with

two-layer MLPs with a number of hidden layers given by the size of the concept embeddings.

For all synthetic datasets (i.e., XOR, Trig, Dot) and for CelebA we train DCR for 3000 epochs using a temperature of

τ = 100. In Mutagenicity we train DCR for 7000 epochs using a temperature of 100.
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B.2. Concept Embedding Generators

To generate concept embeddings on synthetic datasets (i.e., XOR, Trig, Dot), we use a Concept Embedding Model (Es-

pinosa Zarlenga et al., 2022) implemented as an MLP with hidden layer sizes {128, 128} and LeakyReLU activations.

When learning concept embedding representations in synthetic datasets, we learn embeddings with m = 128 activations.

In CelebA, we use a Concept Embedding Model on top of a pretrained ResNet-34 model (He et al., 2016) with its last layer

modified to output nhidden = m activations. In this case, we learn embeddings with m = 16 activations, smaller than in the

synthetic datasets given the larger number of concepts in these tasks.

In Mutagenicity, we use a Graph Convolutional Network (Scarselli et al., 2008; Morris et al., 2019) to map input graphs

to the given task. We then extract concept embeddings using GCExplainer (Magister et al., 2021), a graph-based variant

of the Automated Concept-based Explanation proposed by Ghorbani et al. (2019b) for image data. We implement the

GNN with four layers of graph convolutions with 40 hidden neurons followed by leaky ReLU activation function each. We

then apply mean pooling on node embeddings produced by the preceding graph convolutions and extract predictions via

a linear readout function with 10 hidden units. We train these networks for 20 epochs with a learning rate of 0.001 and a

batch size of 16 graphs, where we use an 80:20 split for the training and testing set. After training, we run GCExplainer on

the node embeddings computed before pooling and extract 30 concepts using k-Means(Forgy, 1965), where each concept

corresponds to a cluster of graph nodes in the embedding space. We encode these cluster labels as one-hot binary arrays and

associate each node with the binary label of the closest cluster. We then obtain the concept truth values of a given graph by

aggregating the binary labels of its nodes. To generate concept embeddings, we consider the node embeddings closest to the

cluster centroids for active concepts.

Training Hyperparameters In all synthetic tasks, we generate datasets with 3,000 samples and use a traditional 70%-

10%-20% random split for training, validation, and testing datasets, respectively. During training, we then set the weight of

the concept loss to α = 1 across all models. We then train all models for 500 epochs using a batch size of 256 and a default

Adam (Kingma and Ba, 2014) optimizer with learning rate 10−2.

In our CelebA task, we fix the concept loss weight to α = 1 in all models and also use a weighted cross entropy loss for

concept prediction to mitigate imbalances in concept labels. All models in this task are trained for 200 epochs using a batch

size of 512 and an SGD optimizer with 0.9 momentum and learning rate of 5× 10−3.

In all models and tasks, we use a weight decay factor of 4e− 05 and scale the learning rate during training by a factor of 0.1
if no improvement has been seen in validation loss for the last 10 epochs. Furthermore, all models are trained using an early

stopping mechanism monitoring validation loss and stopping training if no improvement has been seen for 15 epochs.

B.3. Hyperparameter search for benchmark classifiers

xWe run a grid search using an internal 3-fold cross-validation to find the optimal settings for benchmark classifiers. The

parameter grid we use is:

• decision tree

– max depth: [2, 4, 10, all leaves pure]

– min samples split: [2, 4, 10]

– min samples leaf: [1, 2, 5, 10]

• logistic regression

– penalty: [l1, l2, elasticnet]

• XGBoost

– booster: [tree, linear, dart]

C. Results Details

In this section we show the additional experimental results about the generalization capabilities of DCR in different datasets

3, and a comparison with neural-symbolic models on the MNIST-addition dataset 2.
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Figure 3. Mean ROC AUC for task predictions for all baselines across all tasks (the higher the better). DCR often outperforms interpretable

concept-based models. CE stands for concept embeddings, while CT for concept truth degrees. Models trained on concept embeddings

are not interpretable as concept embeddings lack a clear semantic for individual embedding dimensions.

Table 2. Task accuracy on the MNIST-addition dataset. The neural-symbolic baselines use the knowledge of the symbolic task to distantly

supervise the image recognition task. DCR achieves similar performances even though it learns the rules from scratch.

MODEL ACCURACY (%)

With ground truth rules

DeepProbLog 97.2± 0.5
DeepStochLog 97.9± 0.1
Embed2Sym 97.7± 0.1
LTN 98.0± 0.1

Without ground truth rules

DCR(ours) 97.4± 0.2

D. Mutagenicity: Extracted Concepts

Here we report the visualization of the concepts extracted in Mutagenicity by GCExplainer. Following Magister et al. (2021)

we represent the concept of a node by expanding and visualizing its p-hop neighborhood. In this experiment we set p = 4 as

we used four graph convolutional layers. Figures 4 - 6 show the 30 concepts extracted using GCExplainer when k = 30
in k-Means, where the red nodes are the nodes clustered together for a given concept. A human can identify the concept

present by reasoning about which features and structures are repeated across the five sample subgraphs, representative of a

concept. Using this approach, a number of concepts can be clearly identified. For example, concept 0 (Figure 4, highlights

the importance of the Carbon atom for the prediction that the molecule is mutagenic. In contrast, concepts 8 (Figure 4)

and 28 (Figure 6) highlight the importance of the star structure in both the prediction of the molecule being mutagenic and

non-mutagenic. Concept 11 clearly identified a complex structure of carbon, nitrogen and hydrogen atoms for predicting the

label ’mutagenic’. For a complete overview, we visualise the full molecule of the medoids of each cluster in Figures 7 and

8, highlighting in red the node corresponding to the closest concept. This highlights the size and variety of the molecules

classified as different concepts.
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Figure 4. Concept discovered by the graph concept explainer. Part I.
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Figure 5. Concept discovered by the graph concept explainer. Part II.
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Figure 6. Concept discovered by the graph concept explainer. Part III.
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Figure 7. Full molecule corresponding to the closest node embedding to the concept centroid. Part I.
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Figure 8. Full molecule corresponding to the closest node embedding to the concept centroid. Part II.
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E. Number of concepts effect on training and test time

We evaluate the computational cost of DCR as a function of the number of training concepts. To this end, we train DCR

on the embeddings of a pre-trained Concept Embedding Model on the Caltech-UCSD Birds-200-2011 dataset (Wah et al.,

2011) as it contains a large number of concepts. We then randomly select 10, 50, 100, and 150 concepts to train DCR. We

train DCR using 5 different initialization seeds. We observe that the computational time increases linearly when the number

of concepts is small, and then it becomes almost constant.

10 50 100 150

Number of concepts

0

2

4

6

8

T
im
e
(s
ec
.)

Training Time

10 50 100 150

Number of concepts

0.0E+00

5.0E-04

1.0E-03

1.5E-03

T
im
e
(s
ec
.)

Test Time

Figure 9. DCR computational time on pre-trained concept embeddings from the CUB dataset.

F. MNIST addition experiment

In this experiment, we tested DCR in a task where it is not provided with any label on the concepts. In the MNIST addition

dataset (Manhaeve et al., 2018), pairs of MNIST images are labelled with the sum of the corresponding digit. The single

images are, therefore, never labelled. The idea behind the task is that an image classifier can still be asked to predict the class

of the single images, while a differentiable symbolic program can be used to map the class of the images to their sum. In

terms of learning, the knowledge of both the label on the addition and the symbolic program provides a distant supervision

signal to the image classifier.

This task can be easily mapped in terms of a concept-based model. The output of the classifier for the two images constitutes

a set of 20 concepts (i.e. 10 class predictions for each of the two images). The set of all possible additions constitutes a

set of 19 tasks. The MNIST addition task could be considered a first example of a more structured (i.e. relational) setting,

where the input is a list of two images. However, it is still simple enough not to require any specific modelling.

The absence of direct supervision on the concepts puts our system in a different regime. In fact, there is no loss that forces

the concept probabilities to represent crisp decisions. The softmax activation function tends to crisp decisions only when

coupled with a categorical cross-entropy loss. In the absence of such loss, the network can still exploit the entire categorical

distribution as an embedding to latently encode the identity of the digits.

Our solution to the absence of a concept loss is made of two ingredients. First, the softmax output distribution is substituted

with a Gumbel-softmax sampling layer. The Gumbel-softmax forces the network to always make crisp decisions by sampling

from the corresponding categorical distribution. Notice that a categorical distribution and its one-hot samples coincide when

the distribution becomes very peaked on its prediction (e.g. at the end of the learning). Second, we introduce a second

task predictor function fNN : C → Y , that akin to standard concept bottleneck models, predicts the task only from the

probabilities, and we add a corresponding loss encouraging fNN (g(x)) = y. The goal here is to force the model to exploit

(and thus learn) the concept probabilities ĉi and not to rely only on their embeddings ĉi.

In Table 2, we show the comparison with state-of-the-art Neural Symbolic frameworks, as described in the main text.

Moreover, in Table 3, we show the entire list of global rules learned by DCR, showing that it actually captured perfectly the

semantics of the addition relation.
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Table 3. MNIST addition global rules for 10000 training examples. fij reads ”class of the digit in position i is j. Therefore, the rule

y0 ← f00 ∧ f10 means that if the first digit is a 0 and the second digit is a 0 then the sum is a 0. The semantics is correct except for a

single rule y8 ← f03 ∧ f16, which is easily identifiable as having a count of 1. Notice that we had to map the network concept IDs to the

corresponding human digits, as there was no supervision on concepts during training.
RULE COUNT

y0 ← f00 ∧ f10 93
y1 ← f00 ∧ f11 110
y1 ← f01 ∧ f10 102
y2 ← f00 ∧ f12 89
y2 ← f01 ∧ f11 119
y2 ← f02 ∧ f10 101
y3 ← f01 ∧ f12 124
y3 ← f03 ∧ f10 96
y3 ← f02 ∧ f11 115
y3 ← f00 ∧ f13 100
y4 ← f03 ∧ f11 121
y4 ← f04 ∧ f10 84
y4 ← f01 ∧ f13 137
y4 ← f02 ∧ f12 105
y4 ← f00 ∧ f14 112
y5 ← f01 ∧ f14 104
y5 ← f03 ∧ f12 105
y5 ← f04 ∧ f11 113
y5 ← f00 ∧ f15 95
y5 ← f02 ∧ f13 90
y5 ← f05 ∧ f10 95
y6 ← f02 ∧ f14 92
y6 ← f05 ∧ f11 96
y6 ← f00 ∧ f16 109
y6 ← f04 ∧ f12 91
y6 ← f01 ∧ f15 86
y6 ← f03 ∧ f13 107
y6 ← f06 ∧ f10 92
y7 ← f00 ∧ f17 100
y7 ← f04 ∧ f13 108
y7 ← f01 ∧ f16 103
y7 ← f02 ∧ f15 81
y7 ← f07 ∧ f10 103
y7 ← f06 ∧ f11 137
y7 ← f05 ∧ f12 87
y7 ← f03 ∧ f14 117
y8 ← f05 ∧ f13 72
y8 ← f01 ∧ f17 122
y8 ← f03 ∧ f15 99
y8 ← f02 ∧ f16 97
y8 ← f06 ∧ f12 90
y8 ← f08 ∧ f10 96
y8 ← f07 ∧ f11 116
y8 ← f04 ∧ f14 106
y8 ← f00 ∧ f18 100
y8 ← f03 ∧ f16 1
y9 ← f04 ∧ f15 87
y9 ← f08 ∧ f11 112
y9 ← f06 ∧ f13 76
y9 ← f01 ∧ f18 113
y9 ← f00 ∧ f19 94

RULE COUNT

y9 ← f03 ∧ f16 89
y9 ← f09 ∧ f10 100
y9 ← f07 ∧ f12 110
y9 ← f02 ∧ f17 102
y9 ← f05 ∧ f14 89
y10 ← f01 ∧ f19 115
y10 ← f06 ∧ f14 97
y10 ← f09 ∧ f11 100
y10 ← f08 ∧ f12 100
y10 ← f07 ∧ f13 113
y10 ← f04 ∧ f16 94
y10 ← f03 ∧ f17 89
y10 ← f02 ∧ f18 103
y10 ← f05 ∧ f15 75
y11 ← f08 ∧ f13 89
y11 ← f03 ∧ f18 105
y11 ← f07 ∧ f14 94
y11 ← f09 ∧ f12 97
y11 ← f04 ∧ f17 111
y11 ← f05 ∧ f16 86
y11 ← f02 ∧ f19 105
y11 ← f06 ∧ f15 104
y12 ← f03 ∧ f19 98
y12 ← f04 ∧ f18 87
y12 ← f06 ∧ f16 105
y12 ← f07 ∧ f15 96
y12 ← f09 ∧ f13 106
y12 ← f05 ∧ f17 94
y12 ← f08 ∧ f14 87
y13 ← f06 ∧ f17 106
y13 ← f08 ∧ f15 85
y13 ← f09 ∧ f14 82
y13 ← f07 ∧ f16 118
y13 ← f05 ∧ f18 79
y13 ← f04 ∧ f19 100
y14 ← f06 ∧ f18 105
y14 ← f07 ∧ f17 98
y14 ← f05 ∧ f19 78
y14 ← f09 ∧ f15 74
y14 ← f08 ∧ f16 101
y15 ← f09 ∧ f16 107
y15 ← f08 ∧ f17 95
y15 ← f07 ∧ f18 103
y15 ← f06 ∧ f19 111
y16 ← f07 ∧ f19 115
y16 ← f09 ∧ f17 100
y16 ← f08 ∧ f18 84
y17 ← f09 ∧ f18 100
y17 ← f08 ∧ f19 86
y18 ← f09 ∧ f19 102

Our solution to the MNIST addition task shows that DCR can be enhanced with an unsupervised (or distantly supervised)

criterion for the learning of meaningful concepts. This creates interesting links with generative models for learning

representations, but we leave such interpretation for future works.

The architecture of the image classifiers is those in (Manhaeve et al., 2018). The additional task network is MLP with 1

hidden layer of 30 hidden neurons and relu activations. We searched over the following grid of parameters (bold selected):

embedding size [10, 20, 30, 50]; gumbel-softmax temperature [1, 1.25, 1.50, 1.75, 2.0].
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G. Complexity of logic rules

We compute rule complexity as the average size of the learnt logic rules. Table 4 summarizes the main outcomes comparing

DCR rules with decision tree rules. In most datasets, such as Trigonometry, Dot, or CelebA, the rule complexity of DCR

matches that of decision tree rules while providing superior task performance. However, in Mutagenicity, there is a tradeoff

between performance and complexity compared to decision trees. Nevertheless, we don’t observe a significant increase

in rule complexity as shown in the plot, partly because DCR rules are ”per sample.” However, if we were to learn global

rules, the complexity would likely increase, especially if multiple combinations of concepts could result in the same task

prediction. It is worth noting that overly complex rules may not be a machine error, but rather a limitation of the human side.

For example, asking a model to explain complex tasks using raw features like pixel intensities as concepts would lead to

complex rules.

Table 4. Complexity of logic rules

CE+DCR (ours) CT+Decision Tree CE+Decision Tree

XOR 2.00± 0.00 2.00± 0.00 1.40± 0.16
Trigonometry 3.00± 0.00 3.00± 0.00 1.40± 0.16
Dot 2.00± 0.00 2.00± 0.00 1.93± 0.07
Mutagenicity 13.57± 0.62 4.84± 0.74 2.35± 0.35
CelebA 1.00± 0.00 1.00± 0.00 5.86± 0.56

H. Code, Licences, Resources

Libraries For our experiments, we implemented all baselines and methods in Python 3.7 and relied upon open-source

libraries such as PyTorch 1.11 (Paszke et al., 2019) (BSD license) and Scikit-learn (Pedregosa et al., 2011) (BSD license). To

produce the plots seen in this paper, we made use of Matplotlib 3.5 (BSD license). We will release all of the code required

to recreate our experiments in an MIT-licensed public repository.

Resources All of our experiments were run on a private machine with 8 Intel(R) Xeon(R) Gold 5218 CPUs (2.30GHz),

64GB of RAM, and 2 Quadro RTX 8000 Nvidia GPUs. We estimate that approximately 240-GPU hours were required to

complete all of our experiments.
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