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Abstract

High-quality labels are often very scarce, whereas

unlabeled data with inferred weak labels occurs

more naturally. In many cases, these weak labels

dictate the frequency of each respective class over

a set of instances. In this paper, we develop a

unified approach to learning from such weakly-

labeled data, which we call count-based weakly-

supervised learning. At the heart of our approach

is the ability to compute the probability of ex-

actly k out of n outputs being set to true. This

computation is differentiable, exact, and efficient.

Building upon the previous computation, we de-

rive a count loss penalizing the model for devi-

ations in its distribution from an arithmetic con-

straint defined over label counts. We evaluate our

approach on three common weakly-supervised

learning paradigms and observe that our proposed

approach achieves state-of-the-art or highly com-

petitive results across all three of the paradigms.

1. Introduction

Weakly supervised learning (Zhou, 2018) enables a model to

learn from data with restricted, partial or inaccurate labels,

often known as weakly-labeled data. Weakly supervised

learning fulfills a need arising in many real-world settings

that are subject to privacy or budget constraints, such as pri-

vacy sensitive data (Wojtusiak et al., 2011), medical image

analysis (Bortsova et al., 2018), clinical practice (Quellec

et al.), personalized advertisement (Bekker & Davis, 2020)

and knowledge base completion (Galárraga et al., 2015; Zu-

panc & Davis, 2018), to name a few. In all such settings,

instance-level labels are unavailable. Instead, instances are

grouped into bags with corresponding bag-level labels that

are a function of the instance labels, e.g., the proportion of
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positive labels in a bag. A key insight that we bring forth is

that such weak supervision can very often be construed as

enforcing constraints on label counts of data.

More concretely, we consider three prominent weakly su-

pervised learning paradigms. The first paradigm is known

as learning from label proportions (Quadrianto et al., 2008).

Here the weak supervision consists in the proportion of

positive labels in a given bag, which can be interpreted as

the count of positive instances in such a bag. The second

paradigm, whose supervision is strictly weaker than the for-

mer, is multiple instance learning (Maron & Lozano-Pérez,

1997; Dietterich et al., 2001). Here the bag labels only in-

dicate the existence of at least one positive instance in a

bag, which can be recast as to whether the count of positive

instances is greater than zero. The third paradigm, learning

from positive and unlabeled data (De Comité et al., 1999;

Letouzey et al., 2000), grants access to the ground truth

labels for a subset of only the positive instances, providing

only a class prior for what remains. We can recast the class

prior as a distribution of the count of positive labels.

Leveraging the view of weak supervision as a constraint on

label counts, we utilize a simple, efficient and probabilisti-

cally sound approach to weakly-supervised learning. More

precisely, we train a neural network to make instance-level

predictions that conform to the desired label counts. To

this end, we propose a differentiable count loss that char-

acterizes how close the network’s distribution comes to the

label counts; a loss which is surprisingly tractable. Com-

pared to prior methods, this approach does not approximate

probabilities but computes them exactly. Our empirical

evaluation demonstrates that our proposed count loss sig-

nificantly boosts the classification performance on all three

aforementioned settings.

2. Problem Formulations

Notations. Let X ∈ R
d be the input space over d features,

Y = {0, 1} be a binary label space, and x ∈ X and y ∈ Y
be the input and output random variables respectively.

2.1. Classical Binary Classification

In fully-supervised binary classification, it is assumed that

each feature and label pair (x, y) ∈ X ×Y is sampled inde-
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Table 1: Three weakly supervised settings, Learning from Label Proportions (Section 2.2), Multiple Instance Learning

(Section 2.3) and Positive and Unlabeled learning (Section 2.4), against the classical fully supervised setting (Section 2.1)

for binary classification, using digits from the MNIST dataset.
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pendently from a joint distribution p(x, y). A classifier f is

learned to minimize the risk R(f) = E(x,y)∼p[ℓ(f(x), y)],
where ℓ : Y × Y → R≥0 is the loss function. We define a

set of training data D = {(xi, yi)}ni=1, where the empirical

loss is minimized as R̂(f) = 1
n

∑n

i=1 ℓ(f(xi), yi).

2.2. Learning from Label Proportions

Learning from label proportions (LLP) (Quadrianto et al.,

2008) assumes that each instance in the training set is as-

signed to bags and only the proportion of positive instances

in each bag is known. One example is in light of the pan-

demic, where infection rates were typically reported based

on geographical boundaries such as states and counties.

Each boundary can be treated as a bag with the infection

rate as the proportion annotation.

The goal of LLP is to learn an instance-level classifier f :
X → Y even though it is trained on bag-level labeled data.

Formally, the training dataset consists of m bags, denoted

by D = {(Bi, ỹi)}mi=1 where each bag Bi = {xj}kj=1

consist of k instances and this k could vary among different

bags. The bag proportions are defined as ỹi =
∑k

j=1 yj/k
with yj being the instance label that cannot be accessed

and only ỹi is available during training. An example is

shown in Figure 1b. We do not assume that the bags are

non-overlapping while some existing work suffer from this

limitation including Scott & Zhang (2020).

2.3. Multiple Instance Learning

Multiple instance learning (MIL) (Maron & Lozano-Pérez,

1997; Dietterich et al., 2001) refers to the scenario where

the training dataset consists of bags of instances and labels

are provided at bag level. However, in MIL, the bag label is

a single binary label indicating whether there is a positive

instance in the bag or not as opposed to a bag proportion

defined in LLP. A real-world application of MIL lies in the

field of drug activity (Dietterich et al., 2001). We can ob-

serve the effects of a group of conformations but not for any

specific molecule, motivating a MIL setting. Formally, in

MIL, the training dataset consists of m bags, denoted by

D = {(Bi, ỹi)}mi=1, with a bag consisting of k instances,

i.e., Bi = {xj}kj=1. The size k can vary among different

bags. For each instance xj , there exists an instance-level la-

bel yj which is not accessible. The bag-level label is defined

as ỹi = maxj{yj}. An example is shown in Figure 1c.

The main goal of MIL is to learn a model that predicts a bag

label while a more challenging goal is to learn an instance-

level predictor that is able to discover positive instances in

a bag. In this work, we aim to tackle both by training an

instance-level classifier whose predictions can be combined

into a bag level prediction as the last step.

2.4. Learning from Positive and Unlabeled Data

Learning from positive and unlabeled data or PU learn-

ing (De Comité et al., 1999; Letouzey et al., 2000) refers

to the setting where the training dataset consists of only

positive instances and unlabeled data, and the unlabeled

data can contain both positive and negative instances. A

motivation of PU learning is persistence in the case of shifts

to the negative-class distribution (Plessis et al., 2015), for

example, a spam filter. An attacker may alter the properties

of a spam email, making a traditional classifier require a

new negative dataset (Plessis et al., 2015). We note that

taking a new unlabeled sample would be more efficient, mo-

tivating PU learning. Formally, in PU learning, the training

dataset D = Dp ∪ Du where Dp = {(xi, ỹi = 1)}np

i=1 is

the set of positive instances with xi from p(x | y = 1)
and ỹ denoting whether the instance is labeled, and Du =
{(xi, ỹi = 0)}nu

i=1 the unlabeled set with xi from

pu(x) = β p(x | y = 1) + (1− β) p(x | y = 0), (1)

where the mixture proportion β := p(y = 1 | ỹ = 0) is

the fraction of positive instances among the unlabeled pop-

ulation. Although the instance label y is not accessible, its

information can be inferred from the binary selection label

ỹ: if the selection label ỹ = 1, it belongs to the positively

labeled set, i.e., p(y = 1 | ỹ = 1) = 1; otherwise, the

instance x can be either positive or negative. An example
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Table 2: A summary of the labels and objective functions for all the settings considered in the paper.

TASK LABEL LABEL LEVEL OBJECTIVE

classical fully supervised binary y instance level −y log p(y)− (1− y) log(1− p(y))

learning from label proportion continuous ỹ =
∑

i yi/k bag level − log p(
∑

ŷi = kỹ)

multiple instance learning binary ỹ = max{yi} bag level −ỹ log p(∑ ŷi ≥ 1)− (1− ỹ) log p(
∑

i ŷi = 0)

learning from PU data binary ỹ instance level 1) DKL(p(
∑

i ŷi) ∥ Bin(k, β)); 2) − log p(
∑

ŷi = kβ)

of such a dataset is shown in Figure 1d.

The goal of PU learning is to train an instance-level classifier.

However, it is not straightforward to learn from PU data and

it is necessary to make assumptions to enable learning with

positive and unlabeled data (Bekker & Davis, 2020). In

this work, we make a commonly-used assumption for PU

learning, selected completely at random (SCAR), which lies

at the basis of many PU learning methods.

Definition 2.1 (SCAR). Labeled instances are selected com-

pletely at random, independent from input x and the positive

distribution, i.e., p(ỹ = 1 | x, y = 1) = p(ỹ = 1 | y = 1).

3. A Unified Approach: Count Loss

We aim to derive objectives for the three weakly supervised

settings from first principles. We propose to bridge between

neural outputs, which can be observed as counts, and arith-

metic constraints derived from the weakly supervised labels.

The idea is to capture how close the classifier is to satisfying

the arithmetic constraints. They can be easily integrated

with deep learning models and allow end-to-end training.

For the three objectives, we show that they share the same

computational building block: given k instances {xi}ki=1

and an instance-level classifier f that predicts p(ŷi | xi)
with ŷ being the prediction, inferring the probability of the

count constraint
∑k

i=1 ŷi = s is to compute

p(
k
∑

i=1

ŷi = s | {xi}ki=1) :=
∑

ŷ∈Yk

J
k
∑

i=1

ŷi = sK
k
∏

i=1

p(ŷi | xi)

where J·K denotes the indicator function and ŷ denotes the

vector (ŷ1, · · · , ŷk). For succinctness, we omit the depen-

dency on the input and simply write the count probability

as p(
∑k

i=1 ŷi = s). Intractable as it seems, we show that it

is indeed possible to derive a tractable computation for the

count probability based on Ahmed et al. (2023b).

Proposition 3.1. The count probability p(
∑k

i=1 ŷi = s)
of sampling k prediction variables with summation being

s from an unconstrained distribution p(y) =
∏k

i=1 p(ŷi)
can be computed exactly in time O(ks). Moreover, the set

{p(∑k

i=1 ŷi = s)}ks=0 can also be computed in timeO(k2).

Next, we show how the objectives derived from first prin-

ciples can be solved by using the count probability as an

oracle, which we summarize in Table 2.

LLP setting. Given a bag B = {xi}ki=1and its bag-label ỹ,

by definition, it can be inferred that the number of positive

instances (count) in the bag is kỹ. Our objective is to max-

imize the probability p(
∑

i ŷi = kỹ). In practice, the loss

is defined in the log space for numerical stability. We also

perform risk analysis with details in Appendix.

MIL setting. Given a bag B = {xi}ki=1 of size k and

a single binary label ỹ as its weakly supervised label, we

propose a cross-entropy loss as below

ℓ(B, ỹ) = −ỹ log p(
∑

ŷi ≥ 1)−(1−ỹ) log p(
∑

ŷi = 0).

In the above loss, the probability term p(
∑

ŷi = 0) can be

obtained via the oracle for computing count probability and

the other term p(
∑

ŷi ≥ 1) can simply be obtained from

1− p(
∑

ŷi = 0), i.e., the same call to the oracle.

PU Learning setting. Recall that for the unlabeled data Du

in the training dataset, an unlabeled instance xi is drawn

from a mixture distribution as shown in Equation 1 parame-

terized by a mixture proportion β = p(y = 1 | ỹ = 0).

Proposition 3.2. With SCAR assumption and a class prior,

the mixture proportion β can be estimated from dataset D.

The probabilistic semantic of the mixture proportion is that,

if we randomly draw an instance xi from the unlabeled pop-

ulation, the probability that the true label yi is positive would

be β. Further, if we randomly draw k instances, the distribu-

tion of the summation of the true labels
∑k

i=1 yi conforms to

a binomial distribution Bin(k, β) parameterized by the mix-

ture proportion β, i.e., p(
∑k

i=1 yi = s) =
(

k

s

)

βs(1−β)k−s.

Based on this observation, we propose an objective to min-

imize the KL divergence between the distribution of pre-

dicted label sum and the binomial distribution parameterized

by the mixture proportion, that is,

DKL

(

p(

k
∑

i=1

ŷi) ∥ Bin(k, β)

)

=

k
∑

s=0

p(

k
∑

i=1

ŷi = s) log
p(
∑k

i=1 ŷi = s)

Bin(s; k, β)
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Table 3: LLP results showing test AUC with standard deviation aggregated over 5 trials for each experimental setting.

Dataset Dist Method 8 32 128 512

Adult [0, 1

2
] CL (Ours) 0.8984 ± 0.0013 0.8848 ± 0.0041 0.8743 ± 0.0052 0.8703 ± 0.0070

Adult [0, 1

2
] PL 0.8889± 0.0024 0.8782± 0.0036 0.8743 ± 0.0039 0.8678± 0.0085

Adult [0, 1

2
] LMMCM 0.8728± 0.0019 0.8693± 0.0047 0.8669± 0.0041 0.8674± 0.0040

Adult [ 1
2
, 1] CL (Ours) 0.8854 ± 0.0022 0.8738 ± 0.0039 0.8675± 0.0043 0.8607 ± 0.0056

Adult [ 1
2
, 1] PL 0.8781± 0.0038 0.8731± 0.0035 0.8699 ± 0.0057 0.8556± 0.0180

Adult [ 1
2
, 1] LMMCM 0.8584± 0.0164 0.8644± 0.0052 0.8601± 0.0045 0.8500± 0.0186

Table 4: MIL experiment on MNIST dataset. Each block represents a different distribution from which we draw bag

sizes—First Block: N (10, 2), Second Block: N (50, 10), Third Block: N (100, 20).

Training Bags 50 100 150 200 300 400 500

Gated Attention 0.775± 0.034 0.894± 0.012 0.935± 0.005 0.939± 0.006 0.963 ± 0.002 0.959± 0.002 0.966 ± 0.003
Attention 0.807± 0.026 0.913 ± 0.006 0.940 ± 0.004 0.942± 0.007 0.957± 0.002 0.961± 0.005 0.965± 0.004
CL (Ours) 0.818 ± 0.024 0.906± 0.009 0.929± 0.005 0.946 ± 0.001 0.952± 0.004 0.962 ± 0.002 0.963± 0.002

Gated Attention 0.943 ± 0.005 0.949± 0.009 0.970 ± 0.005 0.977 ± 0.001 0.983± 0.002 0.986± 0.004 0.987 ± 0.002
Attention 0.936± 0.010 0.962 ± 0.006 0.970 ± 0.001 0.977 ± 0.002 0.981± 0.002 0.987 ± 0.001 0.987 ± 0.002
CL (Ours) 0.939± 0.010 0.960± 0.002 0.964± 0.007 0.972± 0.002 0.982 ± 0.003 0.982± 0.001 0.987 ± 0.002

Gated Attention 0.975± 0.003 0.981± 0.004 0.992± 0.002 0.987± 0.004 0.996 ± 0.001 0.998 ± 0.001 0.990± 0.004
Attention 0.984 ± 0.001 0.982± 0.001 0.996 ± 0.000 0.987± 0.007 0.992± 0.004 0.994± 0.002 0.998± 0.000
CL (Ours) 0.981± 0.007 0.989 ± 0.000 0.996 ± 0.002 0.995 ± 0.001 0.996 ± 0.002 0.993± 0.003 0.999 ± 0.001

Table 5: PU Learning results on acccuracy.

Dataset CL (Ours) CVIR nnPU nPU

Binarized MNIST 96.4± 0.01 96.3± 0.07 96.1± 0.14 95.2± 0.19
MNIST17 99.0± 0.19 98.7± 0.09 98.4± 0.20 98.4± 0.09
Binarized CIFAR 80.1± 0.34 82.3± 0.18 77.2± 1.03 76.7± 0.74
Cat vs. Dog 74.8± 1.64 73.3± 0.94 71.8± 0.33 68.8± 0.53

where Bin(s; k, β) denotes the probability mass function

of the binomial distribution Bin(k, β). Again, the KL di-

vergence can be obtained by k + 1 calls to the oracle for

computing count probability p(
∑k

i=1 ŷi = s). The KL di-

vergence is further combined with a cross entropy defined

over labeled data Dp as in the classical binary classification

as the overall objective. As an alternative, we propose an

objective for the unlabeled data that requires fewer calls

to the oracle: matching only the expectations of the two

distributions, that is, to maximize p(
∑k

i=1 ŷi = kβ) where

kβ is the expectation of the binomial distribution Bin(k, β).

4. Experiments

We present a thorough empirical evaluation of our proposed

count loss (CL) on the three tasks, LLP, MIL and PU learn-

ing respectively, with additional results in Appendix.

LLP. We experiment on datasets Adult with 8192 train-

ing samples where the task is to predict whether a person

makes over 50k a year or not given personal information

as input. We follow the experimental settings from Scott

& Zhang (2020) where two settings are considered: one

with label proportions uniformly on [0, 1
2 ] and the other uni-

formly on [ 12 , 1]. We experiment on four bag sizes n with

n ∈ {8, 32, 128, 512}. We compare our approach CL with

LMMCM from (Scott & Zhang, 2020) and against Propor-

tion Loss (PL)(Tsai & Lin, 2020) with results in Table 3,

where CL showcases superior results against the baselines.

MIL. We experiment on the MNIST dataset (LeCun, 1998)

and follow the setting in Ilse et al. (2018): the training and

test set bags are randomly sampled from MNIST; each bag

can have images of digits from 0 to 9, and bags with digit

9 are labeled positive. The task is to train a classifier that

is able to predict bag labels; the more challenging task is

to discover key instances, that is, to train a classifier that

identifies images of digit 9. The number of bags in training

set n is in {50, 100, 150, 200, 300, 400, 500}. We include

the Attention and Gated Attention mechanism (Ilse et al.,

2018) as baselines. Results are shown in Table 4, where CL

is able to outperform all other baselines or exhibit highly

comparable performance for bag-level predictions.

PU Learning. We experiment on MNIST (LeCun, 1998)

and CIFAR-10 (Krizhevsky & Hinton, 2009), following the

four simulated settings from Garg et al. (2021). The per-

formance is evaluated using the accuracy on a test set of

unlabeled data. We compare our proposed CL using the first

objective in Table 2 with baseline Conditional Value Ignor-

ing Risk approach (CVIR) (Garg et al., 2021), nnPU (Kiryo

et al., 2017), and uPU (Plessis et al., 2015). Results are

shown in Table 5, where our CL perform better than base-

lines on 3 out of the 4 simulated PU learning settings.
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A. Related Work

Unified Approaches. Although not common, there exists

some literature in regards to general approaches for weakly

supervised learning. One example being the method pro-

posed in Hüllermeier (2014), which provides a procedure

that minimizes the empirical risk on "fuzzy" sets of data.

The paper also establishes guarantees for model identifica-

tion and instance level recognition.

Count Loss. The idea of computing the posterior of a

bag is not a new concept for tackling weakly supervised

learning—specifically for LLP. Many approaches have tried

to approximate the bag posterior through averaging the in-

stances in a bag Ardehaly & Culotta (2017); Tsai & Lin

(2020). This computation is not exact and can be considered

a heuristic estimate of our approach. However, it is cer-

tainly worth mentioning as they are motivated by the same

principle.

LLP. Quadrianto et al. (2008) first introduced an exponen-

tial family based approach that used an estimation of mean

for each class. Others seek to minimize “empirical propor-

tion risk” or EPR as in Yu et al. (2014), which is centered

around creating an instance level classifier that is able to

reproduce the label proportions of each bag. As mentioned

previously, more recent methods such as the work described

in Ardehaly & Culotta (2017); Tsai & Lin (2020) use bag

posterior approximation and neural based approaches. One

such method is Proportion Loss (PL) (Tsai & Lin, 2020),

which we contrast to our approach. This is computed by

binary cross entropy between the averaged instance level

probabilities and ground-truth bag proportion.

MIL. MIL finds some its earlier approaches with SVMs,

which have been use quite prolifically and still remain one

of the most common baselines. We start with MI-SVM/mi-

SVM(Andrews et al., 2002) which are examples of trans-

ductive SVMs (Carbonneau et al., 2018) that seek a stable

instance classification through repeated retraining iterations.

MI-SVM is an example of an instance space method (Car-

bonneau et al., 2018), which identifies methods that classify

instances as a preliminary step in the problem. This is in

contrast to bag-space or embedded-space methods that omit

the instance classification step. We then look toward Wang

et al. (2018) which remains one of the hallmarks for the use

of neural networks for Multi-Instance Learning. In Ilse et al.

(2018), they utilized a similar approach but with Attention

based mechanisms.

PU learning. Bekker & Davis (2020) groups PU Learn-

ing paradigms into three main classes: two step, biased,

and class prior incorporation. Biased Learning techniques

train a classifier on the entire dataset with the understanding

that negative samples are subject to noise Bekker & Davis

(2020). We will focus on a subset of biased learning tech-

niques (Risk Estimators) as they are considered state of the

art and relevant to us as baselines. The Unbiased Risk Esti-

mator (uPU), which was originally proposed in du Plessis

et al. (2014) and covered in Plessis et al. (2015), provides

an alternative to the inefficiencies in manually biasing unla-

beled data. And later, Non-negative Risk Estimator (nnPU)

Kiryo et al. (2017) accounted for weaknesses in the unbiased

risk estimator.

Neuro-Symbolic Losses. In this paper, we have dealt

with a specific form of distributional constraint. Conversely,

there has been a plethora of work exploring the integration

of hard symbolic constraints into the learning of neural

networks. This can take the form of enforcing a hard con-

straint (Ahmed et al., 2022b), whereby the network’s predic-

tions are guaranteed to satisfy the pre-specified constraints.

Or it can take the form of a soft constraint (Xu et al., 2018;

Manhaeve et al., 2018; Ahmed et al., 2021; 2022c;a; 2023a)

whereby the network is trained with an additional loss term

that penalizes the network for placing any probability mass

on predictions that violate the constraint. While in this work

we focus on discrete constraints defined over binary vari-

ables, there are existing work focusing on hybrid constraints

defined over both discrete and continuous variables and

their tractability (Belle et al., 2015b;a; Zeng et al., 2021;

2020b). The development of inference algorithms for such

constraints and their applications such as Bayesian deep

learning remain an active topic (Zeng & Van den Broeck,

2019; Kolb et al., 2019; Zeng et al., 2020a; Zeng & Broeck,

2023).

B. Tractable Computation of Count

Probability

Algorithm 1 Count Probability p(
∑k

i=1 ŷi = s)

Input: A set of k log probabilities {ti}ki=1 with ti :=
log p(yi = 1), the number of instances k, and a label sum s

Output: log probability log p(
∑k

i=1 ŷi = s) or a set of log

probability {log p(∑k

i=1 ŷi = s)}ks=0

// A[i,m] = log p(
∑i

j=1 yj = m) ∀i, m
Initialize an array A to be −Inf everywhere

A[0, 0] = 0 // p(
∑0

j=1 yj = 0) = 1
Compute t′i ← log1mexp(ti) // log p(yi = 0)
for i = 1 to k do

for m = 0 to s do

a+ = A[i− 1,m− 1] + ti
a− = A[i− 1,m] + t′i
A[i,m] = logsumexp(a+, a−)

end for

end for

return A[k, s] or A[k, :]
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Figure 1: An example of how to compute the count prob-

ability in a dynamic programming manner. Assume that

an instance-level classifier predicts three instances to have

p(y1 = 1) = 0.1, p(y2 = 1) = 0.2, and p(y3 = 1) = 0.3
respectively. The algorithm starts from the top-left cell and

propagates the results down right. A cell has its probability

p(
∑i

j=0 yj = s) computed by inputs from p(
∑i−1

j=0 yj = s)

weighted by p(yi = 0), and p(
∑i−1

j=0 yj = s− 1) weighted

by p(yi = 1) respectively, as indicated by the arrows.

We show that the count probability p(
∑k

i=1 ŷi = s) can be

computed in a dynamic programming manner. We pro-

vide an illustrative example of this computation in Fig-

ure 1. In practice, we implement this computation in log

space for numeric stability which we summarized as Algo-

rithm 1, where function log1mexp provides a numerically

stable way to compute log1mexp(x) = log(1 − exp(x))
and function logsumexp a numerically stable way to com-

pute logsumexp(x, y) = log(exp(x) + exp(y)). No-

tice that since we show it is tractable to compute the set

{p(∑k

i=1 ŷi = s)}ks=0, for any two given label sum s1 and

s2, a count probability p(s1 ≤
∑

i yi) ≤ s2) where the

count takes its form as an interval, can also be exactly and

tractably computed. This implies that our tractable com-

putation of count probabilities can potentially be leveraged

by other count-based applications besides the three weakly

supervised learning settings in the last section.

C. Additional Experiment Analysis

C.1. LLP

In addition to Adult, we experiment on Magic Gamma Ray

Telescope with 6144 training samples where the task is to

predict whether the electromagnetic shower is caused by

primary gammas or not given information from the atmo-

spheric Cherenkov gamma telescope (Dua & Graff, 2017).

We follow the experimental settings from Scott & Zhang

(2020) where two settings are considered: one with label

proportions uniformly on [0, 1
2 ] and the other uniformly

on [ 12 , 1]. Additionally, we experiment on a third setting

with label proportions distributing uniformly on [0, 1] which

is not considered in Scott & Zhang (2020) but is the most

natural setting since the label proportion is not biased toward

either 0 or 1. We experiment on four bag sizes n with

n ∈ {8, 32, 128, 512}.

Count loss (CL) denotes our proposed approach using

the loss objective defined in Table 2 for LLP. We com-

pare our approach with the method from Learning from

(Scott & Zhang, 2020) or LMMCM and against Proportion

Loss (PL)(Tsai & Lin, 2020).

Results and Discussion. We show our full results in Table

6. On almost every setting, our method showcases supe-

rior results against the baselines. This indicates CL is able

to learn instance-level classification especially on settings

where we have bags of small sizes, since bag-level infor-

mation is closer to full supervision. We also empirically

validate that techniques that approximate the bag poste-

rior (PL) are less effective than optimizing the exact bag

posterior with CL.

C.2. MIL

We first experiment on the MNIST dataset (LeCun, 1998)

and follow the MIL experimental setting in Ilse et al. (2018):

the training and test set bags are randomly sampled from

the MNIST training and test set respectively; each bag can

have images of digits from 0 to 9, and bags with digit 9
are labeled positive. Moreover, the dataset is constructed

in a balanced way such that there is an equal amount

of positively and negatively labeled bags as in Ilse et al.

(2018). The task is to train a classifier that is able to pre-

dict bag labels; the more challenging task is to discover

key instances, that is, to train a classifier that identifies

images of digit 9. Following Ilse et al. (2018), we con-

sider three settings that vary in bag generation process:

in each setting, bags have their sizes generated from a

normal distribution beingN (10, 2),N (50, 10),N (100, 20)
respectively. The number of bags in training set n is in

{50, 100, 150, 200, 300, 400, 500}. Thus, we have 3× 7 =
21 settings in total. Additionally, we introduce experimental

analysis on how performance of the learning methods would

degrade as the number of bags and total samples in training

set decreases, by modulating the number of training bags n
to be {10, 20, 30, 40} and selecting bag sizes from N (5, 1)
and N (10, 2).

We also experiment on the Colon Cancer dataset (Sirinukun-

wattana et al., 2016) to simulate a setting where bag in-

stances are not independent. The dataset consists of 100
total H&E stained images, each of which contain images of

cell nuclei that are classified as one of: epithelial, inflamma-

tory, fibroblast, and miscellaneous. Each image represents

a bag and instances are 27× 27 patches extracted from the

original image. A positively labeled bag or image is one

that contains the epithelial nuclei.

For both datasets, we include the Attention and Gated At-

tention mechanism (Ilse et al., 2018) as baselines. We also

use the MIL objective defined in Table 2.
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Table 6: LLP results showing test AUC with standard deviation aggregated over 5 trials for each experimental setting. ∗
represents experiments that we ran with no early stopping. We highlight the highest test AUC. Full table for Table 3.

Dataset Dist Method 8 32 128 512

Adult [0, 1

2
] CL (Ours) 0.8984 ± 0.0013 0.8848 ± 0.0041 0.8743 ± 0.0052 0.8703 ± 0.0070

Adult [0, 1

2
] PL 0.8889± 0.0024 0.8782± 0.0036 0.8743 ± 0.0039 0.8678± 0.0085

Adult [0, 1

2
] LMMCM 0.8728± 0.0019 0.8693± 0.0047 0.8669± 0.0041 0.8674± 0.0040

Adult [ 1
2
, 1] CL (Ours) 0.8854 ± 0.0022 0.8738 ± 0.0039 0.8675± 0.0043 0.8607 ± 0.0056

Adult [ 1
2
, 1] PL 0.8781± 0.0038 0.8731± 0.0035 0.8699 ± 0.0057 0.8556± 0.0180

Adult [ 1
2
, 1] LMMCM 0.8584± 0.0164 0.8644± 0.0052 0.8601± 0.0045 0.8500± 0.0186

Adult [0, 1] CL (Ours) 0.8985 ± 0.0010 0.8891 ± 0.0013 0.8871± 0.0021 0.8790 ± 0.0056
Adult [0, 1] PL 0.8884± 0.0030 0.8884± 0.0008 0.8879 ± 0.0025 0.8828± 0.0051
Adult [0, 1] LMMCM 0.8831± 0.0026 0.8819± 0.0006 0.8821± 0.0017 0.8786± 0.0052

Magic [0, 1

2
] CL (Ours) 0.9088 ± 0.0056 0.8830 ± 0.0097 0.8926 ± 0.0049 ∗0.8864 ± 0.0107

Magic [0, 1

2
] PL 0.8900± 0.0095 0.8510± 0.0032 0.8405± 0.0110 0.8332± 0.0149

Magic [0, 1

2
] LMMCM 0.8918± 0.0077 0.8799± 0.0113 0.8753± 0.0157 0.8734± 0.0092

Magic [ 1
2
, 1] CL (Ours) 0.9105 ± 0.0020 0.8980 ± 0.0059 0.8851 ± 0.0255 ∗0.8816 ± 0.0083

Magic [ 1
2
, 1] PL 0.9066± 0.0016 0.8818± 0.0108 0.8769± 0.0101 0.8429± 0.0443

Magic [ 1
2
, 1] LMMCM 0.8911± 0.0083 0.8790± 0.0091 0.8684± 0.0046 0.8567± 0.0292

Magic [0, 1] CL (Ours) 0.9173 ± 0.0018 0.9102 ± 0.0057 0.9146 ± 0.0051 0.9088 ± 0.0039
Magic [0, 1] PL 0.9039± 0.0029 0.8870± 0.0037 0.9002± 0.0092 0.8807± 0.0200
Magic [0, 1] LMMCM 0.9070± 0.0026 0.9048± 0.0058 0.9113± 0.0058 0.8934± 0.0097

Table 7: MIL: We report mean test accuracy, AUC, F1, precision, and recall averaged over 5 runs with std. error on the

Colon Cancer dataset. Highlighted are the highest mean values for each metric.

Method Accuracy AUC F1 Precision Recall

Gated Attention 0.909± 0.014 0.908± 0.013 0.886± 0.021 0.916± 0.020 0.879± 0.020
Attention 0.893± 0.015 0.890± 0.008 0.876± 0.017 0.908± 0.016 0.879± 0.018

CL (Ours) 0.915 ± 0.008 0.912 ± 0.010 0.903 ± 0.010 0.936 ± 0.014 0.898 ± 0.007

Results and Discussion. For the MNIST experiments, CL

is able to outperform all other baselines or exhibit highly

comparable performance for bag-level predictions as shown

in Table 4. A more interesting setting is to compare how

robust the learning methods are if the number of training

bags decrease. Wang et al. (2018) claims that instance-level

classifiers tend to lose against embedding based methods.

However, we show in our experiment that this is actually

not true in all cases as seen in Figure 2. While Attention

and Gated Attention are based on embedding, they suffer

from a more severe drop in predictive performance than CL

when the number of training bags drops from 40 to 10; our

method shows great robustness and consistently outperforms

all baselines. The rationale we provide is that with lower

number of training instances, we need more supervision over

the limited samples we have. Our constraint provides this

additional supervision, which accounts for the difference in

performance.

We provide an exemplary investigation in Figure 3 to show

that our approach learns effectively and delivers accurate

instance-level predictions under bag-level supervision. We

can see that even though the classifier is trained on feedback

about whether a bag contains the digit 9 or not, it accurately

discover all images of digit 9.

Our experimental results on the Colon Cancer dataset are

shown in Table 7. We show that both our proposed objec-

tives are able to consistently outperform baseline methods

on all metrics. Interestingly, we do not expect CL perform

well when instances in a bag are dependent; however, the

results indicate that our count loss is robust to these settings.

C.3. PU

We experiment on dataset MNIST and CIFAR-10

(Krizhevsky & Hinton, 2009), following the four simulated

settings from Garg et al. (2021): 1) Binarized MNIST: the

training set consist of images of digits 0−9 and images with

digits in range [0, 4] is defined as positive instances while

others as negative; 2) MNIST17: the training set consist of

images of digits 1 and 7 and images with digits 1 is defined

as positive while 7 as negative; 3) Binarized CIFAR: the

training set consist of images from ten classes and images

from the first five classes is defined as positive instances
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Figure 2: MIL MNIST dataset experiments with decreased training bags and lower bag size. Left: bag lengths samples from

N (10, 2); Right: bag lengths sampled from N (5, 1). We plot the mean test AUC (aggregated over 3 trials) with standard

error for 4 bag sizes. Best viewed in color.
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Figure 3: A test bag from our MIL experiments, where we

set only the digit 9 as a positive instance. Bag sizes are

distributed as N (10, 2), and we use 500 training bags (see

Table 4 for details). Highlighted in red are digits identified

to be positive with corresponding probability beneath.

while others as negative; 4) CIFAR Cat vs. Dog: the training

set consist of images of cats and dogs and images of cats

are defined as positive while dogs as negative. The mixture

proportion is 0.5 in all experiments. The performance is

evaluated using the accuracy on a test set of unlabeled data.

As shown in Table 2, we propose two objectives for

PU learning. Our first objective is denoted by CL

whereas the second approach is denoted by CL-expect.

We compare against Conditional Value Ignoring Risk ap-

proach (CVIR) (Garg et al., 2021), nnPU (Kiryo et al., 2017),

and uPU (Plessis et al., 2015).

Results and Discussion. Complete accuracy results are

presented in Table 8 where we can see that our proposed

methods perform better than baselines on 3 out of the 4
simulated PU learning settings. CL-expect builds off a

similar “exactly-k” count approach, which we have shown

to work well in the label proportion setting. The more

interesting results are from CL where we fully leverage the

information from a distribution as supervision instead of

simply using the expectation. We think of this as applying a

loss on each count weighted by their probabilities from the

binomial distribution. We provide further evidence that our

proposed count loss effectively guides the classifier towards

predicting a binomial distribution as shown in Figure 4: we

plot the count distributions predicted by CL and CVIR as

well as the ground-truth binomial distribution. We can see

that the CL is able to generate a count distribution close to

the ground truth while the baseline approach does not.

Figure 4: MNIST17 setting for PU Learning: We compute

the average discrete distribution for CL and CVIR, a strong

baseline over 5 test bags, each of which contains 100 in-

stances. A ground truth binomial distribution of counts is

also shown.

D. Proofs

Proposition 3.2 With SCAR assumption and a class prior,

the mixture proportion β can be estimated from dataset D.

Proof. Given a class prior p(y = 1) denoted by α, the label

frequency p(ỹ = 1 | y = 1) denoted by c can be obtained
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Table 8: PU Learning: We report accuracy and standard deviation on a test set of unlabeled data, which is aggregated over 3
runs. We highlight the method with the highest mean accuracy. Results from CVIR, nnPU, and uPU are aggregated over 10
epochs, as defined in Garg et al. (2021), while we choose the single best epoch based on validation for our approaches. This

is the full table for Table 5.

Dataset Network CL-expect (Ours) CL (Ours) CVIR nnPU nPU

Binarized MNIST MLP 95.9± 0.15 96.4± 0.01 96.3± 0.07 96.1± 0.14 95.2± 0.19
MNIST17 MLP 98.7± 0.17 99.0± 0.19 98.7± 0.09 98.4± 0.20 98.4± 0.09
Binarized CIFAR ResNet 79.2± 0.27 80.1± 0.34 82.3± 0.18 77.2± 1.03 76.7± 0.74
CIFAR Cat vs. Dog ResNet 76.5± 1.86 74.8± 1.64 73.3± 0.94 71.8± 0.33 68.8± 0.53

by

c = p(ỹ = 1 | y = 1)

=
p(ỹ = 1, y = 1)

p(y = 1)

=
p(ỹ = 1)

p(y = 1)
, (by the definition of PU learning)

that is, c = p(ỹ = 1)/α. Notice that p(ỹ = 1) can be

estimated from the dataset D by counting the proportion of

the labeled instances. Further, we can obtain the mixture

proportion as below,

β = p(y = 1 | ỹ = 0)

=
p(y = 1, ỹ = 0)

p(ỹ = 0)

=
p(y = 1)p(ỹ = 0 | y = 1)

1− p(ỹ = 1)

=
p(y = 1)(1− p(ỹ = 1 | y = 1))

1− p(ỹ = 1)

=
α(1− c)

1− p(ỹ = 1)
.

Lemma D.1. Let Rllp be our risk estimator defined over

p(x, ỹ) as Rllp(f) =
1

k(k+1) Ep(xk,ỹ)[ℓ(f(x),y)]. Follow-

ing the assumptions in Section 3.1 from Kobayashi et al.

(2022), our proposed method is risk-consistent.

Proof. In Kobayashi et al. (2022), it is shown that the risk R
in classical multi-class classification as shown in Section 2.1

can be reduced to a risk Rrc over p(xk, ỹk) as shown in

Equation 1 in Kobayashi et al. (2022) under certain assump-

tions.

Consider binary classification and follow our notations, we

rewrite the Equation 1 in Kobayashi et al. (2022) as below,

Rrc(f) =
1

k(k + 1)
Ep(xk,ỹ)

∑

y∈Yk

∏k

j=1 p(yj | xj)
∑

y′∈Yk,
∑

j
y′

j
=ỹ

∏k

j=1 p(y
′
j | xj)

ℓ(f(xk),y)

We notice that the weight term attached to the loss can be

further rewritten as a constrained probability as follows,

∏k

j=1 p(yj | xj)
∑

y′∈Yk,
∑

j
y′

j
=ỹ

∏k

j=1 p(y
′
j | xj)

= p(y |
k
∑

j=1

yj = ỹ,xk)

This allows us to further rewrite the risk Rrc with likelihood

loss being ℓ(f(xk),y) = −p(∑k

j=1 yj = kỹ | xk):

Rrc(f) =
1

k(k + 1)
Ep(xk,ỹ)



−
∑

y∈Yk

p(y |
k
∑

j=1

yj = kỹ,xk)p(

k
∑

j=1

yj = kỹ | xk)





=
1

k(k + 1)
Ep(xk,ỹ)



−
∑

y∈Yk

p(y,
k
∑

j=1

yj = kỹ | xk)





=
1

k(k + 1)
Ep(xk,ỹ)



−p(
k
∑

j=1

yj = kỹ | xk)





=
1

k(k + 1)
Ep(xk,ỹ)[ℓ(f(x

k),y)] = Rllp(f)

The last few lines follow from the definition of conditional

probabilities. This shows that the risk Rrc(f) = Rllp(f),
meaning that the reduction from risk Rrc(f) to the classical

risk R(f) in Kobayashi et al. (2022) is applicable to our risk

estimator Rllp , which proves that our learning method is

risk-consistent.

Proposition D.2. Assume that the loss function ℓ(f(x), y)
is ρ-Lipschitz with respect to f(x) for any y ∈ Y bounded

by some constant. Let fllp be the hypothesis that minimizes

the empirical risk, and f∗
llp is the hypothesis that minimizes

the true risk, then fllp converges to f∗
llp as m→∞.

Proof. This claim immediately follows Lemma D.1, where

we shows that Rrc(f) = Rllp(f). Therefore, it holds that

Rllp(f̂) − Rllp(f
∗) = R(sc)(f̂) − R(sc)(f

∗), where the

latter term, an always positive term, is shown in Theorem 3.1

in Kobayashi et al. (2022) that it converges to 0 at rate√
m.
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Proposition 3.1 The count probability p(
∑k

i=1 ŷi = s)
of sampling k prediction variables with summation being

s from an unconstrained distribution p(y) =
∏k

i=1 p(ŷi)
can be computed exactly in time O(ks). Moreover, the

set {p(∑k

i=1 ŷi = s)}ks=0 can also be computed in time

O(k2).

Proof. The claim that p(
∑k

i=1 ŷi = s) can be computed

exactly in time O(ks) follows immediately from Proposi-

tion 1 in Ahmed et al. (2023b): in Ahmed et al. (2023b),

the unconstrained distribution is a factorized distribution

obtained from k outputs from a single neural network model

while in our case, the unconstrained distribution p(y) is

obtained from applying a classifier that gives a single output

p(yi) on k inputs; the constructive proof of Proposition 1

in Ahmed et al. (2023b) still applies in our case. More-

over, the computation of p(
∑k

i=1 ŷi = k) is done in a

dynamic programming manner in the sense that for any

s < k, p(
∑k

i=1 ŷi = s) is an intermediate result for com-

puting p(
∑k

i=1 ŷi = k). By caching the intermediate result,

the set {p(∑k

i=1 ŷi = s)}ks=0 can be obtained by the time

p(
∑k

i=1 ŷi = k) is computed, which finishes our proof.

E. Experimental Setup Details

In this section, we will provide relevant training details as

it relates to each of our settings including hyperparameters

and dataset details.

Table 9: Illustration of Adult and Magic datasets showing

the number of training bags for each bag size. Note that we

test on the same number of instances in all variations of bag

size for both experiments: 16280 for Adult and 3804 for

Magic. The breakdown of training bags is the same across

all distributions of label proportion as well, i.e., [0, 1
2 ], [

1
2 , 1],

[0, 1].

Bag Size Training Bags Adult Training Bags Magic

8 1024 768

32 256 192

128 64 48

512 16 12

E.1. Label Proportion

E.1.1. ADULT DATASET

Hyperparameters. We use a learning rate of 0.00001
with the Adam Optimizer and β1 = 0.9, β2 = 0.999. The

weight decay value is set to 0.001. We also notice that

adding in L1 regularization of 0.001 improved the perfor-

mance of our method. We train for 10000 epochs and use a

set number of warm epochs for our experiments. All param-

eters were obtained by using a holdout of 12.5% of training

data for validation on the [0, 1] uniform setting. The net-

work shown in Table 10 was also obtained grid search on

this same validation set.

Table 10: Network used for Adult dataset in LLP Experi-

ments.

Layer Type

1 fc - 2048 + ReLU

2 fc - 64 + ReLU

3 fc - 1 + logsigmoid

Training Procedure. For CL, we use the parameters and

network described in the previous paragraph and early stop-

ping criterion based on validation loss from a held out val-

idation set (12.5% of training data). For PL, we use the

parameters and network except that we do not use L1 as

we found this improves performance. We also use an early

stopping criterion based on validation loss from a held out

validation set (12.5% of training data).

Computing Resources. Trained on Intel(R) Xeon(R)

CPU E5-2640 v4 @ 2.40GHzU and AMD EPYC 7313P

16-Core Processor CPU.

E.1.2. MAGIC DATASET

Hyperparameters. We use a learning rate of 0.0001 with

the Adam Optimizer and β1 = 0.9, β2 = 0.999. The weight

decay value is set to 0.001. We also notice that adding in

L1 regularization of 0.001 improved the performance of our

method. We train for 10000 epochs and use a set number

of warm epochs for our experiments. All parameters were

obtained by using a holdout of 12.5% of training data for

validation on the [0, 1] uniform setting. The network shown

in Table 11 was also obtained grid search on this same

validation set.

Table 11: Network used for Magic dataset in LLP Experi-

ments.

Layer Type

1 fc - 2048 + ReLU

2 fc - 1 + logsigmoid

Training Procedure. For CL, we use the parameters and

network described in the previous paragraph and early stop-

ping criterion based on validation loss from a held out val-

idation set (12.5% of training data). For PL, we use the
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parameters and network except that we do not use L1 regu-

larization as we found this improves performance. We also

use an early stopping criterion based on validation loss from

a held out validation set (12.5% of training data). As shown

in Table 6, there are two instances where we reran our re-

sults with no validation set. In these experiments, we only

use 87.5% of training data and ran for a fixed number of

epochs: 2000. This is because with only one validation bag,

we can find ourselves with some instability in the training

procedure. Note that PL did not benefit from rerunning with

this method.

Computing Resources. Trained on Intel(R) Xeon(R)

CPU E5-2640 v4 @ 2.40GHzU and AMD EPYC 7313P

16-Core Processor CPU.

E.2. Multi-Instance Learning

E.2.1. MNIST-BAGS

Hyperparameters. All of our hyperparameters derive

from Ilse et al. (2018). This includes using the Adam opti-

mizer with β1 = 0.9, β2 = 0.999, a learning rate of 0.0005,

weight decay of 0.0001, and max epochs of 200. For the

main experiment, we use a validation holdout of 20% to

find a class weight for balancing the loss on positive bags

versus negative bags. (We omit this step for our limited data

experiments.)

Table 12: Network used for all MNIST experiments in MIL

settings. Derived from the same network shown in Ilse et al.

(2018).

Layer Type

1 conv(5, 1, 0) - 20 + ReLU

2 maxpool(2, 2)

3 conv(5, 1, 0) - 50 + ReLU

4 maxpool(2, 2)

5 fc-500 + ReLU

6 fc-1 + logsigmoid

Training Procedure. For CL, we train on all the training

data for the maximum number of iterations: 200. We also

use all of the hyperparameters described in the last para-

graph and Ilse et al. (2018). Because we were unable to re-

produce the values in Ilse et al. (2018) for the Attention and

Gated Attention mechanisms, we reran their experiments

with our own implementation. To try and reproduce their

results, we follow their optimization procedure. Specifically,

we use a holdout of training data (20%) and validation loss

+ error for early stopping. We found that doing so provided

the best values for Attention and Gated Attention.

Instance Pooling. To pool together instance level classi-

fication at the final stage, there are several operations that

have been considered in the literature. Some include using

the max and mean operator (Wang et al., 2018). We propose

a new method based on our constraint. We compute the

relevant probabilities defined in 3 for the MIL setting. More

specifically, we compute the probability that a bag has at

least one positive instance. We then round the probabil-

ity of at least one positive instance to obtain our bag level

classification.

Computing Resources. Trained on AMD EPYC 7313P

16-Core Processor CPU.

E.2.2. COLON CANCER DATASET

Hyperparameters. We derive our set of hyperparameters

from Ilse et al. (2018). We use the Adam optimizer for all ex-

periments with β1 = 0.9, β2 = 0.999. This includes weight

decay of 0.0005, learning rate of 0.0001, and a maximum

of 100 epochs.

Table 13: MIL: Network used for CL in colon cancer dataset.

Derived from the same network shown in Ilse et al. (2018).

Layer Type

1 conv(4, 1, 0) - 36 + ReLU

2 maxpool(2, 2)

3 conv(3, 1, 0) - 48 + ReLU

4 maxpool(2, 2)

5 fc-512 + ReLU

6 dropout

7 fc - 512 + ReLU

8 dropout

9 fc-2 + logsigmoid

Training Procedure. We perform 10-fold cross-

validation and average the mean value of each metric over

5 seeds. For CL, we do not use early stopping and train

on all data for the maximum number of epochs using the

hyperparameters mentioned in the previous paragraph. For

our baselines, Attention and Gated-Attention, we use the

same hyperparameters as mentioned above. However, we

follow the optimization procedure detailed in Ilse et al.

(2018) to give try and reproduce the results given in the

paper. This involves using a held out validation set for early

stopping with validation loss + error as the stopping criteria.

For this experiment, this validation set is assumed to be the

size of 1 fold or one-ninth of the training data. (We find that

including early stopping helps increase performance for

both baselines.)
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Computing Resources. Trained on NVIDIA RTX A6000
GPU.

E.3. PU Learning

E.3.1. MNIST DATASET

Table 14: Network used for MNIST data in PU Learning

experiments. Resembles the network in Garg et al. (2021)

except we replace the last layer with a single output and

logsigmoid instead of softmax.

Layer Type

1 fc - 5000 + ReLU

2 fc - 5000 + ReLU

3 fc - 50 + ReLU

4 fc-1 + logsigmoid

Hyperparameters. We fix weight decay to be 0.0005 and

Adam optimizer for all experiments with β1 = 0.9, β2 =
0.999. We use a learning rate of 0.0001 and train for a

maximum of 2000 epochs in all experiments for both CL

and CL-expect. We use a validation set with size equal to

10% of training data in order to weigh the loss on positive

data versus loss on unlabeled data.

Training Procedure. For MNIST dataset experiments, we

use a fully connected multi-layer perceptron (MLP) defined

in Table 14. We train CL and CL-expect with the hyperpa-

rameters defined in the previous paragraph. Furthermore,

we use a held out validation set, equivalent to 10% of train-

ing data, for early stopping. While as results in Garg et al.

(2021) are aggregated over 10 epochs, we choose to pick a

single epoch based on our early stopping as this makes the

most sense for our optimization technique.

Computing Resources. Trained on a singular NVIDIA

RTX 2080-Ti GPU.

Table 15: Table taken almost directly from Garg et al. (2021).

Table shows the break down of the various simulated PU

datasets that we train on.

Dataset Simulated PU Dataset P vs N Training Test

Positive Unlabeled Unlabeled

CIFAR
Binarized CIFAR [0− 4] vs. [5− 9] 12500 12500 2500

CIFAR Cat vs. Dog 3 vs. 5 3000 3000 500

MNIST
Binarized MNIST [0− 4] vs. [5− 9] 15000 15000 2500

MNIST-17 1 vs. 7 3000 3000 500

E.3.2. CIFAR DATASET.

Hyperparameters. We fix weight decay to be 0.0005 and

Adam optimizer for all experiments with β1 = 0.9, β2 =
0.999. We use a learning rate of 0.0001 for all experiments

except for CL-expect in the CIFAR Cat vs. Dog setting

where we use 0.001. We use a validation set with size equal

to 10% of training data in order to weigh the loss on positive

data versus loss on unlabeled data.

Training Procedure. We use a ResNet-18 architecture

for all CIFAR experiments. We train CL and CL-expect

with the hyperparameters defined in the previous paragraph.

Furthermore, we use a held out validation set, equivalent to

10% of training data, for early stopping. While as results in

Garg et al. (2021) are aggregated over 10 epochs, we choose

to pick a single epoch as this makes the most sense for our

optimization technique.

Computing Resources. Trained on a singular NVIDIA

2080-Ti GPU.

E.3.3. EARLY STOPPING

The early stopping procedure that we used in our experi-

ments was a bit unique. Using our holdout of validation

data, we do early stopping using the proximity to the class

prior and validation loss to break ties. We can imagine that

if we perfectly identify all positive and unlabeled samples

and then calculate accuracy against the actually provided la-

bels, we would get an accuracy equivalent to the class prior.

This is because all the positive samples in the unlabeled set

would be labeled incorrect.
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