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Abstract

Propagating gradients through differentiable sim-

ulators allows to improve the training of deep

learning architectures. We study an example from

quantum physics that, at first glance, seems not to

benefit from such gradients. Our analysis shows

the problem is rooted in a mismatch between

the specific form of loss functions used in quan-

tum physics and its gradients; the gradient can

vanish for non-equal states. We propose to add

a scaling term to fix this problematic gradient

flow and regain the benefits of gradient-based op-

timization. We chose two experiments on the

Schroedinger equation, a prediction and a control

task, to demonstrate the potential of our method.

1. Introduction

Differentiable simulators have found their way into Deep

Learning (Um et al., 2020; Wang et al., 2020; Holl et al.,

2020), opening the doors to numerous new training methods.

They enable to propagate feedback more directly, based on

linear approximations instead of on, for instance, expensive

trial-and-error-like search in various reinforcement learn-

ing algorithms (Sutton & Barto, 2018). This can lead to

more efficient learning demonstrated in various areas, such

as mechanical systems (Toussaint et al., 2018; de Avila

Belbute-Peres et al., 2018) or fluids dynamics (Schenck &

Fox, 2018).

Nevertheless using gradients from differentiable simulators

is not free from problems. Non-convexity or explodingly

large gradients can hinder successful learning and can make

it necessary to rethink how gradients flow in a given training

setup. Identifying and removing these weaknesses is key
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to harness the potential that gradient-based optimization

promises.

In this work, we investigate such a case of an ill-behaved

gradient flow found in quantum mechanics where, for physi-

cal reasons, a loss other than the omnipresent mean squared

error loss has to be used. This quantum loss comes with

a suboptimal gradient flow, giving vanishing gradients for

non-matching inputs, and therefore we propose a modifi-

cation of its gradient intended to fix this shortcoming. We

demonstrate the effectiveness of our method on two tasks, a

prediction and control setup, on the Schroedinger equation.

2. Modifying the Gradient Flow of a

Quantum Loss Function

We start with a brief look into quantum physics that will

allow us to illustrate the difficulties that arise from the loss

functions of quantum physics and to explain the solution we

propose.

2.1. Quantum Formalism and Quantum Loss Function

Physicists model quantum states as vectors of a complex

Hilbert space H with norm 1. Two such vectors ψ and

ψ′ ∈ H are physically interpretable only up to a global

phase or, put differently, two vectors ψ and ψ′ correspond

to the same quantum state if there is a phase factor eiθ such

that ψ = eiθψ′. To ensure consistency all operations on

quantum states are required to respect this principle. As an

example, time evolution of a quantum state ψ is described

by the Schroedinger equation, for a system with one spatial

dimension and a potential V given as follows:

i∂tψ = (−∂2x + V ) ψ (1)

As a further example and central to our discussion, similarity

between quantum states ψ1 and ψ2 is measured by using

the inner product 〈·, ·〉 of H. This allows us to define a loss

function L that is invariant under global phase shifts and

therefore consistent with the mathematical framework of
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Figure 1. Toy example: a) Gradient descent loss curves for the standard gradient (S), mean squared error gradient (L2) and our modified

gradient (M). b) - d) Corresponding trajectories in the x-y-plane

quantum mechanics:

L(ψ1, ψ2) = 1− |〈ψ1, ψ2〉|2 (2)

While this loss function is physically sound and established,

it reveals a weakness when viewed through the lens of back-

propagation: any two quantum states ψ1 and ψ2 orthogonal

to each other give a vanishing gradient yet their loss value

is not zero. When solving a learning task such a mismatch

between quantum loss and its gradient can negatively affect

the learning dynamic; model updates will be dominated

by data points with an already close to optimal prediction

because gradients of data points with poor prediction vanish.

2.2. A Simplified Example and Standard Gradient

To find a better loss function we illustrate the behavior

of the quantum loss with a simpler, visualizable exam-

ple that still captures the geometric essence of the prob-

lem. Let us consider normalized vectors on R
2. We define

v(θ) = (cos(θ), sin(θ))T , a target state w = (1, 0)T and

the analogon to the quantum loss (2) together with its gradi-

ent GS , the standard gradient:

L(θ) = 1− 〈v(θ), w〉2 (3)

GS = ∇L (4)

For θ = π/2 the vectors v and w are orthogonal and the

gradient of L vanishes, the same problem as for the quan-

tum loss. We initialize θ to be slightly smaller than π/2 and

visualize the optimization dynamics with gradient descent

in Figure 1a and b. What we see is that the gradient de-

scent steps can only slowly escape from the local maximum

around π/2 and therefore the loss curve is extremely flat at

the beginning.

2.3. Mean Squared Error Gradient

As a first step towards improvement, it appears natural to

consider the gradient GL2 that belongs to the mean squared

error or L2 loss.

GL2(θ) = (v(θ)− w)
∂v(θ)

∂θ
(5)

It is the simplest loss for optimization; gradients are a mea-

sure of how much v and w differ and, contrary to the quan-

tum loss, do not vanish if v and w are orthogonal. However,

using it in a quantum physics task is questionable as it is

not invariant under global phase shifts required by quantum

states. Nevertheless we will consider this loss in the toy

example since we deal with a real vector space here. Figure

1a and c show that the absence of the problematic gradients

enables fast progress also in the beginning.

2.4. Modified Gradient

As a final step, we modify the gradient of the inner product

losses (2) and (3) directly to counteract the negative effects

of the inner product. For this we add an additional factor to

the standard gradient GS , giving us the modified gradient

GM :

GM =
∇L√
1− L

(6)

The scaling of this expression is chosen to cancel exactly

the term responsible for the vanishing gradients and it is

completely in tune with the quantum formalism since it
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Figure 2. Quantum simulations: Adam loss curves for the standard gradient (S), mean squared error gradient (L2) and our modified

gradient (M) for a) prediction task and b) control task. The plots show three training curves for each method (transparent colors) and their

mean curve (opaque colors). To increase visual quality we supressed the spikey behavior by smoothing loss curves over ten subsequent

epochs in both plots.

depends only on L, a quantity invariant under global phase

shifts. In the toy example, Figure 1a and d show that this

gradient also successfully overcomes the difficulties at the

beginning. With these three types of gradients, we move to

the actual quantum examples to see if we receive a similar

picture.

3. Experiments

For our experiments, we implement a numerical simula-

tion of equation (1) (Borzı̀ et al., 2017), using a uniform

one-dimensional grid of 20 points with Dirichlet boundary

conditions and a modified Crank-Nicolson scheme (Winckel

et al., 2009) with a time step of 0.2. We consider two types

of tasks, prediction and control, which we evaluate by using

the quantum loss (2) but train differently using the three

types of gradients obtained from (4), (5) and (6). For the

network architecture, we use in both tasks a fully-connected

network with 2 hidden layers and a total of about 10000

parameters.

3.1. Prediction Task

In this type of task, we give a quantum state as input to

a neural network and train it to return the corresponding

quantum state at later time, i.e. the network learns what the

quantum simulator does. For this we generate a set of 100-

step time trajectories of 100 randomly initialized quantum

states and use every state-next-state pair to build a data set

for training. For optimization we use Adam with learning

rate 0.005 and a mini batch size of 200. For each method we

start three runs with different initializations and show these

training curves together with their mean curve in Figure 2a.

We see that the standard gradient (blue) achieves only a

suboptimal result, which we consider to be a consequence

of the suboptimal gradients. Using the mean squared error

gradient (red), physically questionable but mathematically

practical, minimizes the loss to a similar level with notably

fast progress especially in the beginning. Our modified

gradient (green) behaves best: the usage of better and physi-

cally consistent gradients reflects itself in overall less spikey

curves and loss values of about a factor of 2 better than

those of the other methods.

3.2. Control Task

As a second example, we consider the task of manipulating

a quantum system by external action to steer it into a given

configuration. In contrast to the prediction task, we now

require differentiability of the simulator to effectively com-

pute solutions of this inverse problem. For this we solve for

a time-dependent function u(t), introduced via the potential

V into the Schroedinger equation (1). In our numerical ap-
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proximation we use 50 simulator time steps through which

gradients are propagated in order to find a control signal.

We set up the learning problem by generating 100 initial

states and 1 final state, resulting in 100 different versions

of such a control task. The network learns to predict for

each initial state the corresponding signal u(t) that brings

the initial state into the target state. For optimization we

again use Adam with learning rate 0.005 and a mini batch

size of 10.

As before we conduct three runs for each method and show

the results in Figure 2b. In this experiment the mean squared

error gradient (red) yields the worst results, next is the stan-

dard gradient (blue), and our modified gradient (green) finds

the best solution. Overall the learning curves look more sta-

ble than for the other task. These results again support our

picture that incorporating optimization principles in a physi-

cally plausible way leads to better learning performance.

4. Related Work

Optimization

Optimization is a wide field with an abundance of algorithms

(Ye et al., 2019). Minimizing loss functions of training

setups with differentiable simulators can be challenging.

Our work presents a simple adjustment that improves the

training behavior. Besides standard deep learning methods

(Kingma & Ba, 2015), there exist also specialized methods

for optimizing learning setups with differentiable simulators

(Holl et al., 2022; Schnell et al., 2022).

Incorporating Differentiable Models

Many works in deep learning involve differentiable for-

mulations of, for instance, discrete operations (Petersen

et al., 2022), rendering (Kato et al., 2020), and especially

physics simulators. Examples are found in robotics (Tou-

ssaint et al., 2018), rigid bodies (de Avila Belbute-Peres

et al., 2018), molecular dynamics (Wang et al., 2020), cloth

models (Liang et al., 2019), fluid dynamics (Schenck & Fox,

2018). The considered tasks involve reconstruction (Holl

et al., 2022), numerical error correction (Um et al., 2020)

or control (Holl et al., 2020). Including a differentiable

simulator means also incorporating physical principles, but

is not the only way to do this. In a different spirit, this can

also be done by using non-standard loss functions (Raissi

et al., 2019; Tompson et al., 2017). On the technical side,

various software frameworks are available for the efficient

implementation of differentiable models (Hu et al., 2020;

Holl et al., 2020; Schoenholz & Cubuk, 2019).

5. Discussion

Our work serves as an example of how rethinking gradient

flows can improve training in deep learning tasks that in-

volve differentiable simulators. We designed our method to

counteract weaknesses of the quantum physical loss func-

tion but to still be in tune with physical principles. In two

experiments we demonstrated that upholding both of these

ideas achieves better results compared to the other two meth-

ods that integrate only one of them.

Our work can be extended in several ways. On the physics

side, investigating more complex quantum systems such

as spin systems or multiparticle systems would present a

case with more complex interactions. On the learning side,

more sophisticated learning formulations such as an actor-

critic setup would offer an interesting opportunity for further

studies.
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