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Abstract

We introduce JAX FDM, a differentiable solver

to design mechanically efficient shapes for 3D

structures conditioned on target architectural, fab-

rication and structural properties. Examples of

such structures are domes, cable nets and tow-

ers. JAX FDM solves these inverse form-finding

problems by combining the force density method,

differentiable sparsity and gradient-based opti-

mization. Our solver can be paired with other

libraries in the JAX ecosystem to facilitate the

integration of form-finding simulations with neu-

ral networks. We showcase the features of JAX

FDM with two design examples. JAX FDM

is available as an open-source library at this

URL: https://github.com/arpastrana/jax fdm

1. Introduction

The force density method (FDM) (Schek, 1974) is a

form-finding method that generates shapes in static equi-

librium for meter-scale 3D structures, such as masonry

vaults (Panozzo et al., 2013), cable nets (Veenendaal et al.,

2017) and tensegrity systems (Zhang & Ohsaki, 2006). A

structure in static equilibrium carries loads like its self-

weight or wind pressure only through internal tension and

compression forces (Adriaenssens et al., 2014). This axial-

dominant mechanical behavior enables a form-found struc-

ture to span long distances with low material usage com-

pared to a structure that is not form-found (Schlaich, 2018;

Rippmann et al., 2016).

The FDM is a forward physics solver expressed as a function

f(θ,G) = U . Given a structure modeled as a sparse graph

G and a set of continuous design parameters θ, the FDM

computes a state of static equilibrium U for G (Fig. 2).

By inputting different values of θ, the FDM generates a
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Figure 1: Plan view of cable net with equalized edge lengths.

variety of shapes in static equilibrium (Fig. 3). However,

in engineering practice, it is necessary to generate not any

mechanically efficient 3D shape, but a feasible one that

satisfies constraints arising from architectural, fabrication,

or other structural requirements.

Consider the case shown in Fig. 4 where it is of interest

to find a shape in equilibrium that is as close as possible

to a target surface Û . This surface may express architec-

tural intent for a new roof or can represent the geometry

of a historical masonry vault that needs to be analyzed for

restoration purposes (Panozzo et al., 2013; Marmo et al.,

2019). Practical structural design, therefore, requires the

solution of an inverse form-finding problem, a mapping

from Û → θ, where the goal is to estimate adequate values

for the parameters θ⋆ that are conducive to an equilibrium

state with prescribed characteristics Û .

The design space of all possible shapes in static equilib-

rium parametrized by θ is vast, particularly as the dimen-

sionality of these parameters grows proportionally to the

hundreds or thousands of cables, bricks and blocks that com-

pose a real-world structure. Numerical approaches based

on geometric heuristics (Lee et al., 2016) or genetic algo-

rithms (Koohestani, 2012) offer limited support to navi-

gate this high-dimensional design space towards feasible

designs. The current surge of differentiable physics solvers

and physics-informed neural networks in structural engi-

neering (Cuvilliers, 2020; Chang & Cheng, 2020; Xue et al.,

2023; Wu, 2023; Pastrana et al., 2023) provide insights to

develop new approaches to tackle inverse form-finding.

In this paper, we present JAX FDM, a differentiable solver

to perform inverse form-finding on 3D structures modeled as

pin-jointed bar networks. JAX FDM implements the FDM in

JAX (Bradbury et al., 2018) and solves inverse form-finding

problems by estimating adequate inputs to the FDM via
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Figure 2: The FDM is a forward form-finding method that com-
putes a state of static equilibrium U on an input graph G given
input parameters θ = (q,P,Xs).

gradient-based optimization. The required forward and back-

ward calculations are executed efficiently by running a differ-

entiable sparse solver on a CPU or a GPU. After presenting

the theory behind our work in Section 2, we use our solver

to address two inverse form-finding problems: the design of

a shell structure that matches an arbitrary target shape (Sec-

tion 3.1) and the design of cable net with prescribed edge

lengths (Section 3.2). JAX FDM is open-source software ac-

cessible at this URL: https://github.com/arpastrana/jax fdm.

2. Auto-differentiable and sparsified FDM

2.1. The force density method (FDM)

The FDM models a structure as a pin-jointed, force net-

work (Schek, 1974). Let G = (V,E) be a graph with n
vertices V connected by m edges E encoding this network.

One portion of V of size ns is defined as the supported

vertices of the structure Vs, i.e., the locations in the structure

that are fixed and transfer reaction forces to its anchors. The

remaining nu unsupported vertices are denoted Vu.

A connectivity matrix C ∈ {−1, 0, 1}m×n encodes the

relationship between the edges and the vertices of G. Entry

cij of C is equal to 1 if vertex j is the start node of edge i and

equal to −1 if vertex j is the end node of edge i. Otherwise,

cij = 0. Submatrices Cu and Cs are formed by the columns

of C corresponding to the unsupported and the supported

vertices of G, respectively.

Figure 3: The FDM generates different static equilibrium config-
urations for variations of θ. From left to right: q ∈ {−0.1,−1},
q = 1, and q ∼ U(−0.1,−1). Colors indicate the internal axial
forces: blue denotes compression and red tension.

Figure 4: JAX FDM solves inverse form-finding problems esti-

mating parameters θ⋆ that fit a prescribed equilibrium state Û via
gradient-based optimization. Here, we calculate the force densities
q⋆ needed to solve a shape approximation problem on a creased
shell modeled as graphs G and GII .

The FDM is a function f that computes a state of static

equilibrium U on a fixed graph G given input parameters θ.

The input parameters θ = (q,P,Xs) are features defined

on the elements of G:

• A diagonal matrix Q ∈ R
m×m with the force densi-

ties of the edges, q ∈ R
m×1. The force density qi of

edge i is the ratio between the internal force ti and the

length li of the edge, qi = ti/li. A negative qi indicates

compression while a positive one indicates tension.

• A matrix P ∈ R
n×3 with the 3D vectors denoting the

external loads applied to all the vertices of G. Subma-

trices Pu ∈ R
nu×3 and Ps ∈ R

ns×3 correspond to

the rows of P with the loads applied to the vertices Vu

and Vs, respectively.

• A matrix Xs ∈ R
ns×3 containing the 3D coordinates

of the supported vertices, Vs.

The state U = (Xu,Rs, t, l) characterizes the static equi-

librium configuration of G:

• A matrix Xu ∈ R
nu×3 containing the 3D coordinates

in static equilibrium of the unsupported vertices, Vu.

• A matrix Rs ∈ R
ns×3 with the reaction forces incident

to the supported vertices, Vs.

• A vector t ∈ R
m×1 containing the tensile or compres-

sive internal force of the edges.

• A vector l ∈ R
m×1 with the edge lengths.

The key step in the FDM is to find the 3D coordinates in

static equilibrium of the free vertices Xu with Eq. 1:

Xu = (CT
uQCu)

−1(Pu −CT
uQCsXs) (1)
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The remaining components of U are computed as:

Rs = Ps −CT
sQCX (2)

t = qTL (3)

The matrix of 3D coordinates X results from concatenating

Xu and Xs. The diagonal matrix of edge lengths L can be

calculated taking the row-wise L2 norm of the inner product

of the connectivity matrix C and X, L = diag(∥CX∥2).

2.2. Solving inverse form-finding problems

The desideratum is to design structures in static equilib-

rium that attain additional architectural, fabrication, or other

target properties.

The FDM parametrizes form-finding in terms of θ, simpli-

fying the computation of a state of static equilibrium U to

the solution of a linear system. However, the relationship

between θ and U is non-linear as linear perturbations in θ do

not correspond to linear changes in U . Moreover, the force

densities q are not interpretable quantities: they express a

ratio between the expected forces and lengths in the edges

of a structure, but neither of them concretely. Both issues

complicate tackling inverse form-finding problems without

an automated approach.

To address these challenges, we solve an unconstrained

optimization problem w.r.t. parameters θ. Let g(f(θ,G))
be a non-linear goal function that computes a property of

interest. One inverse form-finding problem may contain K
different goal functions that are individually scaled by a

weight factor wk and aggregated in a loss function L(θ):

L(θ) =

K∑

k=1

wk gk(f(θ,G))) (4)

We minimize Eq. 4 by estimating optimal parameters θ⋆

via gradient descent, iteratively updating θ in the negative

direction of the gradient ∇θL. We conveniently estimate

the required value of ∇θL with reverse-mode automatic

differentiation (Bradbury et al., 2018).

2.3. Differentiable sparse solver

A bottleneck in our solver is the solution of the linear system

in Eq. 1. Although for small problems we can materialize

and invert the full dense coefficient matrix CT
uQCu, for

larger problems we want to take advantage of the inherent

sparsity of Cu to get computational speedup, especially as

the linear solve is called many times during inverse design.

As sparse solvers have limited support on JAX at the time

of writing, we use implicit differentiation to derive a custom

differentiable sparse linear solver. Given that the sparsity

pattern only depends on C, which is fixed from the begin-

ning for a given graph G, we implement a differentiable

Figure 5: Inverse form-found structures generated with JAX FDM.
Left: two compression-only structures, a monkey saddle (top) and
a dome (bottom). Right: a tensegrity tower.

map from force densities into the entries of the coefficient

matrix in compressed sparse-row (CSR) format. We then

use the adjoint method to implement a custom gradient

for scipy.sparse.linalg.spsolve on CPU, and

jax.experimental.sparse.linalg.spsolve

on GPU. On CPU, we use a jax.pure callback to

ensure the sparse solve is compatible with JIT compilation.

3. Examples

JAX FDM features a rich bank of goal functions that sim-

plify the modeling of inverse-form-finding problems on

various structural systems (Fig. 5). Here, we present two

specific use cases with the current version of the library.

3.1. Shape approximation for shell structures

We want to calculate a network in static equilibrium

for a shell that approximates the geometry Û pictured

in Fig. 4 (Panozzo et al., 2013). This target shape is

supplied by the project architect as a COMPAS net-

work (Van Mele & many others, 2017). JAX FDM offers

functions to convert such a network into a JAX-friendly

jfe.EquilibriumStructure. This structure en-

codes the graph representation G of the shell and its connec-

tivity matrix C (Section 2.1).

import jax_fdm.equilibrium as jfe

from jax_fdm.datastructures import FDNetwork

# load a structure from a COMPAS network

net = FDNetwork.from_json("shell.json")

eqs = jfe.EquilibriumStructure

structure = eqs.from_network(net)

To compute a state of static equilibrium eq state with

the FDM, we instantiate an jfe.EquilibriumModel

and define θ as a tuple of design parameters, params.
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import jax.numpy as jnp

# set the initial force densities

q = jnp.ones(structure.num_edges) * -1.0

# compute an equilibrium state

fdm = jfe.EquilibriumModel()

params = (q, xyz_fixed, loads)

eq_state = fdm(params, structure)

The fdm model is a callable object that expresses f(θ,G)
and implements Eqs. 1-3. The initial vector of force den-

sities is set to q = −1. The negative values denote com-

pressive internal forces in the edges of G. The other arrays,

xyz fixed and loads, store the 3D coordinates of the

supports Xs, and the loads P applied to the vertices of G, re-

spectively. Next, we set up an inverse form-finding problem

in terms of q with two functions:

def goal_fn(eq_state):

dist = (eq_state.xyz - xyz_target)**2

return jnp.sum(dist)

def loss_fn(q):

params = (q, xyz_fixed, loads)

eq_state = fdm(params, structure)

return goal_fn(eq_state)

The first one is a goal function g(f(θ,G)), which quantifies

the fitness of the shape approximation by measuring the

cumulative distance between the xyz coordinates in static

equilibrium of the vertices V produced by fdm, and the

xyz target coordinates on the objective surface. The

second function represents Eq. 4, which we minimize with

an optax optimizer (Babuschkin et al., 2020):

import optax

from jax import jit

from jax import value_and_grad

@jit

def opt_step(q, o_state):

loss, grad = value_and_grad(loss_fn)(q)

upd, o_state = opt.update(grad, o_state)

q = optax.apply_updates(q, upd)

return q, o_state, loss

# optimization loop

opt = optax.adam(learning_rate=0.01)

o_state = opt.init(q)

for i in range(5000):

q, o_state, loss = opt_step(q, o_state)

The object abstractions and equilibrium calculations in JAX

FDM are compatible with JAX transformations, such as

jit and value and grad. This compatibility allows us

to write the optimization step for q with the same code

blocks conventionally used to train neural networks.

Figure 6: A cable net roof. The cables of this inverse form-found,
tension-only structure have a target length of 0.15 m.

Post-optimization, the distance between the solution pro-

vided by q⋆ and the target shape decreases by four orders

of magnitude. The fit is comparable with an input graph

GII that has three times more edges and design parameters

(Fig. 4). This example is available in a Colab notebook at

https://tinyurl.com/25czahvh.

3.2. Equalizing edge lengths in a cable net

We design a self-stressed cable net inspired by the roof

of the Rhön Klinikum (Oval, 2019). Building cable nets

from standardized components is important for fabrication

efficiency. Therefore, we calculate a tension-only shape for

the net that has a target edge length of 0.15 m. Fig. 6 displays

the solution to the inverse form-finding problem. The goal

function g(f(θ,G)) in this problem is:

def goal_fn(eq_state):

diff = (eq_state.lengths - 0.15)**2

std = jnp.std(eq_state.lengths)

return jnp.sum(diff) + 0.01 * std

After modeling the connectivity of the cable net as a

structure, we can reuse the code blocks presented in

Section 3.1 to obtain q⋆. The only requirement is to swap

goal fn in the body of the loss function loss fn. The

composition and interchangeability of such atomic goal

functions simplify the formulation of custom inverse form-

finding problems with JAX FDM. We applied a similar

approach to generate the planar cable net shown in Fig. 1.

4. Conclusion

We presented JAX FDM, an open-source solver that stream-

lines the design of 3D structures in static equilibrium con-

ditioned on target properties. Future work will include our

solver as a differentiable layer in neural networks to build

accurate surrogate models that further accelerate inverse

form-finding.
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