
Fine-Tuning Language Models with Just Forward Passes

Sadhika Malladi * 1 Tianyu Gao * 1 Eshaan Nichani 1 Alex Damian 1

Jason D. Lee 1 Danqi Chen 1 Sanjeev Arora 1

Abstract

Fine-tuning language models (LMs) has yielded

success on diverse downstream tasks, but as LMs

grow in size, backpropagation requires a pro-

hibitively large amount of memory. Zeroth-order

(ZO) methods can in principle estimate gradients

using only two forward passes but are theorized to

be catastrophically slow for optimizing large mod-

els. In this work, we propose a memory-efficient

zeroth-order optimizer (MeZO), adapting the

classical ZO-SGD method to operate in-place,

thereby fine-tuning LMs with the same memory

footprint as inference. For example, with a single

A100 80GB GPU, MeZO can train a 30-billion

parameter model, whereas fine-tuning with

backpropagation can train only a 2.7B LM with

the same budget. We conduct comprehensive

experiments across model types (masked and au-

toregressive LMs), model scales (up to 66B), and

downstream tasks (classification, multiple-choice,

and generation). Our results demonstrate that

(1) MeZO significantly outperforms in-context

learning and linear probing; (2) MeZO achieves

comparable performance to fine-tuning with

backpropagation across multiple tasks, with up to

12× memory reduction; (3) MeZO is compatible

with both full-parameter and parameter-efficient

tuning techniques such as LoRA and prefix

tuning; (4) MeZO can effectively optimize

non-differentiable objectives (e.g., maximizing

accuracy or F1). We support our empirical

findings with theoretical insights, highlighting

how adequate pre-training and task prompts

enable MeZO to fine-tune huge models, despite

classical ZO analyses suggesting otherwise.

*Equal contribution 1Princeton University, Princeton, NJ, USA.
Correspondence to: Sadhika Malladi <smalladi@princeton.edu>,
Tianyu Gao <tianyug@princeton.edu>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

1. Introduction

Fine-tuning pre-trained language models (LMs) has been

the dominant methodology for solving many language

tasks (Devlin et al., 2019), adapting to specialized do-

mains (Gururangan et al., 2020), or incorporating human

instructions and preferences (Ouyang et al., 2022). How-

ever, as LMs are scaled up (Brown et al., 2020; OpenAI,

2023), computing gradients for backpropagation requires a

prohibitive amounts of memory – in our test, up to 12× the

memory required for inference – because it needs to cache

activations during the forward pass, gradients during the

backward pass, and, in the case of Adam (Kingma and Ba,

2015), also store gradient history (Section 3.1).

As a result, while it is possible to run inference with a 30-

billion (30B) parameter LM on 1 Nvidia A100 GPU (with

80GB memory), backpropagation with Adam is feasible

only for a 2.7B LM. Parameter-efficient fine-tuning methods

(PEFT (Hu et al., 2022; Li and Liang, 2021; Lester et al.,

2021)) update a fraction of the network parameters, but need

to cache many activations, because tuned parameters are

scattered throughout the model. In our tests, fine-tuning an

OPT-13B model with full parameter or PEFT requires 12×
and 6× more memory than inference respectively.

In-context learning (ICL (Brown et al., 2020)) has allowed

solving many tasks with a single inference pass, during

which the model processes labeled examples (demonstra-

tions) in its context and then outputs a prediction on a test

example. While this allows for quick adaptation of the

model to specific use cases, current models allow a limited

context size (and thus, limited demonstrations) and the

performance is sensitive to the formatting and choice of

demonstrations (Liu et al., 2022; Lu et al., 2022). ICL also

often performs worse than fine-tuning of medium-sized

models (Brown et al., 2020). Besides, inference with ICL

is more expensive, as it always requires demonstrations in

context and thus increases the input length.

A classical zeroth-order optimization method (ZO-

SGD (Spall, 1992)) uses only differences of loss values

to estimate the gradients. Thus in principle, the method can

update neural networks with just forward passes, though

naive implementation still doubles the memory overhead

and classical lower bounds (Nemirovskij and Yudin, 1983;

1

Fine-Tuning Language Models with Just Forward Passes

SST-2 RTE CB BoolQ WSC WIC MultiRC Copa ReCoRD SQuAD DROP
10

30

50

70

90
Ac

cu
ra

cy
/F

1
(%

)

Zero-shot ICL MeZO FT (12x memory)

Figure 1: OPT-13B results with zero-shot, in-context learning (ICL), MeZO (we report the best among MeZO/MeZO

(LoRA)/MeZO (prefix)), and fine-tuning with Adam (FT). MeZO demonstrates superior results over zero-shot and ICL

and performs on par with FT (within 1%) on 7 out of 11 tasks, despite using only 1/12 memory. See Table 2 for detailed

numbers and Figure 2 for memory profiling.

Duchi et al., 2015) suggest that convergence slows linearly

with model size. As such, ZO methods have been applied in

deep learning settings to find adversarial examples or tune

input embeddings (Sun et al., 2022b;a) but not to directly

optimize large-scale models (see Liu et al. (2020a)).

We propose a memory-efficient zeroth-order optimizer

(MeZO), which adapts the classical ZO-SGD algorithm

and reduces its memory consumption to the same as infer-

ence. We apply MeZO to fine-tune large LMs and show that,

both empirically and theoretically, MeZO can successfully

optimize LMs with billions of parameters. Specifically, our

contributions are:

1. In MeZO, we adapt the ZO-SGD algorithm (Spall,

1992) and a number of variants to operate in-place

on arbitrarily large models with almost no memory

overhead (see Algorithm 1 and Section 2).

2. We conduct comprehensive experiments across model

types (masked LM and autoregressive LM), model

scales (from 350M to 66B), and downstream

tasks (classification, multiple-choice, and generation).

MeZO consistently demonstrates superiority over

zero-shot, ICL, and linear probing. Moreover, with

RoBERTa-large, MeZO achieves performance close

to standard fine-tuning within 5% gap; with OPT-13B,

MeZO outperforms or performs comparably to fine-

tuning on 7 out of 11 tasks, despite requiring roughly

12× less memory (Figure 1.

3. We demonstrate MeZO’s compatibility with full-

parameter tuning and PEFT (e.g., LoRA (Hu et al.,

2022) and prefix-tuning (Li and Liang, 2021)) in Sec-

tion 3. Further exploration showcases that MeZO can

optimize non-differentiable objectives such as accu-

racy or F1 score, while still requiring only the same

memory as inference (Appendix A.2).

4. Our theory suggests that adequate pre-training ensures

the per-step optimization rate (Theorem 1) and global

convergence rate (Lemma 3) of MeZO depend on a

certain condition number of the landscape (i.e., the

local effective rank, Assumption 1) instead of numbers

of parameters. This result is in sharp contrast to exist-

ing ZO lower bounds (Nemirovskij and Yudin, 1983;

Duchi et al., 2015) suggesting that the convergence rate

can slow proportionally to the number of parameters

(Section 4).

2. Zeroth-order optimization

Zeroth-order (ZO) optimizers have long been studied in the

context of convex and strongly convex objectives. Consider

a labelled dataset D = {(xi,yi)}i∈[|D|] and a minibatch

B ⊂ D of size B, we let L(θ;B) denote the loss on the

minibatch. We introduce a classical ZO gradient estimate in

this setting.

Definition 1 (Simultaneous Perturbation Stochastic Approx-

imation or SPSA (Spall, 1992)). Given a model with pa-

rameters θ ∈ R
d and a loss function L, SPSA estimates the

gradient on a minibatch B as

∇̂L(θ;B) = L(θ + εz;B)− L(θ − εz;B)
2ε

z

≈ zz>∇L(θ;B)

where z ∈ R
d with z ∼ N (0, Id) and ε is the perturbation

scale. The n-SPSA gradient estimate averages ∇̂L(θ;B)
over n randomly sampled z.

SPSA requires only two forward passes through the model

to compute the gradient estimate (for n-SPSA, each estimate

requires 2n forward passes). It is widely known that the

estimate can be used to replace the backpropagation gradient

in any optimizer such as SGD.

2

Fine-Tuning Language Models with Just Forward Passes

Algorithm 1: MeZO

Require: parameters θ ∈ R
d, loss L : Rd → R, step

budget T , perturbation scale ε, batch size B, learning

rate schedule {ηt}
for t = 1, ..., T do

Sample batch B ⊂ D and random seed s
θ ← PerturbParameters(θ, ε, s)
`+ ← L(θ;B)
θ ← PerturbParameters(θ,−2ε, s)
`− ← L(θ;B)
θ ← PerturbParameters(θ, ε, s)

projected_grad← (`+ − `−)/(2ε)
Reset random number generator with seed s
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi − ηt ∗ projected_grad ∗ z

end

end

Subroutine PerturbParameters(θ, ε, s)
Reset random number generator with seed s
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi + εz

end

return θ

2.1. Memory-efficient ZO-SGD (MeZO)

The vanilla ZO-SGD algorithm costs twice the memory

of inference, as it needs to store z ∈ R
d. We propose a

memory-efficient implementation of ZO-SGD called MeZO

(Algorithm 1). At each step, we sample a random seed s,

and then for each of z’s four uses in Algorithm 1, we reset

the random number generator by s and resample the relevant

entry of z. Using this in-place implementation, MeZO has a

memory footprint equivalent to the inference memory cost.

MeZO can also be combined with other gradient-based

optimizers (e.g., Adam). Though naive implementation

would require storing gradient history, MeZO-momentum

and MeZO-Adam alleviate such overhead by recomputing

past gradients using saved losses and seeds (Appendix D).

3. Experiments

Preliminary experiments (Appendix C) show that MeZO

only works when using prompts (Brown et al., 2020; Schick

and Schütze, 2021; Gao et al., 2021) (see Appendix F.2) and

is generally insensitive to increasing n, so we use n = 1.

We conduct comprehensive experiments on both medium-

sized masked LMs (RoBERTa-large, 350M (Liu et al.,

2019b)) and large autoregressive LMs (OPT-13B, 30B,

66B (Zhang et al., 2022)) in few-shot and many-shot set-

#

#

#

#

#

#

#

#

7x

8x

11x

12x

11x

Figure 2: GPU memory consumption with different OPT

models and tuning methods on MultiRC (400 tokens per

example on average).

Hardware
Largest OPT that can fit

FT FT-prefix MeZO

1×A100 (80GB) 2.7B 6.7B 30B

2×A100 (160GB) 6.7B 13B 66B

4×A100 (320GB) 13B 30B 66B

8×A100 (640GB) 30B 66B 175B†

Figure 3: Largest OPT models that one can tune

with specific hardwares and algorithms. † : pro-

jected results without actual testing.

tings with prompts. We also explore both full-parameter

tuning and PEFT including LoRA (Hu et al., 2022) and

prefix-tuning (Li and Liang, 2021) (Appendix F.5). We

compare MeZO with zero-shot, in-context learning (ICL),

linear-probing (LP), and fine-tuning with Adam (FT).

MeZO improves substantially over zero-shot, ICL, and LP

across model types, sizes, and task types, and it performs

comparably to FT over a number of tasks, while drasti-

cally reducing the memory cost by, e.g., 12× on OPT-13B.

Appendix G.6 finds that MeZO saves more GPU-hours as

the model scale increases. MeZO can also optimize non-

differentiable objectives, such as accuracy and F1 score

(Appendix A.2). We compare the memory consumption of

ICL, FT, LP, and MeZO in Figures 2 and 3.

3.1. Memory usage

In this section we profile the memory usage of zero-shot,

ICL, FT, FT (prefix), and MeZO. We test OPT models of

various sizes with Nvidia A100 GPUs (80GB memory) on

MultiRC (average #tokens=400), and report the peak GPU

memory consumption (Appendix F.7). As shown in Fig-

ure 2 and Appendix G.5, MeZO exhibits the same memory

consumption as zero-shot while offering memory savings

of up to 12× compared to standard FT and 6× compared to

FT (prefix). This advantage enables training larger models

within a fixed hardware budget (Figure 3) Using a single

3

Fine-Tuning Language Models with Just Forward Passes

A100 GPU, MeZO tunes a model that is 11× larger than

what is feasible with FT. Appendix E studies the theoretical

memory-time tradeoffs of backpropagation and MeZO.

4. Theory

Our theoretical analysis (Appendix B) highlights why

MeZO can optimize large LMs, although a number of clas-

sical results (Nemirovskij and Yudin, 1983; Jamieson et al.,

2012; Raginsky and Rakhlin, 2011; Agarwal et al., 2012)

suggest that optimization should be catastrophically slow

when training so many parameters. We show that when

the loss landscape exhibits favorable conditions (Assump-

tion 1), we can derive a convergence rate independent of

the number of parameters: the loss decreases per step at a

rate independent of the parameter dimension d (Theorem 1),

and, under stronger conditions, the algorithm converges in

time independent of d (Lemma 3). Together, these results

imply that MeZO is not catastrophically slower than SGD

when fine-tuning.1 Our main assumption is that the Hessian

of the loss exhibits small local effective rank.2

Assumption 1 (Local r-effective rank). Let G(θt) =
max(x,y)∈D ‖∇L(θt; {(x,y)})‖. There exists a matrix

H(θt) such that:

1. For all θ such that ‖θ − θt‖ ≤ ηdG(θt), we have

∇2L(θ) �H(θt).

2. The effective rank of H(θt), i.e

tr(H(θt))/ ‖H(θt)‖op, is at most r.

This assumption allows us to show that the loss decreases at

a rate independent of d.

Theorem 1 (Dimension-Free Rate). Assume the loss ex-

hibits local r-effective rank (Assumption 1). If θt+1 =

θt − ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-

SPSA estimate with a minibatch of size B, then there exists

a γ = Θ(r/n) such that the expected loss decrease can be

bounded as

E[L(θt+1) | θt]− L(θt) ≤− ηZO ‖∇L(θt)‖2

+
1

2
η2ZO` · γ · E[‖∇L(θ;B)‖2]

5. Related work

Zeroth-order optimization Classical lower bounds de-

pend on the number of parameters d (Jamieson et al., 2012;

1Section 3 uses the standard choice of Adam for FT; we provide
SGD experiments in Appendix G.1.

2It is prohibitively expensive to directly measure the effective
rank of the Hessian of a large LM on a reasonably sized dataset.
However, many previous works have shown that the Hessian of
the loss for deep neural networks trained by SGD has remarkably
low effective rank (Papyan, 2018; 2020; Ghorbani et al., 2019; Yao
et al., 2020; Wu et al., 2020; Sagun et al., 2017), and Aghajanyan
et al. (2021); Li et al. (2018) demonstrated that LM fine-tuning can
occur in a very low dimensional subspace (< 200 parameters).

Agarwal et al., 2012; Raginsky and Rakhlin, 2011; Duchi

et al., 2015; Shamir, 2017; Nemirovskij and Yudin, 1983;

Wang et al., 2020). (Wang et al., 2018; Balasubramanian and

Ghadimi, 2018; Cai et al., 2022) showed that leveraged low-

dimensional gradient structure to improve efficiency, though

the estimation has at least Ω(sd log d) memory cost. Salient

applications of ZO to deep learning are distributed meth-

ods (Tang and Li, 2019; Hajinezhad and Zavlanos, 2018)

and black-box adversarial example generation (Cai et al.,

2021; Liu et al., 2019a; Chen et al., 2017; Liu et al., 2020b).

Some ZO methods do not estimate the gradient (Golovin

et al., 2020; Mania et al., 2018; Hinton, 2022).

Memory-efficient backpropagation Backpropagation

can be made more efficient by sparsifying gradients (Sun

et al., 2017; Wei et al., 2017), approximating Jaco-

bians (Abdel-Khalik et al., 2008; Choromanski and

Sindhwani, 2017), and subsampling the computational

graph (Oktay et al., 2020; Adelman et al., 2021), though

these methods may accrue large approximation errors

for deep networks. Gradient checkpointing (Chen et al.,

2016), FlashAttention (Dao et al., 2022), and quantization

works (Dettmers et al., 2022a;b) all present other ways to

reduce the memory overhead of handling large models.

Gradient-free adaptation of large language models

BBT and BBTv2 (Sun et al., 2022b;a) use evolutionary

algorithms to achieve gradient-free optimization but is lim-

ited to low-dimension projection of prefixes and smaller

models in few-shot settings. Other works focus on optimiz-

ing discrete prompts without updating the model (Chai et al.,

2022; Deng et al., 2022; Diao et al., 2022; Hou et al., 2022;

Prasad et al., 2022).

6. Conclusion

MeZO may be applicable to pruning, distillation, saliency,

interpretability, and dataset selection for fine-tuning. Non-

differentiable objectives are a particularly exciting area,

given recent advances in tuning large LMs to adapt to human

feedback. Theoretical analyses of these gradient estimates

in new applications are of interest.

Acknowledgements

We thank Kaifeng Lyu, Abhishek Panigrahi, Nikunj Saun-

shi, and Mengzhou Xia for their helpful feedback. SA and

SM are funded by NSR, ONR, SRC, and Simons Founda-

tion. JDL, AD, and EN acknowledge the support of the

ARO under MURI Award W911NF-11-1-0304, the Sloan

Research Fellowship, NSF CCF 2002272, NSF IIS 2107304,

NSF CIF 2212262, ONR Young Investigator Award, and

NSF CAREER Award 2144994. This work is also partially

funded by the National Science Foundation (IIS-2211779).

4

Fine-Tuning Language Models with Just Forward Passes

References

Hany S Abdel-Khalik, Paul D Hovland, Andrew Lyons,

Tracy E Stover, and Jean Utke. A low rank approach

to automatic differentiation. In Advances in Automatic

Differentiation, pages 55–65, 2008.

Menachem Adelman, Kfir Levy, Ido Hakimi, and Mark

Silberstein. Faster neural network training with approxi-

mate tensor operations. Advances in Neural Information

Processing Systems, 34:27877–27889, 2021.

Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar,

and Martin J. Wainwright. Information-theoretic lower

bounds on the oracle complexity of stochastic convex

optimization. IEEE Transactions on Information Theory,

58(5):3235–3249, May 2012.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer.

Intrinsic dimensionality explains the effectiveness of lan-

guage model fine-tuning. In Proceedings of the 59th

Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long Pa-

pers), pages 7319–7328, 2021.

Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Albert Web-

son, Colin Raffel, Nihal V Nayak, Abheesht Sharma, Tae-

woon Kim, M Saiful Bari, Thibault Fevry, et al. Prompt-

source: An integrated development environment and

repository for natural language prompts. arXiv preprint

arXiv:2202.01279, 2022.

Krishnakumar Balasubramanian and Saeed Ghadimi.

Zeroth-order (non)-convex stochastic optimization via

conditional gradient and gradient updates. In Advances

in Neural Information Processing Systems, volume 31,

2018.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo

Giampiccolo, Bernardo Magnini, and Idan Szpektor. The

second PASCAL recognising textual entailment chal-

lenge. In Proceedings of the Second PASCAL Challenges

Workshop on Recognising Textual Entailment, 2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Gi-

ampiccolo. The fifth PASCAL recognizing textual entail-

ment challenge. In TAC, 2009.

Raghu Bollapragada, Richard Byrd, and Jorge Nocedal.

Adaptive sampling strategies for stochastic optimization.

SIAM Journal on Optimization, 28(4):3312–3343, 2018.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and

Christopher D. Manning. A large annotated corpus for

learning natural language inference. In Proceedings of

the 2015 Conference on Empirical Methods in Natural

Language Processing, pages 632–642, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,

Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. In Advances in

neural information processing systems, volume 33, pages

1877–1901, 2020.

HanQin Cai, Yuchen Lou, Daniel McKenzie, and Wotao Yin.

A zeroth-order block coordinate descent algorithm for

huge-scale black-box optimization. In International Con-

ference on Machine Learning, pages 1193–1203, 2021.

HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang

Zhang. Zeroth-order regularized optimization (zoro):

Approximately sparse gradients and adaptive sampling.

SIAM Journal on Optimization, 32(2):687–714, 2022.

Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu,

and Haifeng Wang. Clip-tuning: Towards derivative-free

prompt learning with a mixture of rewards. arXiv preprint

arXiv:2210.12050, 2022.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and

Cho-Jui Hsieh. Zoo: Zeroth order optimization based

black-box attacks to deep neural networks without train-

ing substitute models. In Proceedings of the 10th ACM

workshop on artificial intelligence and security, pages

15–26, 2017.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.

Training deep nets with sublinear memory cost. arXiv

preprint arXiv:1604.06174, 2016.

Krzysztof M Choromanski and Vikas Sindhwani. On black-

box backpropagation and jacobian sensing. In Advances

in Neural Information Processing Systems, volume 30,

2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom

Kwiatkowski, Michael Collins, and Kristina Toutanova.

BoolQ: Exploring the surprising difficulty of natural

yes/no questions. In Proceedings of the 2019 Confer-

ence of the North American Chapter of the Association

for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long and Short Papers), pages 2924–

2936, 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The

PASCAL recognising textual entailment challenge. In

the First International Conference on Machine Learning

Challenges: Evaluating Predictive Uncertainty Visual

Object Classification, and Recognizing Textual Entail-

ment, 2005.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christo-

pher Ré. Flashattention: Fast and memory-efficient exact

5

Fine-Tuning Language Models with Just Forward Passes

attention with io-awareness. In Advances in Neural In-

formation Processing Systems, volume 35, pages 16344–

16359, 2022.

Marie-Catherine De Marneffe, Mandy Simons, and Judith

Tonhauser. The commitmentbank: Investigating projec-

tion in naturally occurring discourse. In Sinn und Bedeu-

tung, volume 23, pages 107–124, 2019.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan

Wang, Han Guo, Tianmin Shu, Meng Song, Eric Xing,

and Zhiting Hu. RLPrompt: Optimizing discrete text

prompts with reinforcement learning. In Proceedings of

the 2022 Conference on Empirical Methods in Natural

Language Processing, pages 3369–3391, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke

Zettlemoyer. GPT3.int8(): 8-bit matrix multiplication for

transformers at scale. In Advances in Neural Information

Processing Systems, 2022a.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettle-

moyer. 8-bit optimizers via block-wise quantization. In

International Conference on Learning Representations,

2022b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings

of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long and Short

Papers), pages 4171–4186, 2019.

Shizhe Diao, Xuechun Li, Yong Lin, Zhichao Huang, and

Tong Zhang. Black-box prompt learning for pre-trained

language models. arXiv preprint arXiv:2201.08531,

2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan

Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min

Chan, Weize Chen, et al. Delta tuning: A comprehensive

study of parameter efficient methods for pre-trained lan-

guage models. arXiv preprint arXiv:2203.06904, 2022.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel

Stanovsky, Sameer Singh, and Matt Gardner. DROP:

A reading comprehension benchmark requiring discrete

reasoning over paragraphs. In Proceedings of the 2019

Conference of the North American Chapter of the Associ-

ation for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), pages

2368–2378, 2019.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright,

and Andre Wibisono. Optimal rates for zero-order convex

optimization: The power of two function evaluations.

IEEE Transactions on Information Theory, 61(5):2788–

2806, 2015.

FairScale authors. Fairscale: A general purpose modular

pytorch library for high performance and large scale train-

ing, 2021.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-

trained language models better few-shot learners. In Pro-

ceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (Vol-

ume 1: Long Papers), pages 3816–3830, 2021.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An

investigation into neural net optimization via hessian

eigenvalue density. In International Conference on Ma-

chine Learning, pages 2232–2241, 2019.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and

Bill Dolan. The third PASCAL recognizing textual en-

tailment challenge. In the ACL-PASCAL Workshop on

Textual Entailment and Paraphrasing, 2007.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee,

Xingyou Song, and Qiuyi Zhang. Gradientless descent:

High-dimensional zeroth-order optimization. In Interna-

tional Conference on Learning Representations, 2020.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017.

Andreas Griewank and Andrea Walther. Evaluating deriva-

tives: principles and techniques of algorithmic differenti-

ation. SIAM, 2008.

José Grimm, Loı̄c Pottier, and Nicole Rostaing-Schmidt.

Optimal time and minimum space-time product for re-

versing a certain class of programs. PhD thesis, INRIA,

1996.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta,

Kyle Lo, Iz Beltagy, Doug Downey, and Noah A. Smith.

Don’t stop pretraining: Adapt language models to do-

mains and tasks. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics,

pages 8342–8360, 2020.

Davood Hajinezhad and Michael M Zavlanos. Gradient-free

multi-agent nonconvex nonsmooth optimization. In 2018

IEEE Conference on Decision and Control (CDC), pages

4939–4944, 2018.

Geoffrey Hinton. The forward-forward algorithm:

Some preliminary investigations. arXiv preprint

arXiv:2212.13345, 2022.

6

Fine-Tuning Language Models with Just Forward Passes

Bairu Hou, Joe O’Connor, Jacob Andreas, Shiyu Chang,

and Yang Zhang. Promptboosting: Black-box text

classification with ten forward passes. arXiv preprint

arXiv:2212.09257, 2022.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-

Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu

Chen. LoRA: Low-rank adaptation of large language

models. In International Conference on Learning Repre-

sentations, 2022.

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query

complexity of derivative-free optimization. In Advances

in Neural Information Processing Systems, volume 25,

2012.

Rie Johnson and Tong Zhang. Accelerating stochastic gra-

dient descent using predictive variance reduction. In C.J.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems, volume 26, 2013.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear

convergence of gradient and proximal-gradient methods

under the polyak-łojasiewicz condition, 2020.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,

Shyam Upadhyay, and Dan Roth. Looking beyond the

surface: A challenge set for reading comprehension over

multiple sentences. In Proceedings of the 2018 Confer-

ence of the North American Chapter of the Association

for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long Papers), pages 252–262, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In International Conference on

Learning Representations, 2015.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones,

Tengyu Ma, and Percy Liang. Fine-tuning can distort

pretrained features and underperform out-of-distribution.

In International Conference on Learning Representations,

2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power

of scale for parameter-efficient prompt tuning. In Pro-

ceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, pages 3045–3059, 2021.

Hector Levesque, Ernest Davis, and Leora Morgenstern.

The winograd schema challenge. In Thirteenth interna-

tional conference on the principles of knowledge repre-

sentation and reasoning, 2012.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason

Yosinski. Measuring the intrinsic dimension of objective

landscapes. In International Conference on Learning

Representations, 2018.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-

ing continuous prompts for generation. In Proceedings

of the 59th Annual Meeting of the Association for Com-

putational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1:

Long Papers), pages 4582–4597, 2021.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the va-

lidity of modeling SGD with stochastic differential equa-

tions (SDEs). In A. Beygelzimer, Y. Dauphin, P. Liang,

and J. Wortman Vaughan, editors, Advances in Neural

Information Processing Systems, 2021.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,

Lawrence Carin, and Weizhu Chen. What makes good

in-context examples for GPT-3? In Proceedings of Deep

Learning Inside Out (DeeLIO 2022): The 3rd Workshop

on Knowledge Extraction and Integration for Deep Learn-

ing Architectures, pages 100–114, 2022.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,

and Jiawei Han. Understanding the difficulty of training

transformers. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing

(EMNLP), pages 5747–5763, 2020a.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting,

Shiyu Chang, and Lisa Amini. Zeroth-order stochas-

tic variance reduction for nonconvex optimization. In

Advances in Neural Information Processing Systems, vol-

ume 31, 2018.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong.

signSGD via zeroth-order oracle. In International Con-

ference on Learning Representations, 2019a.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang,

Alfred O Hero III, and Pramod K Varshney. A primer

on zeroth-order optimization in signal processing and

machine learning: Principals, recent advances, and appli-

cations. IEEE Signal Processing Magazine, 37(5):43–54,

2020b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-

dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke

Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692, 2019b.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,

and Pontus Stenetorp. Fantastically ordered prompts and

where to find them: Overcoming few-shot prompt order

sensitivity. In Proceedings of the 60th Annual Meeting of

the Association for Computational Linguistics (Volume 1:

Long Papers), pages 8086–8098, 2022.

7

Fine-Tuning Language Models with Just Forward Passes

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen,

and Sanjeev Arora. A kernel-based view of language

model fine-tuning. arXiv preprint arXiv:2210.05643,

2022.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple

random search of static linear policies is competitive for

reinforcement learning. In Advances in Neural Informa-

tion Processing Systems, volume 31, 2018.

Arkadij Semenovič Nemirovskij and David Borisovich

Yudin. Problem complexity and method efficiency in

optimization. 1983.

Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson,

and Ryan P Adams. Randomized automatic differentia-

tion. arXiv preprint arXiv:2007.10412, 2020.

OpenAI. Gpt-4 technical report. arXiv preprint

arXiv:2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-

roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-

hini Agarwal, Katarina Slama, Alex Ray, et al. Train-

ing language models to follow instructions with human

feedback. Advances in Neural Information Processing

Systems, 35:27730–27744, 2022.

Vardan Papyan. The full spectrum of deepnet hessians at

scale: Dynamics with sgd training and sample size. arXiv

preprint arXiv:1811.07062, 2018.

Vardan Papyan. Traces of class/cross-class structure pervade

deep learning spectra. Journal of Machine Learning

Research, 21(252):1–64, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zem-

ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito,

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. Pytorch: An imperative style, high-performance

deep learning library. In Advances in Neural Information

Processing Systems 32, pages 8024–8035. 2019.

Mohammad Taher Pilehvar and Jose Camacho-Collados.

WiC: the word-in-context dataset for evaluating context-

sensitive meaning representations. In Proceedings of the

2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long and Short Papers),

pages 1267–1273, 2019.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit

Bansal. Grips: Gradient-free, edit-based instruction

search for prompting large language models. arXiv

preprint arXiv:2203.07281, 2022.

Maxim Raginsky and Alexander Rakhlin. Information-

based complexity, feedback and dynamics in convex pro-

gramming. IEEE Transactions on Information Theory,

57(10):7036–7056, 2011.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and

Percy Liang. SQuAD: 100,000+ questions for machine

comprehension of text. In Proceedings of the 2016 Con-

ference on Empirical Methods in Natural Language Pro-

cessing, pages 2383–2392, 2016.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S

Gordon. Choice of plausible alternatives: An evaluation

of commonsense causal reasoning. 2011.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin,

and Leon Bottou. Empirical analysis of the hessian

of over-parametrized neural networks. arXiv preprint

arXiv:1706.04454, 2017.

Timo Schick and Hinrich Schütze. Exploiting cloze-

questions for few-shot text classification and natural lan-

guage inference. In Proceedings of the 16th Conference

of the European Chapter of the Association for Computa-

tional Linguistics: Main Volume, pages 255–269, 2021.

Ohad Shamir. An optimal algorithm for bandit and zero-

order convex optimization with two-point feedback. The

Journal of Machine Learning Research, 18(1):1703–1713,

2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,

Christopher D. Manning, Andrew Ng, and Christopher

Potts. Recursive deep models for semantic compositional-

ity over a sentiment treebank. In Proceedings of the 2013

Conference on Empirical Methods in Natural Language

Processing, 2013.

J.C. Spall. Multivariate stochastic approximation using a

simultaneous perturbation gradient approximation. IEEE

Transactions on Automatic Control, 37(3):332–341, 1992.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,

Xuanjing Huang, and Xipeng Qiu. BBTv2: Towards a

gradient-free future with large language models. In Pro-

ceedings of the 2022 Conference on Empirical Methods in

Natural Language Processing, pages 3916–3930, 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang,

and Xipeng Qiu. Black-box tuning for language-model-

as-a-service. In International Conference on Machine

Learning, pages 20841–20855, 2022b.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang.

meProp: Sparsified back propagation for accelerated deep

learning with reduced overfitting. In Proceedings of the

34th International Conference on Machine Learning, vol-

ume 70, pages 3299–3308, 2017.

8

Fine-Tuning Language Models with Just Forward Passes

Yujie Tang and Na Li. Distributed zero-order algorithms

for nonconvex multi-agent optimization. In 2019 57th

Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pages 781–786, 2019.

Zhiwei Tang, Dmitry Rybin, and Tsung-Hui Chang. Zeroth-

order optimization meets human feedback: Provable

learning via ranking oracles, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and

Illia Polosukhin. Attention is all you need. In Advances in

neural information processing systems, volume 30, 2017.

Ellen M Voorhees and Dawn M Tice. Building a question an-

swering test collection. In the 23rd annual international

ACM SIGIR conference on Research and development in

information retrieval, 2000.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet

Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel

Bowman. Superglue: A stickier benchmark for general-

purpose language understanding systems. In Advances in

neural information processing systems, volume 32, 2019.

Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing.

Variance reduction for stochastic gradient optimization.

In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K.Q. Weinberger, editors, Advances in Neural In-

formation Processing Systems, volume 26. Curran Asso-

ciates, Inc., 2013.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and

Aarti Singh. Stochastic zeroth-order optimization in high

dimensions. In Proceedings of the Twenty-First Interna-

tional Conference on Artificial Intelligence and Statistics,

volume 84, pages 1356–1365, 2018.

Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian

Ma, and Meisam Razaviyayn. Zeroth-order algorithms

for nonconvex minimax problems with improved com-

plexities. arXiv preprint arXiv:2001.07819, 2020.

Bingzhen Wei, Xu Sun, Xuancheng Ren, and Jingjing Xu.

Minimal effort back propagation for convolutional neural

networks. arXiv preprint arXiv:1709.05804, 2017.

Adina Williams, Nikita Nangia, and Samuel Bowman. A

broad-coverage challenge corpus for sentence understand-

ing through inference. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association

for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long Papers), 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-

mond, Clement Delangue, Anthony Moi, Pierric Cistac,

Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison,

Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jer-

nite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain

Gugger, Mariama Drame, Quentin Lhoest, and Alexander

Rush. Transformers: State-of-the-art natural language

processing. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: Sys-

tem Demonstrations, pages 38–45, 2020.

Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and

Rong Ge. Dissecting hessian: Understanding common

structure of hessian in neural networks. arXiv preprint

arXiv:2010.04261, 2020.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W

Mahoney. Pyhessian: Neural networks through the lens

of the hessian. In 2020 IEEE international conference on

big data (Big data), pages 581–590, 2020.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao,

Kevin Duh, and Benjamin Van Durme. Record: Bridging

the gap between human and machine commonsense read-

ing comprehension. arXiv preprint arXiv:1810.12885,

2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,

Moya Chen, Shuohui Chen, Christopher Dewan, Mona

Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-

trained transformer language models. arXiv preprint

arXiv:2205.01068, 2022.

9

Fine-Tuning Language Models with Just Forward Passes

A. Additional Results

A.1. Medium-sized masked language models

We conduct experiments with RoBERTa-large on sentiment classification, natural language inference, and topic classification

tasks. We follow (Gao et al., 2021; Malladi et al., 2022) to study the few-shot and many-shot settings, sampling k examples

per class for k = 16 and k = 512 (details in Appendix F). We summarize the results from Figure 4 and Table 17 below.

SST-2 SST-5 SNLI MNLI RTE TREC
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

k=16 RoBERTa-large

SST-2 SST-5 SNLI MNLI RTE TREC
30
40
50
60
70
80
90

100 k=512 RoBERTa-large

Zero-shot
MeZO (prefix)

LP
FT

MeZO
FT (LoRA)

MeZO (LoRA)
FT (prefix)

Figure 4: Experiments on RoBERTa-large. We report zero-shot, linear probing (LP), and MeZO and fine-tuning (FT) with

full parameter, LoRA, and prefix-tuning. MeZO outperforms zero-shot and LP and approaches FT (within 5% for k = 512)

with much less memory. Detailed numbers in Table 17.

MeZO works significantly better than zero-shot, linear probing, and other memory-equivalent methods. On all six

diverse tasks, MeZO can optimize the pre-trained model and consistently perform better than zero-shot and linear probing.

We also show for several tasks that MeZO can outperform another ZO algorithm, BBTv2 (Sun et al., 2022a), by up to 11%
absolute (Appendix G.4).3

With enough data, MeZO achieves comparable performance (up to 5% gap) to FT. MeZO achieves close-to-fine-

tuning performance on k = 16, with some tasks only having 2% gaps. When using k = 512 data, the gap between MeZO

and FT further reduced to within 5% across all tasks.

MeZO works well on both full-parameter tuning and PEFT. Full-parameter tuning (MeZO) and PEFT (MeZO with

LoRA and prefix-tuning) achieve comparable performance, while MeZO (prefix) sometimes outperforms MeZO. We also

show in Appendix G.3 that the three variants converge at similar rates, agreeing with our theory in Section 4, which shows

that MeZO converges at a rate independent of the number of parameters being optimized.

We show additional results with more FT (FT with SGD) and MeZO variants in Appendix G.1. We see that (1) ZO-

Adam sometimes outperforms ZO-SGD but is not consistent across tasks; (2) LP and then MeZO, as suggested for

fine-tuning (Kumar et al., 2022), can sometimes improve the performance.

A.2. Training with non-differentiable objectives

We demonstrate the efficacy of MeZO for optimizing non-differentiable objectives through initial experiments. Accuracy and

F1 are used as the respective objectives (details in Appendix F.6). Table 3 reveals that MeZO with accuracy/F1 successfully

optimizes LMs with superior performance to zero-shot. Although minimizing cross entropy results in stronger performance,

these preliminary findings highlight the promising potential of applying MeZO to optimize non-differentiable objectives

without clear differentiable surrogates, such as human preferences (Ouyang et al., 2022).

3BBTv2 is sensitive to #parameters and can only train down-projected prefixes instead of the full model.

10

Fine-Tuning Language Models with Just Forward Passes

Task SST-2 RTE BoolQ WSC WIC SQuAD

30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5

30B ICL 81.9 66.8 66.2 56.7 51.3 78.0

30B MeZO/MeZO (prefix) 90.6 72.6 73.5 63.5 59.1 85.2

66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1

66B ICL 89.3 65.3 62.8 52.9 54.9 81.3

66B MeZO/MeZO (prefix) 93.6 66.4 73.7 63.5 58.9 85.0

Table 1: Experiments on OPT-30B and OPT-66B (with 1,000 examples). We report the best of MeZO and MeZO (prefix).

See Appendix G.2 for more results. We see that on most tasks MeZO effectively optimizes up to 66B models and outperforms

zero-shot and ICL.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

Task type ———————— classification ———————— – multiple choice – — generation —

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6

ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5 75.9 29.6

LP 93.4 68.6 67.9 59.3 63.5 60.2 63.5 55.0 27.1 3.7 11.1

MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9

MeZO (LoRA) 89.6 67.9 66.1 73.8 64.4 59.7 61.5 87.0 81.4 83.8 31.4

MeZO (prefix) 90.7 70.8 69.6 73.1 57.7 59.9 63.7 84.0 81.2 84.2 28.9

FT (12x memory) 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3

Table 2: Experiments on OPT-13B (with 1,000 examples). ICL: in-context learning; LP: linear probing; FT: full fine-tuning

with Adam. MeZO outperforms zero-shot, ICL, and LP across the board, and achieves comparable (within 1%) or better

performance than FT on 7 out of 11 tasks.

Model RoBERTa-large (350M) OPT-13B

Task SST-2 SST-5 SNLI TREC SQuAD

Zero-shot 79.0 35.5 50.2 32.0 46.2

Cross entropy (FT) 93.9 55.9 88.7 97.3 84.2

Cross entropy (MeZO) 93.3 53.2 83.0 94.3 84.7

Accuracy/F1 (MeZO) 92.7 48.9 82.7 68.6 78.5

Table 3: MeZO with non-differentiable objectives. For classification (k = 512), we use MeZO with full-parameter and

optimize accuracy; for SQuAD (1,000 examples), we use MeZO (prefix) and F1.

A.3. Wall Clock Time

In this section, we measure the wallclock time efficiency of MeZO compared to full-parameter FT, with respect to different

model sizes. We conduct our experiments with 80GB A100s connected by NVLink and InfiniteBand, which are state-

of-the-art solutions for distributed training. As shown in Table 22, on the MultiRC datasets, training with MeZO brings

7.74× speedup per step compared to full-parameter FT on a 30B model. This is due to (1) MeZO does not require costly

backpropagation and (2) MeZO requires fewer GPUs and reduces the multi-GPU communication overhead.

Note that even though MeZO has better per-step wallclock efficiency, it requires significantly more steps than standard FT.

Taking our OPT-30B experiments as an example: MeZO takes 32× more steps than standard FT, while FT takes 8× more

GPUs and 7.74× more time per step. Overall, MeZO requires only half as many GPU-hours as FT.

11

Fine-Tuning Language Models with Just Forward Passes

Method MeZO Full-parameter FT

13B 1× (2.72s) 2.52×
30B 1× (5.90s) 7.74×

Table 4: Wallclock time per step of different training methods. It is measured on 80GB A100s with NVLink and InfiniteBand

connections. The wallclock time is averaged over 100 steps. It is measured on the MultiRC task with the OPT family. 13B

and 30B OPT require 1 A100 with MeZO and 4 and 8 A100s with FT respectively.

B. Theory

We follow classical analyses of SGD and replace the mini-batch gradient estimate with SPSA. Consider the minibatch

SGD update θt+1 ← θt − η∇L(θ;Bt) where Bt is a minibatch drawn uniformly from DB . Crucially, the SGD minibatch

gradient estimate is unbiased.

Definition 2 (Unbiased Gradient Estimate). Any minibatch gradient estimate g(θ,B) is said to be unbiased if E[g(θ,B)] =
∇L(θ).

B.1. Per-step analysis

The classical descent lemma uses a Taylor expansion to study how SGD reduces the loss at each optimization step. It

highlights that when the gradient covariance is large, the maximum possible decrease in loss at each optimization step is

small, thereby resulting in slower optimization.

Lemma 1 (Descent Lemma). Let L(θ) be `-smooth.4 For any unbiased gradient estimate g(θ,B),

E[L(θt+1) | θt]− L(θt) ≤ −η ‖∇L(θt)‖2 +
1

2
η2` · E[‖g(θ,Bt)‖2]. (1)

The descent lemma highlights the importance of the gradient norm, which we derive for MeZO below.

Lemma 2. Let B be a random minibatch of size B. Then, the gradient norm of MeZO is

Ex

[∥∥∥∇̂L(θ;B)
∥∥∥
2
]
=

d+ n− 1

n
E

[
‖∇L(θ;B)‖2

]
.

where n is the number of z sampled in n-SPSA (Definition 1) and d is the number of parameters.

Thus, in the usual case where n� d, MeZO has a much larger gradient norm than SGD.5 The descent lemma also shows

that to guarantee loss decrease, one needs to choose the learning rate as

η ≤ 2 ‖∇L(θt)‖2

` · E[‖g(θ,B)‖2]
Lemma 2
======⇒ ηZO =

n

d+ n− 1
ηSGD (2)

where ηZO and ηSGD are the maximum permissible learning rates for MeZO and SGD respectively. Thus we see that without

any further assumptions, MeZO can slow optimization by decreasing the largest permissible learning rate by a factor of d.

Moreover, MeZO reduces the loss decrease that can be obtained at each step and, as a consequence, slows convergence by a

factor of d as well.

Surprisingly, our experiments show that MeZO can quickly optimize pre-trained models with billions of parameters, and

reducing the number of tuned parameters via PEFT techniques does not substantially accelerate optimization (Appendix G.3).

We attribute these phenomena to the Hessian of the loss exhibiting small local effective rank. It is prohibitively expensive to

directly measure the effective rank of the Hessian of a large LM on a reasonably sized dataset. However, many previous

works have shown that the Hessian of the loss for deep neural networks trained by SGD has remarkably low effective rank

(Papyan, 2018; 2020; Ghorbani et al., 2019; Yao et al., 2020; Wu et al., 2020; Sagun et al., 2017). In particular, the bulk

of the spectrum concentrates around 0 with only a small number of outliers, and the number of these outliers is an upper

4This is satisfied for the standard cross-entropy objective.
5All of our experiments use n = 1.

12

Fine-Tuning Language Models with Just Forward Passes

bound on the effective rank. In addition, prior works (Aghajanyan et al., 2021; Li et al., 2018) have demonstrated that LM

fine-tuning can occur in a very low dimensional subspace (< 200 parameters), which further supports the below assumption.

We formalize the assumption on the effective rank below. In particular, we require an upper bound on the Hessian in a

neighborhood around the current iterate to have effective rank at most r.

Assumption 2 (Local r-effective rank, reproduction of Assumption 1). Let G(θt) = max(x,y)∈D ‖∇L(θt; {(x,y)})‖.
There exists a matrix H(θt) such that:

1. For all θ such that ‖θ − θt‖ ≤ ηdG(θt), we have ∇2L(θ) �H(θt).

2. The effective rank of H(θt), i.e tr(H(θt))/ ‖H(θt)‖op, is at most r.

Under this assumption, we show that the convergence rate of ZO-SGD does not depend on the number of parameters.

Instead, the slowdown factor only depends on the effective rank of the Hessian.

Theorem 2 (Dimension-Free Rate, reproduction of Theorem 1). Assume the loss exhibits local r-effective rank (Assump-

tion 1). If θt+1 = θt − ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-SPSA estimate with a minibatch of size B,

then there exists a γ = Θ(r/n) such that the expected loss decrease can be bounded as

E[L(θt+1) | θt]− L(θt) ≤ −ηZO ‖∇L(θt)‖2 +
1

2
η2ZO` · γ · E[‖∇L(θ;B)‖2] (3)

By applying Equation (2), we can directly compare to the SGD descent lemma.

Corollary 1. Choosing the learning rate ηZO = γ−1 · ηSGD, ZO-SGD obtains a loss decrease of

E[L(θt+1) | θt]− L(θt) ≤
1

γ
·
[
−ηSGD ‖∇L(θt)‖2 +

1

2
η2SGD` · E[‖∇L(θ;B)‖2]

]
. (4)

Here we see that comparing to SGD, the slowdown factor of ZO-SGD scales with the local effective rank r, which we argue

is much smaller than the number of parameters d. The above analysis focuses on how much ZO-SGD and SGD decrease the

loss at each step. Below, we show that under stronger assumptions about the loss landscape, we can obtain rates for how

quickly the ZO-SGD algorithm converges to an optimal value.

B.2. Global convergence analysis

We show that the global convergence rate also slows by a factor proportional to the local effective rank under stronger

assumptions about the loss landscape. We assume that the landscape obeys the classical PL inequality: the gradient norm

grows quadratically with the suboptimality of the iterate.

Definition 3 (PL Inequality). Let L∗ = minθ L(θ). The loss L is µ-PL if, for all θ, 1
2 ‖∇L(θ)‖

2 ≥ µ(L(θ)− L∗).

The PL inequality is not as strong as assuming that optimization exhibits kernel-like dynamics, but it ensures that the

landscape is amenable to analysis (Karimi et al., 2020). In addition to the PL inequality, we assume the trace of the gradient

covariance is bounded, so noise does not disrupt the trajectory too drastically.

Definition 4 (Gradient Covariance). The SGD gradient estimate on a minibatch of size B has covariance Σ(θ) =
B(E

[
∇L(θ;B)∇L(θ;B)>

]
−∇L(θ)∇L(θ)>).

As we show in Appendix H.1, this assumption holds for common loss functions such as square loss or binary cross entropy

for several settings (e.g., kernel behavior (Malladi et al., 2022)). With these two assumptions, we show that ZO-SGD has a

slowdown proportional to the effective rank r, not the parameter dimension.

Lemma 3 (Global Convergence of ZO-SGD). Let L(θ) be µ-PL and let there exist α such that tr(Σ(θ)) ≤ α(L(θ)− L∗)
for all θ. Then after

t = O

(r

n
+ 1

)
·
(
`

µ
+

`α

µ2B

)
log
L(θ0)− L∗

ε︸ ︷︷ ︸
SGD rate (Lemma 4)

iterations of ZO-SGD we have E[L(θt)] ≤ L∗ + ε.

13

Fine-Tuning Language Models with Just Forward Passes

C. Algorithmic Ablations

We perform a number of ablations to select the best algorithm. As is standard in ZO literature, we consider the main

computational cost to be the number of forward passes. In our case, the number of forward passes can be affected by the

number of gradient steps taken, any usage of gradient accumulation, and using more noise samples to reduce the variance of

the gradient estimate.

We observed that the performance of MeZO improves monotonically with the number of steps, and there does not appear to

be any overfitting. Hence, when performing algorithmic ablations, we can focus on the efficiency of different algorithms

without considering implicit bias. This is also reflected in our theoretical analysis. To ease the computational load, we fix

the number of forward passes to 10, 000 and compare many different algorithms for RoBERTa-large on a smaller set of

tasks that span sentiment analysis, entailment, and topic classification: SST-2, SNLI, and TREC. We emphasize that 10, 000
is a small budget and is only used as a setting to compare these ZO algorithms to each other. We find that using a linearly

decreasing learning rate schedule during training, as was done for fine-tuning with backpropagation in (Liu et al., 2019b),

does not help or hurt MeZO. Similarly, using a learning rate warmup leads to identical results on these three tasks. For

simplicity, we use a constant learning rate schedule with no warmup for all of the below experiments. We perform few-shot

experiments with k = 16 and average the results across 5 seeds.

Experiment Hyperparameters Values

MeZO Batch size {16, 64} ×
Learning rate {1e−5, 1e−6, 1e−7} ×

ε {1e−3, 1e−5} ×
Weight Decay {0, 0.1}

Table 5: The hyperparameter grid used in our ablation experiments. For simplicity, we use a constant learning rate schedule.

C.1. Prompting

We study if adding a prompt is crucial to the ability of MeZO to optimize the network. We use prompts from Gao et al. (2021).

Malladi et al. (2022) claimed the prompt makes the optimization trajectory well-behaved, though we note that the current

paper considers RoBERTa-large and large autoregressive models while the previous work only studied RoBERTa-base.

We note the similarity between kernel behavior and our theoretical setting in Section 4. MeZO succeeds on tasks that are

reported to not exhibit kernel behavior in Malladi et al. (2022), so we investigate whether or not the prompt is necessary.

SST-2 SNLI TREC

Prompt 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)

No Prompt 51.9 (2.9) 34.8 (2.1) 19.5 (9.0)

Table 6: Experiments using MeZO to fine-tune models with and without a prompt.

Both experiments followed the grid in Table 5, but we also expanded the grid to include a learning rate of 1e− 4 for the no

prompt case. As a result of these experiments, we fix the setting to prompt-based fine-tuning for all of the below experiments.

C.2. Sample Schedules

One can sample nt noise vectors at the tth step and use nt-SPSA to compute the gradient estimate. Similar ideas were

proposed in Bollapragada et al. (2018); Cai et al. (2022). We study the effect of linearly increasing and constant sampling

schedules in the ablation setting. The intuition for the linearly increasing schedule is that the optimizer may need a higher

fidelity gradient as it approaches the minimum. Increasing the number of zs can speed up optimization by reducing the

gradient variance, but doing so also increases the number of forward passes required for each optimization step, so there

is a trade-off to study. We note that increasing the number of zs should be accompanied by a proportional scaling of the

learning rate, analogous to the linear scaling rule proposed in (Goyal et al., 2017) (theoretical justification can follow the

14

Fine-Tuning Language Models with Just Forward Passes

SDE technique (Li et al., 2021)). Table 7 shows no consistent benefit in one schedule over the other, and it demonstrates that

increasing the n in n-SPSA while fixing the number of forward passes allowed results in only marginal gains at best.

n Schedule SST-2 SNLI TREC

n = 1 Constant 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)

n = 4 Constant 89.5 (1.1) 68.6 (3.2) 62.3 (5.6)

n = 4 Linear 89.6 (1.4) 65.3 (6.4) 66.1 (5.5)

n = 16 Constant 90.4 (0.7) 67.0 (3.4) 62.8 (6.3)

n = 16 Linear 88.9 (1.2) 62.8 (5.9) 64.2 (5.3)

Table 7: Experiments using MeZO with different schedules for n. We scale the learning rate proportionally to the number of

z’s sampled.

D. MeZO Variants

There is a rich history of transferring ideas from first order optimization to enhance ZO algorithms. Below, we highlight

several variants of MeZO that did not achieve as high performance as the algorithm presented in Algorithm 1.

D.1. Memory-efficient n-SPSA

We highlight how MeZO can perform n-SPSA (Definition 1) efficiently for n > 1 in Algorithm 2. In particular, if sampling

n z vectors and averaging the projected gradients, we require storing 2n additional scalars: the random seeds and the

projected gradients. The same caveat about perturbing individual weights versus entire weight matrices still applies here

(see Section 2).

D.2. Augmenting MeZO with Gradient History

The n-SPSA algorithm merely provides a gradient estimate that can subsequently be used in place of the gradient in any

gradient-based optimizer. Many popular optimizers, such as Adam and SGD with momentum, require storing some historical

information about gradients (e.g., a moving average). This requirement causes such algorithms to require 2× or 3× the

memory that is needed for SGD.

However, one advantage of MeZO is that the gradient history can be recomputed at each step without requiring much

additional memory. In reference to Algorithm 1, note that the gradient only needs projected_grad and the random

seed s used to compute the perturbation z. projected_grad can be recomputed from the two perturbed losses `1 and

`2, so we need to only store 3 scalars per step to reproduce the gradient history (i.e., up to 3T scalars during training). This

is a substantial reduction in added memory overhead that is usually needed for using Adam or momentum instead of vanilla

SGD.

Table 17 illustrates that MeZO-Adam can sometimes improve the performance of MeZO, though each gradient step requires

additional computation (but no additional forward passes). We leave it to future work to investigate when MeZO-Adam may

be more useful than MeZO.

Experiment Hyperparameters Values

MeZO-Adam Batch size 64
Learning rate {1e−6, 1e−5, 1e−4, 5e−4, 1e−3}

ε 1e−3
Weight Decay 0

Table 8: The hyperparameter grid used for MeZO-Adam. For simplicity, we use a constant learning rate schedule.

15

Fine-Tuning Language Models with Just Forward Passes

Algorithm 2: MeZO with n > 1

Require: parameters θ ∈ R
d, loss L : Rd → R, step budget T , perturbation scale ε, batch size B learning rate schedule

{ηt}, n for n-SPSA estimate (Definition 1)

for t = 1, ..., T do

seeds, projected_grads← [] . Will each contain n scalars

for j = 1, ..., n do

Sample batch B ⊂ DB and random seed s
θ ← PerturbParameters(θ, ε, s)
`+ ← L(θ;B)
θ ← PerturbParameters(θ,−2ε, s)
`− ← L(θ;B)
θ ← PerturbParameters(θ, ε, s) . Reset parameters

projected_grad← (`+ − `−)/(2ε)
projected_grads[j]← projected_grad

seeds[j]← s
end

for j = 1, ..., n do
Reset random number generator with seed seeds[j]

for θi ∈ θ do
z ∼ N (0, 1)
θi ← θi − (ηt/n) ∗ projected_grads[j] ∗ z . Avg grad for z1, ..., zn

end

end

end

Subroutine PerturbParameters(θ, ε, s)
Reset random number generator with seed s . For sampling z
for θi ∈ θ do

z ∼ N (0, 1)
θi ← θi + εz . Modify parameters in place

end

return θ

16

Fine-Tuning Language Models with Just Forward Passes

D.3. Modifying the Variance of MeZO

Our theory in Section 4 sketches the well-known fact that the variance of the stochastic gradient estimate can impact

the rate of optimization. ZO methods can be combined with standard variance reduction techniques to possibly improve

optimization speed. For example, Liu et al. (2018) designed a variance reduced ZO algorithm, analogous to SVRG (Johnson

and Zhang, 2013), to improve the speed of convergence. Below, we show that several variance reduction methods (e.g.,

using the gradient norm) can be implemented in a memory-efficient manner. However, when controlling for the total budget

of forward passes (i.e., function queries), these methods are not as performant as MeZO. We nevertheless present them to

demonstrate the ease with which MeZO can be adapted, and we suggest these methods may be useful for optimizing more

complex objectives.

First, we define a general SPSA estimate that has the same expectation (i.e., the true gradient) but has a scaled variance.

Definition 5 (Variance-Modified SPSA). Given a matrix D = diag(d), the variance modified SPSA computes

∇̃L(θ;B) = L(θ + ε(d−1 � z);B)− L(θ − ε(d−1 � z);B)
2ε

(d� z)

where d ∈ R
d has nonzero entries and d−1 denotes the coordinatewise reciprocal.

The above SPSA variant is an unbiased estimator of the gradient, because E[∇̃L(θ;B)] = E[D−1zz>D∇L(θ;B)] =
E[∇L(θ;B)]. We will draw inspiration from classical methods (i.e., “control variates”) and choose d to be a block vector

with gradient norms or parameter norms (Wang et al., 2013). To select the parameter groups, we split the model by layer,

keeping the embedding and the head separate (i.e., RoBERTa-large has 24 + 2 = 26 parameter groups). It is straightforward

to measure the parameter norms without consuming additional memory. We can measure the gradient norms without

performing backpropagation, as shown below.

Proposition 1 (ZO Estimate of Gradient Norm of `th Layer). Define z` to have z ∼ N (0, 1) in each coordinate corre-

sponding to parameters in the `th layer and 0 everywhere else. Then, we can estimate the norm of the gradient of the loss

w.r.t. the `th layer ∇θ`
as

‖∇θ`
L(θ;B)‖2 ≈

∣∣∣∣
L(θ + εz`;B)− L(θ − εz`;B)

2ε

∣∣∣∣

As is true for SPSA, increasing the number of z`’s sampled for each value of ` and averaging the result reduces the variance

of the estimate. The rationale for this estimate is that for any vector v, Ez[(〈v, z〉)2] = ‖v‖22 for Gaussian z. It is clear that

this estimate can be computed in a memory efficient way, although it requires 2L forward passes to compute gradient norms

for L parameter groups.

We show the experimental results for modifying the variance below. We follow the ablation setting and use a fixed budget

of 10, 000 steps (Appendix C). Generally, using the gradient norm to reduce the variance substantially hurts performance

(Table 9). If we “cheat” and allow one backpropagation through the network to estimate the gradient norm, then we see that

reducing the variance using the gradient norm does not substantially hurt or help performance. Modifying the variance using

the parameter norm, analogous to layerwise adaptive rate methods, does not substantially impact the performance of MeZO

(Table 10).

Our observation is that decreasing the variance by setting d as the gradient norm does not improve optimization. This

empirical result agrees with the exposition in Section 4 that the straightforward variance analysis (which yields a dependence

on the number of parameters d) is not the best lens to study the rate of optimization when fine-tuning with MeZO. Our

effective rank view in Theorem 1 and Lemma 3 is likely a better characterization of fine-tuning dynamics. We leave it to

future work to explore if these methods can be useful for other more complex objectives.

D.4. Modifying the Expectation of MeZO

The above experiments show that modifying the variance of MeZO cannot consistently accelerate its convergence. However,

a simple modification of Definition 5 allows us to change the expectation of MeZO as well. This can be used to efficiently

estimate coordinate-wise normalized gradient-based optimizer updates (e.g., Adam).

17

Fine-Tuning Language Models with Just Forward Passes

Recompute d ZO estimate of d SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)

89.7 (0.8) 65.2 (5.2) 64.3 (6.4)

87.0 (2.5) 49.6 (9.2) 32.6 (7.7)

79.0 (10.3) 48.9 (2.2) 38.7 (7.5)

Table 9: Experiments modifying the variance of MeZO using d as the gradient norm (see Definition 5). We sometimes

recompute d at the start of each epoch or use Proposition 1 to estimate d without requiring backpropagation.

Recompute d SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)

89.2 (2.1) 65.4 (4.2) 64.8 (5.6)

88.2 (4.7) 65.2 (4.0) 64.7 (5.5)

Table 10: Experiments modifying the variance of MeZO using d as the parameter norm (see Definition 5). We sometimes

recompute d at the start of each epoch.

Definition 6 (Expectation-Modified SPSA). Given a matrix D = diag(d), the variance modified SPSA computes

∇̃L(θ;B) = L(θ + ε(d−1 � z);B)− L(θ − ε(d−1 � z);B)
2ε

z

where d ∈ R
d.

Now, we see that ∇̃L(θ;B) = E[D−1zz>∇L(θ;B)] so the SPSA estimate is no longer an unbiased estimator for ∇L(θ).
If we choose d to be the gradient norm, for example, then SPSA can estimate the normalized gradient. Concurrent work

in Tang et al. (2023) gives another ZO estimate of the normalized gradient while assuming access to only rankings of inputs

(instead of the noisy function evaluations available in our setting). We find that estimating the normalized gradient does not

perform as well as directly estimating the gradient (Table 11). Regardless, we present this algorithm as a way to highlight

that any coordinate-wise operation to the gradient can be applied in a memory-efficient manner.

Method SST-2 SNLI TREC

Baseline MeZO (Algorithm 1) 89.6 (1.2) 65.1 (6.2) 66.7 (6.2)

Estimate of normalized gradient (Definition 6) 88.0 (1.2) 60.0 (2.4) 44.0 (14.0)

Table 11: Experiments modifying the expectation of MeZO using d as the gradient norm (see Definition 6). We use the ZO

estimate of the gradient norm (Proposition 1).

E. Memory Analysis

The compute-memory tradeoff of backpropagation is complex to analyze. Griewank and Walther (2008) provides a rigorous

theoretical treatment of the problem. We empirically measure the memory consumption of different methods for commonly

used large language models, but here we hope to provide a more rigorous comparison of different gradient estimation

algorithms, independent of the software used to implement them. Below, we summarize some key points that may help

readers to understand how the MeZO compute-memory tradeoff compares to backpropagation.

Given a network, the first step to perform backpropagation is to decompose the model into easily differentiable blocks. We

note that this decomposition is not unique. For each block, one can choose to cache the resulting output during the forward

pass (thereby consuming memory) or instead recompute the output when it is needed (thereby consuming compute). The

below proposition, adapted from Rule 21 in Griewank and Walther (2008), captures this tradeoff.

Proposition 2 (Time-Memory Tradeoff for Backpropagation, Griewank and Walther (2008)). Consider a network containing

N bits. For any time-memory tradeoff hyperparameter c = O(1), there exists a backpropagation algorithm that runs in time

O(cN) and consumes memory proportional to O(N1/c).

18

Fine-Tuning Language Models with Just Forward Passes

Grimm et al. (1996) also gave sharp bounds for the memory-time product. Note that the popular gradient checkpointing (Chen

et al., 2016) method allows one to tune c with limited precision (i.e., one cannot always further split a differentiable block

and observe savings). Experiments in Chen et al. (2016) choose c = 2 to achieve O(
√
N) memory while consuming

O(2N) computation. In the extreme case, gradient checkpointing allows one to use O(N logN) computation and O(logN)
memory.

MeZO always consumes 2N compute and O(1) memory, so it is more compute-efficient at at the same memory cost as

gradient checkpointing. Our exposition in Section 2 discusses that we can perturb groups of parameters together to save

time while consuming additional memory. However, we do not consider that variant here because it is somewhere in the

middle of the compute-memory pareto curve, where we cannot reason about what backpropagation will do. In particular,

MeZO can split groups differently than backpropagation can, since MeZO does not require that each parameter group is

easily differentiable, so it is hard to compare the two algorithms along the entire pareto curve.

We also compare backpropagation for the c = 1 case (i.e., storing everything during the forward pass). When storing

everything, backpropagation consumes O(N) time and O(N) memory. Hence, SPSA consumes slightly more time and

substantially less memory than backpropagation at this end of the tradeoff.

Unlike gradient checkpointing, MeZO computes only an approximation of the gradient. This approximation is only useful

for fine-tuning with a prompt, making it less broadly useful than gradient checkpointing. There are other methods that

approximate the gradient with less memory consumption than gradient checkpointing (see the Related Work section), though

it is unclear how the memory consumption of those algorithms compare to MeZO.

F. Experiment setup

F.1. Datasets

For RoBERTa-large, we consider classification datasets: SST-2 (Socher et al., 2013), SST-5 (Socher et al., 2013),

TREC (Voorhees and Tice, 2000), MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015), and RTE (Dagan et al., 2005;

Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009). We follow Malladi et al. (2022) in limiting the

test set to 1, 000 examples for fast iteration. For training and validation, we have two settings: k = 16 and k = 512, which

mean that we have 16 or 512 examples per class for both training and validation.

For OPT experiments, we consider the SuperGLUE dataset collection (Wang et al., 2019), including: BoolQ (Clark et al.,

2019), CB (De Marneffe et al., 2019), COPA (Roemmele et al., 2011), MultiRC (Khashabi et al., 2018), ReCoRD (Zhang

et al., 2018), RTE (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), WiC (Pilehvar

and Camacho-Collados, 2019), and WSC (Levesque et al., 2012). We also include SST-2 (Socher et al., 2013) and two

question answering (QA) datasets, SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019). We randomly sample

1,000 examples for training, 500 examples for validation, and 1,000 examples for testing.

F.2. Prompts

Table 12 shows the set of downstream tasks and prompts with which we fine-tune RoBERTa-large, which are adapted from

(Gao et al., 2021).

Dataset C Type Prompt Label words

SST-2 2 sentiment cls. <S1> It was [MASK] . {great, terrible}
SST-5 5 sentiment cls. <S1> It was [MASK] . {great, good, okay, bad, terrible}
TREC 6 topic cls. [MASK] : <S1> {Description, Expression, Entity,

Human, Location, Number}
MNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
SNLI 3 NLI <S1> ? [MASK] , <S2> {Yes, Maybe, No}
RTE 2 NLI <S1> ? [MASK] , <S2> {Yes, No}

Table 12: The prompts of the datasets we used in our RoBERTa-large experiments (Table 17 and Figure 4). The prompts are

adapted from (Gao et al., 2021) and include a template and a set of label words that can fill in the [MASK]token. <S1> and

<S2> refer to the first and the second (if any) input sentence.

Table 13 demonstrates the prompts we use for OPT. Note that in OPT experiments we have three types of tasks: classification,

19

Fine-Tuning Language Models with Just Forward Passes

multiple-choice, and question answering. Prompts are adopted from GPT-3 (Brown et al., 2020) and PromptSource with

minor changes (Bach et al., 2022).

Dataset Type Prompt

SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB cls. Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or Maybe?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>

In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sent1>

<sent2>

Yes/No
MultiRC cls. <paragraph>

Question: <question>
I found this answer "<answer". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace("@placeholder", <candidate>)

SQuAD QA Title: <title>
Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

Table 13: The prompts of the datasets we used in our OPT experiments. There are three types of tasks: classification

(cls.), multiple-choice (mch.), and question answering (QA). Prompts are adopted from GPT-3 (Brown et al., 2020) and

PromptSource (Bach et al., 2022) with minor changes. <text> represents input from the dataset and Yes represents label

words. For inference on multiple choice tasks, we put in different candidates in the prompt and calculate the average

log-likelihood for each candidate, and choose the candidate with the highest score. For inference on QA tasks, we use

greedy decoding to generate the answer.

F.3. Hyperparameters

We use the hyperparameters in Table 14 for MeZO experiments on RoBERTa-large (Table 17 and Figure 4). Experiments in

Appendix C informed the grid; in particular, the choice of ε seemed to not significantly impact performance, and using a

larger batch size consistently yielded faster optimization. We use the hyperparameters in Table 15 for MeZO experiments on

OPT.

Regarding learning rate scheduling and early stopping, we use linear learning scheduling for all fine-tuning with backpropa-

gation experiments and constant learning rate for all MeZO experiments. For RoBERTa experiments, we evaluate the model

on validation sets every 1/10 of total training steps and save the best validation checkpoint. All FT experiments use 1K steps

and MeZO experiments use 100K steps. For OPT experiments, we evaluate the model on validation sets every 1/5 of the

total training steps and save the best validation checkpoint. All FT experiments train for 5 epochs and all MeZO experiments

use 20K steps. Note that FT experiments mostly converge within 5 epochs but we observe that MeZO performance can still

improve with more training steps.

20

Fine-Tuning Language Models with Just Forward Passes

Experiment Hyperparameters Values

MeZO Batch size 64
Learning rate {1e−7, 1e−6, 1e−5}

ε 1e−3
Weight Decay 0

MeZO (prefix) Batch size 64
Learning rate {1e−2, 5e−3, 1e−3}

ε 1e−1
Weight Decay 0

prefix tokens 5

MeZO (LoRA) Batch size 64
Learning rate {1e−5, 5e−5, 1e−4}

ε 1e−3
Weight Decay 0.1

(r, α) (8, 16)

FT with Adam Batch size (k = 16) {2, 4, 8}
Batch size (k = 512) {8, 16, 32}

Learning Rates {1e−5, 3e−5, 5e−5}
Weight Decay 0

FT with SGD Batch size (k = 16) {2, 4, 8}
Batch size (k = 512) {8, 16, 32}

Learning Rates {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}
Weight Decay 0

FT (prefix) Batch size {8, 16, 32}
Learning Rates {1e−2, 3e−2, 5e−2}
Weight Decay 0

prefix tokens 5

FT (LoRA) Batch size {4, 8, 16}
Learning Rates {1e−4, 3e−4, 5e−4}

(r, α) (8, 16)

Table 14: The hyperparameter grids used for RoBERTa-large experiments. MeZO uses a constant learning rate schedule, and

FT uses linear scheduling. All FT experiments use 1K steps and MeZO experiments use 100K steps. We check validation

performance every 1/10 total training steps.

F.4. Modeling and implementation

For RoBERTa experiments, we follow (Gao et al., 2021) for the prompt-based fine-tuning paradigm for masked language

models. Please refer to the original paper for more details.

In OPT experiments, for classification tasks, we train the model similar to (Gao et al., 2021), i.e., we take the logits

corresponding to the label words and apply cross entropy loss on them; for multiple choice tasks and generation tasks (QA),

we only keep the correct candidate and use teacher forcing to train on the correct examples. We only keep the loss on tokens

in the candidate part and exclude the prompt part.

For OPT inference on classification and multiple-choice tasks, we use the model to get the average log-likelihood (by tokens)

of all the candidates/label words, and predict the one with the highest average log-likelihood. For generation tasks, we use

greedy decoding to generate the answer.

For in-context learning, we use 32 examples in the context. We also try filling in as many examples as possible in the context

but does not improve performance and sometimes lead to unstable results. Thus we keep the 32-example results.

For linear probing of classification tasks, we take the output feature and use scipy package to train a linear classifier.

For multiple-choice tasks and generation tasks, we found that this leads to poor results since the output space is the whole

vocabulary; instead, we do head-tuning, where the whole model is fixed except for the LM projection head. We use a batch

size of 8 and a learning rate of {1e−4 5e−4}, and train the head for 5 epochs.

For experiments on 30B and 66B OPT models, we largely follow the OPT hyperparameters except that we do not evaluate

21

Fine-Tuning Language Models with Just Forward Passes

Experiment Hyperparameters Values

MeZO Batch size 16
Learning rate {1e−6, 1e−7}

ε 1e−3

MeZO (prefix) Batch size 16
Learning rate {1e−2, 1e−3}

ε 1e−1
prefix tokens 5

MeZO (LoRA) Batch size 16
Learning rate {1e−4, 5e−5}

ε 1e−2
(r, α) (8, 16)

FT with Adam Batch size 8
Learning Rates {1e−5, 5e−5, 8e−5}

Table 15: The hyperparameter grids used for OPT experiments. All weight decay is set to 0. FT uses 5 epochs and linear

scheduled learning rates and MeZO uses 20K steps and constant learning rates. We check validation performance and save

the best checkpoint every 1/5 total training steps.

the intermediate validation performance and directly use the last checkpoint for evaluation, due to the high storage cost of

intermediate checkpoints of large models.

F.5. Parameter-efficient fine-tuning

Fine-tuning and storing a copy of the large language model for each downstream task is expensive. Parameter-efficient

fine-tuning (PEFT) techniques alleviate this problem: instead of tuning all model parameters, PEFT only tunes a small

number of additional parameters (usually less than 1%) and can often achieve comparable or better performance (Li and

Liang, 2021; Lester et al., 2021; Ding et al., 2022). The ZO optimizer is compatible with PEFT methods, since ZO can

operate on any subset of the model parameters. We are interested in the following two common PEFT methods, designed for

transformers (Vaswani et al., 2017).

LoRA (Hu et al., 2022) adds a tunable low-rank delta to a linear layer during fine-tuning. Suppose a linear layer performed

Wx+ b during pre-training with W ∈ R
m×n. When fine-tuning, LoRA introduces two smaller matrices A ∈ R

m×r and

B ∈ R
r×n such that r � min(m,n). The linear layer is then computed as

(
W +

α

r
AB

)
x+ b (5)

where r and α are hyperparameters. A and B are trained on the downstream task while W is frozen at its pre-trained value.

In transformers, this modification to the linear layer is applied to the query and value operations of each attention layer.

Empirically, r can be very small, so the number of trainable parameters during fine-tuning is small. We choose r = 8 and

α = 16.

Prefix-tuning (Li and Liang, 2021) adds a prefix of m tunable representations at each layer and freezes the rest of the model.

The representations are added as new keys and values and treated as additional context during the attention operation. We

initialize these tunable representations by randomly sampling tokens from the vocabulary and passing them through the

LLM to get their keys and values at different attention layers. We found this crucial to make prefix tuning stable with MeZO,

and this trick additionally boosts the performance of prefix tuning with backpropagation, as shown in Table 16. We also

tried the reparameterization trick in (Li and Liang, 2021), which does not help MeZO training. In our experiments, we find

m = 5 to be sufficient to achieve good performance on most tasks.

We also show that MeZO is compatible with parameter-efficient fine-tuning methods, such as prefix tuning and LoRA.

Surprisingly, the performance of MeZO does not improve substantially when tuning much fewer parameters, as one

might expect from classical analyses (see Section 4). Accordingly, our theoretical analysis in Section 4 suggests that the

convergence rate of ZO-SGD does not depend on the parameter dimension during fine-tuning.

22

Fine-Tuning Language Models with Just Forward Passes

Task SST-2 SST-5 SNLI MNLI RTE TREC

Type —— sentiment —— —— natural language inference —— — topic —

FT (prefix, random init) 90.7 (1.7) 47.2 (2.0) 70.7 (2.8) 62.6 (3.3) 63.5 (4.4) 83.4 (4.7)

FT (prefix, real act init) 91.9 (1.0) 47.7 (1.1) 77.2 (1.3) 66.5 (2.5) 66.6 (2.0) 85.7 (1.3)

Table 16: Prefix-tuning ablations. We compare randomly-initialized prefixes and real word activation prefixes. Using real

word activations significantly outperforms random initialization.

F.6. Training with non-differentiable objectives

The experiments maximizing the accuracy of a RoBERTa-large model were all conducted using the same grid as MeZO in

Table 14.

For OPT experiments on SQuAD with F1 as objective, we use a batch size of 16. For MeZO, we use a learning rate of

{1e−6, 5e−6, 1e−5} and ε = 1e−3. For MeZO (prefix), we use a learning rate of {1e−1, 5e−2, 1e−2} and ε = 1e−1.

F.7. Memory profiling

In memory profiling, we use standard implementation with Huggingface’s transformers (Wolf et al., 2020) package.

We did not turn on any advance memory-saving options, e.g., gradient checkpointing. We set the per-device batch size

as 1 to test the minimum hardware requirement to run the model with specific optimization algorithms. For multi-GPU

backpropagation, we use fully sharded data parallel (FSDP) (FairScale authors, 2021) provided by PyTorch (Paszke

et al., 2019). For multi-GPU MeZO, we use transformers multi-GPU inference of large models. We use Nvidia’s

nvidia-smi command to monitor the GPU memory usage. We call a run “successful” if there is no out of memory error

from GPUs for at least 100 steps.

G. More experiment results

G.1. RoBERTa-large experiments

Table 17 contains the detailed numbers corresponding to Figure 4 and also reports the performance of MeZO-Adam.

LP-MeZO We also compare MeZO to performing linear probing and then subsequently performing fine-tuning via MeZO,

following the analogous suggestion for fine-tuning in Kumar et al. (2022). We use the MeZO grid described in Table 14.

Note that the linear probing checkpoints used here have early stopping, unlike the ones reported in Table 17. We heuristically

implement early stopping by limiting the number of iterations (from 5000 to 1000) and increasing the convergence tolerance

(from 1e−4 to 0.01) in the scipy solver. Experiments on a few settings show that LP-MeZO can sometimes improve

performance without increasing the memory consumption (see Table 18). However, sometimes, linear probing first can

severely hurt performance.

G.2. OPT experiments

Table 19 present the full results of OPT-30B and OPT-66B, with detailed MeZO numbers.

G.3. Convergence of MeZO with full-parameter and PEFT

We demonstrate the convergence rate of MeZO, MeZO (LoRA) and MeZO (prefix) on SST-2 and SNLI for the first 5,000

steps in Figures 5. We see that despite the different number of parameters they optimize, MeZO demonstrates similar

training speed on full parameter and PEFT. This agrees with our theory in Section 4, which shows that MeZO’s optimization

speed is independent of the number of parameters.

G.4. ZO vs BBTv2

We compare ZO with BBTv2 (Sun et al., 2022a) on mutually assessed tasks in Table 20. ZO significantly outperform BBTv2.

Furthermore, BBTv2 is limited to optimize in low-dimensional space and requires prefix-tuning and a down-projection

23

Fine-Tuning Language Models with Just Forward Passes

Task SST-2 SST-5 SNLI MNLI RTE TREC

Type —— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Gradient-free methods: k = 16

LP 76.0 (2.8) 40.3 (1.9) 66.0 (2.7) 56.5 (2.5) 59.4 (5.3) 51.3 (5.5)

MeZO 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 58.7 (2.5) 64.0 (3.3) 76.9 (2.7)

MeZO (LoRA) 91.4 (0.9) 43.0 (1.6) 69.7 (6.0) 64.0 (2.5) 64.9 (3.6) 73.1 (6.5)

MeZO (prefix) 90.8 (1.7) 45.8 (2.0) 71.6 (2.5) 63.4 (1.8) 65.4 (3.9) 80.3 (3.6)

MeZO-Adam 90.4 (1.4) 45.4 (1.5) 74.1 (2.7) 64.3 (0.8)† 59.2 (11.1)† 78.3 (1.4)

Gradient-based methods: k = 16

FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 70.0 (2.3) 66.4 (7.2) 85.0 (2.5)

FT (LoRA) 91.4 (1.7) 46.7 (1.1) 74.9 (4.3) 67.7 (1.4) 66.1 (3.5) 82.7 (4.1)

FT (prefix) 91.9 (1.0) 47.7 (1.1) 77.2 (1.3) 66.5 (2.5) 66.6 (2.0) 85.7 (1.3)

Gradient-free methods: k = 512

LP 91.3 (0.5) 51.7 (0.5) 80.9 (1.0) 71.5 (1.1) 73.1 (1.5) 89.4 (0.5)

MeZO 93.3 (0.7) 53.2 (1.4) 83.0 (1.0) 78.3 (0.5) 78.6 (2.0) 94.3 (1.3)

MeZO (LoRA) 93.4 (0.4) 52.4 (0.8) 84.0 (0.8) 77.9 (0.6) 77.6 (1.3) 95.0 (0.7)

MeZO (prefix) 93.3 (0.1) 53.6 (0.5) 84.8 (1.1) 79.8 (1.2) 77.2 (0.8) 94.4 (0.7)

MeZO-Adam 93.3 (0.6) 53.9 (0.8) 85.3 (0.8) 79.6 (0.4) 79.2 (1.2) 95.1 (0.3)

Gradient-based methods: k = 512

FT 93.9 (0.7) 55.9 (0.9) 88.7 (0.8) 84.4 (0.8) 82.7 (1.4) 97.3 (0.2)

FT (LoRA) 94.2 (0.2) 55.3 (0.7) 88.3 (0.5) 83.9 (0.6) 83.2 (1.3) 97.0 (0.3)

FT (prefix) 93.7 (0.3) 54.6 (0.7) 88.3 (0.7) 83.3 (0.5) 82.5 (0.8) 97.4 (0.2)

Table 17: Experiments on RoBERTa-large (350M parameters). LP: Linear probing; ZO, ZO (LoRA), and ZO (prefix): our

memory-efficient ZO-SGD (Section 2.1) with full-parameter tuning, LoRA, and prefix-tuning respectively; FT: fine-tuning

with Adam. All reported numbers are averaged accuracy (standard deviation). All experiments use prompts (Appendix F.2).

ZO outperforms zero-shot and LP by a large margin and approaches FT performance with much less memory cost.

24

Fine-Tuning Language Models with Just Forward Passes

Task SST-2 SST-5 SNLI TREC

Zero-shot 79.0 35.5 50.2 32.0
FT 91.9 (1.8) 47.5 (1.9) 77.5 (2.6) 85.0 (2.5)

MeZO 90.5 (1.2) 45.5 (2.0) 68.5 (3.9) 76.9 (2.7)
LP-MeZO 91.4 (1.4) 41.9 (3.3) 70.7 (3.4) 54.0 (4.5)

Table 18: Performing linear probing before fine-tuning with MeZO, as suggested previously (Kumar et al., 2022), can

sometimes improve performance without increasing the memory overhead. We use k = 16 for these experiments.

Task SST-2 RTE BoolQ WSC WIC SQuAD

30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5

30B ICL 81.9 66.8 66.2 56.7 51.3 78.0

30B MeZO 90.6 66.4 67.2 63.5 56.3 85.2

30B MeZO (prefix) 87.5 72.6 73.5 55.8 59.1 83.9

66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1

66B ICL 89.3 65.3 62.8 52.9 54.9 81.3

66B MeZO 91.2 65.7 72.7 63.5 58.9 *

66B MeZO (prefix) 93.6 66.4 73.7 57.7 58.6 85.0

Table 19: Experiments on OPT-30B and OPT-66B (with 1,000 examples). *: MeZO requires further tuning to successfully

optimize.

to reduce the number of optimized parameters. BBTv2 also employs an iterative scheme which only optimizes one layer

at a time. In contrast, ZO works with both full-parameter tuning and PEFT, as shown in our experiments (Section 3) and

theory (Section 4).

Task SST-2 SNLI RTE

Task type —— sentiment —— – natural language inference –

Zero-shot 79.0 50.2 51.4

BBTv2 90.3 (1.7) 57.3 (2.3) 56.7 (3.3)

MeZO 90.5 (1.2) 68.5 (3.9) 64.0 (3.3)

MeZO (LoRA) 91.4 (0.9) 69.7 (6.0) 64.9 (3.6)

MeZO (prefix) 90.8 (1.7) 71.6 (2.5) 65.4 (3.9)

Table 20: ZO vs BBTv2 with RoBERTa-large. BBTv2 performance is from Sun et al. (2022a).

G.5. Memory profiling

We show the detailed numbers of memory profiling results Table 21, which also corresponds to Figure 2. For how we profile

the memory usage, please refer to Appendix F.7.

G.6. Wallclock time efficiency

In this section, we measure the wallclock time efficiency of MeZO compared to full-parameter FT, with respect to different

model sizes. We conduct our experiments with 80GB A100s connected by NVLink and InfiniteBand, which are state-

of-the-art solutions for distributed training. As shown in Table 22, on the MultiRC datasets, training with MeZO brings

7.74× speedup per step compared to full-parameter FT on a 30B model. This is due to (1) MeZO does not require costly

backpropagation and (2) MeZO requires fewer GPUs and reduces the multi-GPU communication overhead.

25

Fine-Tuning Language Models with Just Forward Passes

0 500 1000 1500 2000 2500 3000
Steps

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Lo

ss
SST-2

MeZO Train
MeZO (LoRA) Train
MeZO (prefix) Train

0 500 1000 1500 2000 2500 3000
Steps

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

SNLI
MeZO Train
MeZO (LoRA) Train
MeZO (prefix) Train

Figure 5: MeZO does not optimize significantly faster when tuning fewer parameters, agreeing with our theory in Section 4.

Method Zero-shot / MeZO ICL Prefix FT Full-parameter FT

1.3B 1xA100 (4GB) 1xA100 (6GB) 1xA100 (19GB) 1xA100 (27GB)
2.7B 1xA100 (7GB) 1xA100 (8GB) 1xA100 (29GB) 1xA100 (55GB)
6.7B 1xA100 (14GB) 1xA100 (16GB) 1xA100 (46GB) 2xA100 (156GB)
13B 1xA100 (26GB) 1xA100 (29GB) 2xA100 (158GB) 4xA100 (316GB)
30B 1xA100 (58GB) 1xA100 (62GB) 4xA100 (315GB) 8xA100 (633GB)
66B 2xA100 (128GB) 2xA100 (134GB) 8xA100 16xA100

Table 21: Memory usage on the MultiRC (avg #tokens=400) dataset.

Note that even though MeZO has better per-step wallclock efficiency, it requires significantly more steps than standard FT.

Taking our OPT-30B experiments as an example: MeZO takes 32× more steps than standard FT, while FT takes 8× more

GPUs and 7.74× more time per step. Overall, MeZO requires only half as many GPU-hours as FT for a 30B model.

Method MeZO Full-parameter FT

13B 1× (2.72s) 2.52×
30B 1× (5.90s) 7.74×

Table 22: Wallclock time per step of different training methods. It is measured on 80GB A100s with NVLink and

InfiniteBand connections. The wallclock time is averaged over 100 steps. It is measured on the MultiRC task with the OPT

family. 13B and 30B OPT require 1 A100 with MeZO and 4 and 8 A100s with FT respectively.

26

Fine-Tuning Language Models with Just Forward Passes

H. Proofs

Proof of Lemma 2. We first note that in the ε→ 0 limit, we have

∇̂L(θ;B) = 1

Bn

∑

(x,y)∈B

∑

i∈[n]

ziz
T
i ∇L(θ; {(x,y)}).

Taking expectation over the batch B and the zi, we have E[∇̂L(θ;B)] = ∇L(θ), so ∇̂L(θ;B) is an unbiased estimator of

the gradient.

Computing the second moment, we get

E

[
∇̂L(θ;B)∇̂L(θ;B)T

]

=
1

B2n2

∑

(x1,y1),(x2,y2)∈B

∑

i,j∈[n]

E
[
(ziz

T
i ∇L(θ; {(x1,y1)}))(zjzT

j ∇L(θ; {(x2,y2)}))T
]

Let u,v be two arbitrary vectors. We have that

Ezi,zj
[ziz

T
i uv

Tzjz
T
j] = uvT

when i 6= j, and

Ezi
[ziz

T
i uv

Tziz
T
i] = Ez[z

⊗4](u,v)

=
3d

d+ 2
Sym(I⊗2)(u,v)

=
d

d+ 2
· uTv · I +

2d

d+ 2
· uvT .

Therefore

E

[
∇̂L(θ;B)∇̂L(θ;B)T

]

=
1

B2

∑

(x1,y1),(x2,y2)∈B

(
n− 1

n
+

2d

n(d+ 2)

)
E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]

+
d

n(d+ 2)
· E

[
L(θ; {(x1,y1)})TL(θ; {(x2,y2)})

]
I.

Next, note that when (x1,y1) 6= (x2,y2), we have

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T ,

and when (x1,y1) = (x2,y2) we have

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T +ΣMB(θ).

Therefore

1

B2

∑

(x1,y1),(x2,y2)∈B

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T +

1

B
Σ(θ),

and plugging this yields

E

[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

(
1 +

d− 2

n(d+ 2)

)
·
(
∇L(θ)∇L(θ)T +

1

B
Σ(θ)

)

+
d

n(d+ 2)
I ·

(
‖∇L(θ)‖2 + 1

B
tr(Σ(θ))

)
.

(6)

27

Fine-Tuning Language Models with Just Forward Passes

Finally, we have

E

[∥∥∥∇̂L(θ;B)
∥∥∥
2
]
=

(
1 +

d2 + d− 2

n(d+ 2)

)
·
(
‖∇L(θ)‖2 + 1

B
tr(Σ(θ))

)

=
d+ n− 1

n
· E

[
‖∇L(θ;B)‖2

]
.

Proof of Theorem 1. By Taylor’s theorem with remainder, we have that

L(θt+1) = L(θt) +∇L(θt)T (θt+1 − θt)

+

∫ 1

0

λ(θt+1 − θt)
T∇2L(λθt+1 + (1− λ)θt)(θt+1 − θt)

T dλ

Next, note that

‖θt+1 − θt‖ = η
∥∥∥∇̂L(θ;B)

∥∥∥ ≤ η
√
d · 1

Bn

∑∣∣zT
i ∇L(θ; {(x,y)})

∣∣ ≤ ηdG(θt).

Therefore ‖λθt+1 + (1− λ)θt − θt‖ ≤ ηdG(θt). By the assumption we have the upper bound∇2L(λθt+1+(1−λ)θt) �
H(θt), and thus

L(θt+1) ≤ L(θt) +∇L(θt)T (θt+1 − θt) + (θt+1 − θt)
TH(θt)(θt+1 − θt)

= L(θt)− η∇L(θt)T ∇̂L(θt;B) +
1

2
η2∇̂L(θt;B)TH(θt)∇̂L(θt;B).

Taking the conditional expectation with respect to θt and plugging in (8), the formula for the covariance of our ZO estimate

∇̂L(θt;B), yields

E[L(θt+1) | θt] ≤ L(θt)− η ‖∇L(θt)‖2 +
η2

2

〈
H(θt),E

[
∇̂L(θ;B)∇̂L(θ;B)T

]〉

= L(θt)− η ‖∇L(θt)‖2 +
η2

2
· d

n(d+ 2)

(
‖∇L(θt)‖2 +

1

B
tr(Σ(θt))

)
tr(H(θt))

+
η2

2

(
1 +

d− 2

n(d+ 2)

)(
∇L(θt)TH(θt)∇L(θt) +

1

B
〈Σ(θt),H(θt)〉

)

By assumption, the Hessian upper bound H(θt) satisfies ‖H(θt)‖op ≤ ` and tr(H(θt)) ≤ `r. Thus

E[L(θt+1) | θt] ≤ L(θt)− η ‖∇L(θt)‖2 +
η2`

2
·
(
dr + d− 2

n(d+ 2)
+ 1

)
·
(
‖∇L(θt)‖2 +

1

B
tr(Σ(θt))

)

= L(θt)− η ‖∇L(θt)‖2 +
η2`

2
·
(
dr + d− 2

n(d+ 2)
+ 1

)
· E

[
‖∇L(θt;B)‖2

]
,

as desired.

H.1. Proofs of Global Convergence

Lemma 4. Let L(θ) be µ-PL and let there exist α such that tr(Σ(θ)) ≤ α(L(θ)− L∗) for all θ. Then after

t = O

((
`

µ
+

`α

µ2B

)
log
L(θ0)− L∗

ε

)

iterations of SGD we have E[L(θt)] ≤ L∗ + ε.

28

Fine-Tuning Language Models with Just Forward Passes

Proof of Lemma 4. The descent lemma for SGD yields

E[L(θt+1) | θt]− L(θt) ≤ −η ‖∇L(θt)‖2 +
1

2
η2` · E[‖∇L(θt;B)‖2].

Plugging in E[‖∇L(θt;B)‖2] = ‖∇L(θt)‖2 + 1
B tr(Σ(θt)) and selecting a learning rate η ≤ 1

` yields

E[L(θt+1) | θt] ≤ L(θt)−
η

2
‖∇L(θt)‖2 +

η2`

2B
tr(Σ(θt))

Since L is µ-PL, we get

E[L(θt+1) | θt] ≤ L(θt)− ηµ(L(θt)− L∗) +
η2`

2B
tr(Σ(θt)).

Since tr(Σ(θt)) ≤ α(L(θt)− L∗), we have

E[L(θt+1) | θt] ≤ L(θt)− ηµ(L(θt)− L∗) +
η2`α

2B
(L(θt)− L∗).

Altogether,

E[L(θt+1)]− L∗ ≤
(
1− ηµ+

η2`α

2B

)
(E[L(θt)]− L∗)

Choosing η = min(1` ,
µB
`α), we obtain

E[L(θt+1)]− L∗ ≤
(
1−min(

µ

2`
,
µ2B

2`α
)

)
(E[L(θt)]− L∗).

Therefore we reach a solution with E[L(θt)]− L∗ ≤ ε after

t = max

(
2`

µ
,
2`α

µ2B

)
log

(L(θ0)− L∗

ε

)
= O

((
`

µ
+

`α

µ2B

)
log
L(θ0)− L∗

ε

)

iterations.

Proof of Lemma 3. By Corollary 1, ZO-SGD with ηZO = γ−1ηSGD yields

E[L(θt+1) | θt]− L(θt) ≤
1

γ
·
[
−ηSGD ‖∇L(θt)‖2 +

1

2
η2SGD` · E[‖∇L(θ;B)‖2]

]
.

As in the proof for SGD, choosing ηSGD ≤ 1
` yields

E[L(θt+1) | θt]− L(θt) ≤ γ−1 ·
[
−ηSGD

2
‖∇L(θt)‖2 +

η2SGD`

2B
tr(Σ(θt))

]
.

Therefore under µ-PL and the tr(Σ(θt)) ≤ α(L(θt)− L∗) assumption we obtain

E[L(θt+1)]− E[L(θt)] ≤ γ−1 ·
[
−ηSGDµ+

η2SGD`α

2B

]
· (E[L(θt)]− L∗)

=⇒ E[L(θt+1)]− L∗ ≤
(
1− γ−1

(
ηSGDµ−

η2SGD`α

2B

))
(E[L(θt)]− L∗).

Choosing ηSGD = min(1` ,
µB
`α) yields

E[L(θt+1)]− L∗ ≤
(
1− γ−1 ·min(

µ

2`
,
µ2B

2`α
)

)
(E[L(θt)]− L∗).

Therefore we reach a solution with E[L(θt)]− L∗ ≤ ε after

t = γ ·max

(
2`

µ
,
2`α

µ2B

)
log

(L(θ0)− L∗

ε

)
= O

((r

n
+ 1

)
·
(
`

µ
+

`α

µ2B

)
log
L(θ0)− L∗

ε

)

iterations.

29

Fine-Tuning Language Models with Just Forward Passes

H.1.1. VERIFICATION OF ASSUMPTIONS

We show that the tr(Σ(θt)) ≤ α(L(θt)− L∗) assumption holds for certain losses.

First, consider optimizing the model f(x;θ) with square loss, so that

L(θ) = 1

N

∑

i∈[N]

(f(xi;θ)− yi)
2.

One then has that

Σ(θ) =
2

N

∑

i∈[N]

(f(xi;θ)− yi)
2∇f(xi;θ)∇f(xi;θ)

T −∇L(θ)∇L(θ)T .

Therefore

tr(Σ(θ)) ≤ 2

N

∑

i∈[N]

(f(xi;θ)− yi)
2 ‖∇f(xi;θ)‖2

≤ 2L(θ)
∑

i∈[N]

‖∇f(xi;θ)‖2 .

Assume that the data can be interpolated, i.e L∗ = 0. If the function is L-Lipschitz, i.e ‖∇f(x;θ)‖ ≤ L, then the condition

holds with α = 2NL2. If we are in the kernel regime, i.e f(xi;θ) = φ(xi)
Tθ for some feature map φ, then

∇2L(θ) = 2

N

∑

i∈[N]

f(xi;θ)∇f(xi;θ)
T .

Thus

tr(Σ(θ)) ≤ N tr(∇2L(θ)) · L(θ) ≤ N`r · L(θ).

So the condition holds for α = N`r.

Next, consider the cross entropy loss function, i.e

L(θ) = 1

N

∑

i∈[N]

exp(−yif(xi;θ)).

One then has that

Σ(θ) =
1

N

∑

i∈[N]

exp(−2yif(xi;θ))y
2
i∇f(xi;θ)∇f(xi;θ)

T − L(θ)L(θ)T ,

Assume that the targets yi are bounded in [−1, 1] (which is true for binary classification tasks), and that L∗ = 0 (which can

be achieved if |f(x;θ)| can be sent to∞) we have that

tr(Σ(θ)) ≤ 1

N

∑

i∈[N]

exp(−2yif(xi;θ)) ‖∇f(xi;θ)‖2 .

In the kernel regime, f(xi;θ) = φ(xi)
Tθ, and thus

∇2L(θ) = 1

N

∑

i∈[N]

exp(−yif(xi;θ))∇f(xi;θ)∇f(xi;θ)
T .

Therefore

tr(Σ(θ)) ≤ N tr(∇2L(θ)) · L(θ) ≤ N`r · L(θ).

Therefore the condition holds with α = N`r as well.

30

Fine-Tuning Language Models with Just Forward Passes

H.2. Proofs for Gaussian perturbations

The first lemma computes the second moment of the covariance estimate ∇̂L(θ;B) when z is drawn N (0, I).

Lemma 5. Let zi ∼ N (0, I) i.i.d. Then

E

[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

(
1 +

1

n

)
·
(
∇L(θ)∇L(θ)T +

1

B
ΣMB(θ)

)

+
1

n
I ·

(
‖∇L(θ)‖2 + 1

B
tr(ΣMB(θ))

)
.

(7)

Proof. As in the proof of Lemma 2, we have that in the ε→ 0 limit

E

[
∇̂L(θ;B)∇̂L(θ;B)T

]

=
1

B2n2

∑

(x1,y1),(x2,y2)∈B

∑

i,j∈[n]

E
[
(ziz

T
i ∇L(θ; {(x1,y1)}))(zjzT

j ∇L(θ; {(x2,y2)}))T
]

For vectors u,v, we have that

Ezi,zj
[ziz

T
i uv

Tzjz
T
j] = uvT

when i 6= j, and

Ezi
[ziz

T
i uv

Tziz
T
i] = Ez[z

⊗4](u,v) = 3Sym(I⊗2)(u,v) = uTv · I + 2uvT .

Therefore

E

[
∇̂L(θ;B)∇̂L(θ;B)T

]

=
1

B2

∑

(x1,y1),(x2,y2)∈B

(
n− 1

n
+

2

n

)
E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]

+
1

n
· E

[
L(θ; {(x1,y1)})TL(θ; {(x2,y2)})

]
I.

In the proof of Lemma 2 we showed that

1

B2

∑

(x1,y1),(x2,y2)∈B

E
[
L(θ; {(x1,y1)})L(θ; {(x2,y2)})T

]
= ∇L(θ)∇L(θ)T +

1

B
Σ(θ).

Plugging this yields

E

[
∇̂L(θ;B)∇̂L(θ;B)T

]
=

(
n+ 1

n

)
·
(
∇L(θ)∇L(θ)T +

1

B
Σ(θ)

)

+
1

n
I ·

(
‖∇L(θ)‖2 + 1

B
tr(Σ(θ))

)
.

(8)

We can prove an analog to Theorem 1 in the case where the zi are Gaussian. One challenge is that ‖θt+1 − θt‖ is no longer

bounded; instead we the r-local effective rank assumption only holds with high probability, and thus to bound the expected

loss decrease we must control the probability of the ‖θt+1 − θt‖ being large.

Consider the following modified version of the local r-effective rank assumption, where the upper bound on the Hessian is

measured over a ball of radius twice as large as the one in Assumption 1.

Assumption 3 (Local r-effective rank, Gaussian). Let G(θt) = max(x,y)∈D ‖∇L(θt; {(x,y)})‖. There exists a matrix

H(θt) such that:

31

Fine-Tuning Language Models with Just Forward Passes

1. For all θ such that ‖θ − θt‖ ≤ 2ηdG(θt), we have ∇2L(θ) �H(θt).

2. The effective rank of H(θt), i.e tr(H(θt))/ ‖H(θt)‖op, is at most r.

Theorem 3 (Dimension-Free Rate, Gaussian z). Assume the loss exhibits local r-effective rank (Assumption 3). If

θt+1 = θt − ηZO∇̂L(θt;B) is a single step of ZO-SGD using the n-SPSA estimate with a minibatch of size B, then there

exists a γ = Θ(r/n) such that the expected loss decrease can be bounded as

E[L(θt+1) | θt]− L(θt)

≤ −ηZO ‖∇L(θt)‖2 +
1

2
η2ZO` · γ · E[‖∇L(θt;B)‖2] + η2ZO`G(θt)

2 exp(−Ω(nd)).

Proof of Theorem 3. Let A be the event that ‖θt+1 − θt‖ ≤ 2ηdG(θt). On A, we have that

L(θt+1) ≤ L(θt)− η∇L(θt)T ∇̂L(θ;B) +
1

2
η2∇̂L(θt;B)TH(θ)∇̂L(θt;B).

Likewise, since L is `-smooth, we have that

L(θt+1) ≤ L(θt)− η∇L(θt)T ∇̂L(θ;B) +
1

2
η2`

∥∥∥∇̂L(θt;B)
∥∥∥
2

.

Therefore

E[L(θt+1) | θt] ≤ L(θt+1)− η ‖∇L(θt)‖2 +
1

2
η2

〈
E

[
∇̂L(θ;B)∇̂L(θ;B)T · 1(A)

]
,H(θt)

〉

+
1

2
η2`E

[∥∥∥∇̂L(θt;B)
∥∥∥
2

· 1(¬A)
]

= L(θt+1)− η ‖∇L(θt)‖2 +
1

2
η2

〈
E

[
∇̂L(θ;B)∇̂L(θ;B)T

]
,H(θt)

〉

1

2
η2

〈
E

[
∇̂L(θ;B)∇̂L(θ;B)T · 1(¬A)

]
, `I −H(θt)

〉
.

The latter term can be bounded as follows

1

2
η2

〈
E

[
∇̂L(θ;B)∇̂L(θ;B)T · 1(¬A)

]
, `I −H(θt)

〉
≤ η2`E

[∥∥∥∇̂L(θ;B)
∥∥∥
2

· 1(¬A)
]

≤ η2`E

[∥∥∥∇̂L(θ;B)
∥∥∥
4
] 1

2

Pr[¬A]1/2.

The gradient estimate ∇̂L(θ;B) satisfies

∥∥∥∇̂L(θ;B)
∥∥∥ ≤ 1

n

∑

i∈[n]

∣∣zT
i ∇L(θ;B)

∣∣ · ‖zi‖

The expectation term is upper bounded as

E

[∥∥∥∇̂L(θ;B)
∥∥∥
4
]
≤ 1

n

∑

i∈[n]

E

[∣∣zT∇L(θ;B)
∣∣4 · ‖z‖4

]

≤ E

[∣∣zT∇L(θ;B)
∣∣8
]1/2

E

[
‖z‖8

]1/2

≤
√
105(d+ 6)2G(θt)

4,

where we have plugged in explicit formulas for moments of Gaussian and χ2 random variables.

Next, note that on the event ¬A, we have

2ηdG(θt) ≤ ‖θt+1 − θt‖ = η
∥∥∥∇̂L(θt;B)

∥∥∥ ≤ η · 1
n

∑

i∈[n]

‖zi‖2 G(θt).

32

Fine-Tuning Language Models with Just Forward Passes

Therefore

Pr[¬A] ≤ Pr

∑

i∈[n]

‖zi‖2 ≥ 2nd

Lemma 6 (Standard χ2-tail bound). Let Z be a χ2 random variable with k degrees of freedom. Then

Pr[Z ≥ k + u] ≤ exp

(
−min

(
u2

16k
,
u

16

))

Since
∑

i∈[n] ‖zi‖
2

is a χ2 random variable with nd degrees of freedom, we thus have that

Pr[¬A] ≤ exp

(
−nd

16

)
.

Altogether,

1

2
η2

〈
E

[
∇̂L(θ;B)∇̂L(θ;B)T · 1(¬A)

]
, `I −H(θt)

〉
≤ η2`1051/4(d+ 6)G(θt)

2 exp(−nd

32
)

= η2`G(θt)
2 exp(−Ω(nd)).

Finally, plugging in (7), along with the fact that ‖H(θt)‖op ≤ ` and tr(H(θt)) ≤ `r,

〈
E

[
∇̂L(θ;B)∇̂L(θ;B)T

]
,H(θt)

〉
=

r + n+ 1

n
· `

(
‖∇L(θt)‖2 +

1

B
tr(Σ(θt))

)

=
r + n+ 1

n
· E

[
‖∇L(θt;B)‖2

]

Thus letting γ = r+n+1
n yields

E[L(θt+1) | θt]− L(θt)

≤ −η ‖∇L(θt)‖2 +
1

2
η2` · γ · E[‖∇L(θt;B)‖2] + η2`G(θt)

2 exp(−Ω(nd)),

as desired.

33

	Introduction
	Zeroth-order optimization
	Memory-efficient ZO-SGD (MeZO)

	Experiments
	Memory usage

	Theory
	Related work
	Conclusion
	Additional Results
	Medium-sized masked language models
	Training with non-differentiable objectives
	Wall Clock Time

	Theory
	Per-step analysis
	Global convergence analysis

	Algorithmic Ablations
	Prompting
	Sample Schedules

	MeZO Variants
	Memory-efficient n-SPSA
	Augmenting MeZO with Gradient History
	Modifying the Variance of MeZO
	Modifying the Expectation of MeZO

	Memory Analysis
	Experiment setup
	Datasets
	Prompts
	Hyperparameters
	Modeling and implementation
	Parameter-efficient fine-tuning
	Training with non-differentiable objectives
	Memory profiling

	More experiment results
	RoBERTa-large experiments
	OPT experiments
	Convergence of MeZO with full-parameter and PEFT
	ZO vs BBTv2
	Memory profiling
	Wallclock time efficiency

	Proofs
	Proofs of Global Convergence
	Verification of assumptions

	Proofs for Gaussian perturbations

