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Abstract

This preliminary paper presents initial explo-

rations in rendering Iterated Function System

(IFS) fractals using a differentiable rendering

pipeline. Differentiable rendering is a recent in-

novation at the intersection of computer graph-

ics and machine learning. A fractal rendering

pipeline composed of differentiable operations

opens up many possibilities for generating frac-

tals that meet particular criteria. In this paper I

demonstrate this pipeline by generating IFS frac-

tals with fixed points that resemble a given tar-

get image - a famous problem known as the in-

verse IFS problem. The main contributions of

this work are as follows: 1) I demonstrate (and

make code available for) this rendering pipeline;

2) I discuss some of the nuances and pitfalls in

gradient-descent-based optimization over fractal

structures; 3) I discuss best practices to address

some of these pitfalls; and finally 4) I discuss di-

rections for further experiments to validate the

technique.

1. Introduction and Prior Work

Fractals are ubiquitous objects in computer graphics, mathe-

matical art, and data analysis. A common way to generate

fractal images is the iterated function system (IFS), defined

in detail below. In this paper, I demonstrate a differentiable

system for drawing IFS fractals written in Pytorch. The

advantage of doing this in Pytorch is that it enables opti-

mization through the fractal rasterization process, so that the

generated IFS fractal resembles a target image. This paper

is inspired by the recent work ”Differentiable Drawing and

Sketching”, by Mihai et al. [1]. Those authors presented a

framework for differentiating through the rasterization of

lines and curves, using the insight that the distance from a
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pixel to a line can act as a differentiable proxy for rasteriza-

tion. Since distance estimators have a long history of use in

the fractal rendering community [2]–[4], it is natural to com-

bine some of those ideas with the techniques from Mihai

et al. I will first define some of the background needed to

understand the rendering problem, and then I will introduce

how the rendering pipeline works. Throughout this paper, I

will use the Koch curve (a famous fractal [5]) as a test case.

1.1. IFS Fractals

I follow the definition of IFS fractal given by Barnsley [6]

and later by Heptig [7]. Let F1, F2 . . . Fk be a set of affine

transformations of the Euclidean plane R
2, and for any

region S ⊂ R
2 let Fi(S) denote the image of S under Fi.

The Hutchinson transform [8] H(S) is the union of the

images of S under all of the Fi: H(S) = ∪n
i=1Fi(S).

The attractor of an IFS is a limit figure (not necessarily

unique) which results from applying this process infinitely

many times, i.e. a region A such that A = H(A). For

an attractor to exist, the set of affine transformations must

on average be contractive, meaning that they shrink the

distance between points in the plane.

A related common construction for self-similar curves is

to start with a base figure, and then recursively replace

parts of the current figure with a transformed copy of the

entire figure. For example, the Koch curve (see Figure 1)

is generated by beginning with the line segment between

(0, 0) and (0, 1) and recursively applying the four affine

transformations shown in Equation 1.
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1.2. IFS Inverse Problem

Now that I have defined IFS fractals, I am ready to introduce

the inverse IFS problem. Simply put, this is the problem
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Figure 1. From left to right: First row: The first iteration of the

Koch IFS fractal; the second iteration, showing its composition as

several scaled and rotated copies of the first iteration. Second row:

As in the second image, but without bounding boxes; the attractor

of this process.

of finding a set of affine transformations having a specific

image as their attractor. This problem is also called the

“fractal image compression” problem, motivated by storing

a set of affine transformations instead of the pixels of the

original image. The inverse IFS problem is a classic prob-

lem, and a wide variety of approaches have been proposed.

An early approach due to Barnsley et. al [9] proposed opti-

mizing a loss function that measured distortion of the target

region under the Hausdorff metric (“the Collage Theorem”).

Other approaches have been proposed which utilize the con-

vex hull of the target region [10]; genetic algorithms [11];

wavelet transforms [12]; EM-like algorithms [13]; and in

some cases, neural networks [14], [15]. However, no gen-

eral solution is known to exist. Prior work by Melnik et. al

[16], similar to this paper, uses gradient descent to optimize

IFS fractals. Those authors train a recurrent neural network

R(X) to iteratively transform a set of points X , with the

Hausdorff metric between X and R(X) as the loss func-

tion. In contrast to this paper, Melnik et. al’s work does not

generate an explicit set of affine transformations. Smooth

representations of IFS fractals (and fitting IFS fractals to

images) have also been considered as one application of

differentiable programming by Petersen et al. [17]. Poli et

al. [18] consider neural networks that learn affine transfor-

mations, which they call a “neural collage”, after Barnsley’s

approach. I stress here that I do not claim to have solved

the inverse IFS problem in this paper; As in Petersen et.

al, I am using this problem to demonstrate the utility of

differentiating through fractal rasterization.

1.3. Signed Distance Functions

Signed distance functions are a way to represent the geome-

try of a region in Euclidean space. An SDF is the distance

between a point in space and the boundary of a shape; points

inside the shape are assigned the negative of this distance.

SDFs have several properties that make them attractive in a

rendering context: 1) for many geometric primitives exact

SDF formulae are known [19]; 2) in Euclidean space, the

SDF of a region is differentiable almost everywhere; and

3) SDFs compose nicely with each other (for example, in

Boolean operations) and with affine transformations. These

properties (amongst others) have lead to widespread integra-

tion of SDFs into a variety of machine learning approaches

in recent years [20]–[25].

One specific characteristic of SDFs that will be necessary

later in this paper is how a SDF behaves under affine trans-

formation. Let dS(x) be a SDF for a region S , and let T (x)
be an affine transformation with scale parameter s. Then

dT (S)(x) =
1

s
d(T−1(x)) (2)

In other words, one can easily calculate a new SDF that rep-

resents an affinely transformed version of S by evaluating

d on x but with the inverse transform of T . Note that this

only holds when T scales space uniformly - this equation

does not hold for shear deformations.

1.4. Differentiable Rendering

Automatic Differentiation (“autodiff” or AD) is a program-

ming paradigm that has aided in the explosive growth of

deep learning. The basic idea of autodiff is that all basic op-

erations in the programming language are defined in a way

that includes their derivative. This means that it is possible

to use the chain rule to compute the derivative of an entire

program with respect to its inputs, enabling optimization

via gradient descent. Recent work has successfully used

autodiff to write full rasterization pipelines which are differ-

entiable. Mihai et al. [1] detail how to (differentiably) turn

an implicit line segment into a pixelated picture of a line

segment; in the next section I take the ability to do this as a

given, and use it to produce fractal images.

Some recent work has successfully used autodiff and signed

distance functions to write full rasterization and render-

ing pipelines which are differentiable. The key insight

is that a geometric primitive P can be drawn by color-

ing pixels according to their distance from the primitive

[1]. To render the pixel at location (i, j), I take the ex-

ponential of the distance between the point (i, j) and the

primitive: pixeli,j = exp(−d((i, j), P )2/σ2). Because this

pixel value function is a differentiable function of distance,

and distance is a differentiable function of the parameters of

P , I can tune these parameters using gradient descent. This

allows fitting geometric primitives to images.

2. Rendering Process

The components of my proposed differentiable fractal are

• Control points: a set of variables P = {p1, p2 . . . pn},
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where all pi ∈ R
2.

• Symmetry pattern: a sequence L of pairs of subsets

of P: L = {(P1, R1), (P2, R2), . . . (Pm, Rm)} with

all Pi, Ri ⊂ P .

• SDFs: A set D of SDFs d1 . . . dl, which may or may

not also be defined in terms of the points pi.

Each of these components could be specified in advance,

or could be learned. For the remainder of this paper I will

assume both the symmetry pattern and the SDFs are pre-

specified, and that the elements of P are parameters (tunable

via gradient descent). However, it may be possible to also

learn the symmetry pattern, or to use neural SDFs [20]. See

Supplementary Material Section C for details.

To make the above more specific, the Koch curve could

be parametrized with a set of 5 control points P =
{p0, p1, p2, p3, p4}. To get the same self-similar behavior

as the Koch curve, I would take the symmetry pattern as:

L = {({p0, p4}, {p0, p1}), ({p0, p4}, {p1, p2}),

({p0, p4}, {p2, p3}), ({p0, p4}, {p3, p4})}

In other words, L is specifying that the line segment

{p0, p4} should be transformed into the line segment

{pi, pi+1} via an affine transformation Ti, for each of

i = 0, 1, 2, 3. The SDFs di would be functions representing

the distance to each of these line segments (a closed formula

for this distance is defined in terms of the endpoints of each

segment). This choice of (P, L,D) has the same replace-

ment logic as the Koch curve, making it possible (assuming

all intermediate operations are differentiable) to optimize

the locations of the pi so that the linear transformations Tk

match those in Equation 1. Specifying the self-similarity

of the fractal in terms of which line segments get mapped

to other line segments is general enough to describe a wide

variety of fractal images; for another example (the symme-

try pattern for a Sierpiński carpet), see Section B of the

supplementary material.

Once the above components are defined, the process in

generating a fractal figure is as follows:

1. For each i in 1 . . .m, find the linear transformation Ti

which (possibly approximately) maps Pi to Ri.

2. Up to a set maximum number of recursions K, re-

place the SDFs in D with the result of applying each

transformation Ti to all of the current elements of D.

3. Compute the distance d((i, j)) from each pixel (i, j)
to each SDF d ∈ D. Color the pixel (i, j) with the

value exp(−(mind∈D d((i, j)))2/σ2). σ is a scale pa-

rameter that determines the ratio of pixel coordinates

to the coordinates of the pi.

4. (If optimizing) compare to target and compute loss.

To get an IFS fractal image that looks like a source image,

I implemented the above steps in Pytorch. The position of

the control points was tuned with Adam [26] to minimize

the loss, i.e. so that the rendered image matches some target

image. The maximum recursion depth, K, was set to be as

deep as possible within GPU memory constraints. I will

now discuss some of the details of the rendering pipeline;

readers who want to recreate the images in this paper should

refer to the Github repository. Figure 2 demonstrates the re-

sult of optimizing with different symmetry patterns, such as

the replacement rule that yields the Sierpiński carpet. Figure

2 also includes the result of applying this optimization pro-

cedure to images that have the “wrong” symmetry pattern;

that is, where L does not actually match any symmetries in

the target image.

2.1. Implementation Details

In this section I describe several of the specific design

choices I made in my fractal renderer.

Initial Conditions. As described, this system is extremely

sensitive to initial conditions, which limits its applicability.

For the Koch curve, I was able to consistently get optimiza-

tion to converge by initializing the control points pi along a

best-fit line of the black pixels in the target image.

Calculating Transformations. An important ingredient

in the above process is the calculation of the linear trans-

formation which takes the endpoints to each line segment.

To do this for two line segments (e1, e2) and (p1, p2), I: a)

find the translation that takes e1 to p1, b) find the rotation

that aligns the two vectors, and then c) scale (e1, e2) to have

the same length as (p1, p2). The composition of these three

linear transformations is the one I want.

Loss Function. Following the example of [1], I used Mul-

tiscale Mean Squared Error (MMSE) as the loss function.

MMSE is identical to mean-squared error, but is summed

over multiple pooled copies of the image. I experimented

with two variants of loss function: computing MMSE over

the pixel values in rasterized images, versus the MMSE be-

tween the raw distance values calculated by the SDF. Both of

these loss functions worked reasonably well, but tended to

get stuck in local optima (see Figure 4 for examples). Figure

3 illustrates why this might be happening: even arbitrarily

close to the boundary of the fractal figure, the gradient of

the loss (in this case, pixel loss) can point away from the

location of the true optimum. Note in this image that the

green arrows, representing MMSE, point toward the true

optimum slightly more often than MSE at only the finest

scale (in blue).
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Target Image Initial State Converged State

MMSE: 2.47× 10
−2 MMSE: 4.0× 10

−3

MMSE: 1.86× 10
−2 MMSE: 2.84× 10

−6

MMSE: 5.71× 10
−2 MMSE: 2.0× 10

−4

MMSE: 1.34× 10
−1 MMSE: 3.70× 10

−3

Figure 2. Multiple examples of learning IFS attractors. In each

row from top to bottom: the Koch curve; the Sierpiński carpet; an

apple from the MPEG-7 shape dataset; a flower from the MPEG-7

shape dataset. MMSE values are given between each generated

image and the target images.

Figure 3. Vector fields illustrating the gradient of error as p2 is

varied in the Koch curve construction, while all other points are

held constant at their optimal positions: a) always pointing toward

the optimal location (orange); b) the gradient of the fine-scale

loss only; and c) the gradient of the multiscale loss. While both

gradient vector fields are divergent, the multiscale loss is slightly

more aligned with the always-optimal field.

Figure 4. Examples of local optima encountered while optimizing

a set of affine transformations to fit the Koch curve.

Code Repository All code for the operations described

in this paper is available at https://github.com/

cory-b-scott/diff_ifs.

3. Conclusion and Future Work

This paper presents initial evidence that it is possible to find

the parameters of IFS fractals and self-similar curves using

automatic differentiation and gradient descent. However,

there are many open questions that still need to be addressed

in order to make this a viable technique for solving the IFS

inverse problem. In Figure 2, the Sierpiński and Koch exam-

ples both use the known, correct symmetry pattern for these

IFSs. This is somewhat unfair, since learning the symmetry

pattern in a domain is a harder problem than finding an

affine transformation between point sets. Initial attempts at

learning a symmetry pattern as a weighted combination of

control points proved unsuccessful (optimization diverged

in every case). One of the other IFS solving approaches

may help here, as might recent machine learning work in

automated discovery of symmetry in geometric objects [27].

Additionally, it is currently unclear what determines whether

optimization will converge, diverge, or converge to a local

minimum. Very careful initialization of control point lo-

cations is necessary to get results that resemble the target

image. Developing a procedure for appropriately initializing

control points given a target image is necessary to apply this

technique to arbitrary images. The examples in Figure 4

seem to indicate that local minima are related to times when

the figure crosses itself; a barrier function that prevents self-

crossings could keep the optimization from getting trapped

in these local optima.

Finally, there are also several modifications that could be

made to make the process more efficient, such as the ren-

dering tricks mentioned in [7]. One major area for future

work is investigating the viability of coarse-to-fine optimiza-

tion procedures, which are a mainstay of many graphics

algorithms and optimization procedures.

Overall, this paper represents a proof-of-concept of differen-

tiating through fractal rasterization. More work is necessary

to quantitatively evaluate the proposed approach.
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Figure 5. Additional example fractals generated with the method outlined in this paper.

A. Additional Examples

See Figure 5 for additional examples of fractals generated by the approach suggested in this paper. All of these fractals were

generated with the same symmetry pattern as the Koch curve, but with the unit square as target image.

B. Sierpiński Carpet Symmetry Pattern

For both the Sierpiński and the apple examples in Figure 2, the symmetry patten used to train the model was as follows.

p0, p1, . . . p15 are the tunable parameters of the model. As a reminder, the quadruplet ({s, t}, {u, v}) means that the model

includes a linear transformation that maps the line segment {s, t} into the segment {u,v}.

L = {({p1,1, p4,4}, {p1,1, p2,2}) , ({p1,1, p4,4}, {p1,2, p2,3}) , ({p1,1, p4,4}, {p1,3, p2,4}) , ({p1,1, p4,4}, {p2,1, p3,2}) ,

({p1,1, p4,4}, {p2,3, p3,4}) , ({p1,1, p4,4}, {p3,1, p4,2}) , ({p1,1, p4,4}, {p3,2, p4,3}) , ({p1,1, p4,4}, {p3,3, p4,4})}

This symmetry pattern is illustrated in Figure 6. As with the Koch example, the pi,j are initialized in arbitrary positions and

optimized so that the SDF of the generated figure matches the SDF of the target image.

C. Learning Symmetry Patterns

The symmetry patterns discussed in Sections 2 and B are all pre-specified. That is, the symmetry pattern is known ahead

of time and the optimization occurs over the location of the control points P . I also consider the problem of learning the

symmetry pattern. This can be done by replacing each of the pairs of points in the symmetry pattern with a weighted

combination of all of the points. Each element li of L is then:

li = {f1,i(P), f2,i(P)}, {f3,i(P), f4,i(P)}

Where each of the fj,i represent weighted combinations of the points in P , so for example fj,i =
∑

p∈P wj,i,pp. Convex

combinations could be enforced by requiring the weights for a given output sum to 1:
∑

p∈P wj,i,p = 1 for any i, j.

In practice this approach seems to be even more susceptible to getting stuck in local maxima than the approach outlined in

the main paper. See Figure 7 for examples.
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Figure 6. The symmetry pattern used to generate both the Apple and Sierpiński patterns in Figure 2. The orange line is mapped to each of

the blue lines via learned linear transformations controlled by the location of the control points pi,j .

Figure 7. Some examples of local optima encountered when trying to learn the symmetry pattern of the Koch curve.
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