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Abstract

Quantized neural networks employ reduced pre-

cision representations for both weights and acti-

vations. This quantization process significantly

reduces the memory requirements and computa-

tional complexity of the network. Binary Neural

Networks (BNNs) are the extreme quantization

case, representing values with just one bit. Since

the sign function is typically used to map real

values to binary values, smooth approximations

are introduced to mimic the gradients during error

backpropagation. Thus, the mismatch between

the forward and backward models corrupts the

direction of the gradient causing training incon-

sistency problems and performance degradation.

In contrast to current BNN approaches, we pro-

pose to employ a binary periodic (BiPer) function

for the forward pass to obtain the binary values

and employ the trigonometric sine function with

the same period of the square wave function as a

differentiable surrogate during the backward pass.

We demonstrate that this approach can control

the quantization error by using the frequency of

the periodic function and improves network per-

formance. Numerical experiments validate the

effectiveness of BiPer in the classification task

over ImageNet, with improvements of 0.69%.

1. Introduction

Deep Neural Networks (DNN) have achieved unprecedented

results in many high-level tasks, such as classification, seg-

mentation, and detection, with a tremendous concurrent im-

pact in computer vision, natural language processing, infor-

mation retrieval, and many others [1]. Typically, DNNs rely

on full-precision (32 bit) weights and activation functions.
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Accurate and precise models, however, become expensive

in terms of computation, storage and number of parameters.

For this reason, DNN deployment is usually prohibited for

devices with limited resources, such as mobile, hand-held

or wearables. Different approaches to reduce computation

requirements include efficient neural network architecture

design [2]–[4], network pruning [5], knowledge distillation

[6], hashing [7], and network quantization [8], [9]. Among

them, network quantization has become one of the most

promising techniques, aiming at compressing large models

usually stored as floating-point weights with low bitwidth

numbers. Binary Neural Networks (BNNs) are the extreme

quantization case, where weights and activation functions

are constrained to just one bit, i.e., binary values, typically

+1 or -1. In contrast to DNNs, BNNs replace heavy matrix

computations by bit-wise operations, yielding to 32× mem-

ory compression, and 58× speed-up on CPUs [10]. Thus,

this approach drastically reduces the computational require-

ments and accelerates inference, making BNNs particularly

appealing for resource-constrained environments such as

edge devices and mobile applications.

Despite significant advantages for efficient BNN deploy-

ment in hardware with limited capabilities, the binarization

of full-precision models severely degrades the accuracy per-

formance in high-level tasks such as object detection, classi-

fication, segmentation, and others [9]. For instance, in large

datasets such as ImageNet, one of the earliest BNN mod-

els, the XNOR-Net [10], achieved an accuracy degradation

of around 18% compared to the full precision ResNet-18

architecture. Recent efforts have been devoted to close the

performance gap of BNN with respect to their real-valued

counterparts. Nonetheless, state-of-the-art approaches still

exhibit accuracy degradations of approximately 8% [11].

Binarization of real-valued weights and activations is gen-

erally performed using the sign function during the feed-

forward procedure. A relevant limitation of the sign function

is that its gradient is null everywhere except in zero, which

makes it incompatible with error back-propagation methods,

due to the non-differentiability of binary operations. To

overcome this issue, various techniques like the straight-

through estimator (STE) and relaxed training approaches

have been adopted [12]. STE essentially substitutes the sign

function for the identity function to calculate the gradients

during the backwards process. Since there exists a mismatch
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between the forward and backward pass caused by the STE

approximation, research efforts have focused on designing

better smooth and differentiable functions to estimate the

gradient of the sign function [13], [14]. Although these

approaches have improved the accuracy of BNNs, gradient

instability persists when the quantization error is minimized.

Instead of using the Sign function, in this work, we pro-

pose to address the aforementioned issues of extreme 1-bit

quantization by using a binary periodic (BiPer) function

or square wave function to promote binary weight values.

Thus, opposite to the sign function which is always nega-

tive for negative values or positive for positive values, the

proposed periodic function can reach positive and negative

values in the whole domain of the latent weights. Since

the gradient of the periodic function still faces the prob-

lem of being zero almost everywhere, it cannot be directly

integrated within a back-propagation algorithm based on

gradient descent. We solved this problem by employing a

sinusoidal function with the same fundamental frequency

of the periodic function as a differentiable surrogate during

the backward pass. The continuity and differentiable charac-

teristics of the sine function, make it suitable for stochastic

gradient methods. In contrast to existing BNN methods that

smoothly and progressively approximate the sign function

to reduce the quantization error (QE), we will show that in

the proposed BiPer approach the QE can be controlled by

the frequency of the periodic function. We further leverage

this property to provide an initialization of the weights that

better balances the trade-off between the estimation error

and performance accuracy. Experimental results demon-

strate that BiPer provides the best network performance for

the classification task, with respect to state-of-the-art BNN

approaches on the CIFAR-10 and ImageNet data sets. The

contributions of our work are summarized as follows:

• We propose a simple yet powerful and effective modifi-

cation in the binarization process, by including a binary

periodic function.

• We introduce a continuous, periodic sinusoidal func-

tion as a differentiable surrogate of the binary periodic

function during the back-propagation process, suitable

for stochastic gradient methods.

• We mathematically analyze the quantization error of

BiPer and show that it can be controlled by the fre-

quency of the periodic function.

2. BiPer

To overcome the gradient and quantization error challenges

from existing binarization methods and their gradient ap-

proximation functions, we propose to use a binary periodic

function or square wave function (see Fig. 1) instead of just

the sign function to model the binary weights. In contrast

to the sign function depicted in Fig. 1(a), which is always

negative for negative values of w, the proposed periodic

function (Fig. 1(b)) can reach positive and negative values

in the whole domain of the latent weights.

Figure 1. (a) Sign function. (b) Binary periodic function.

It should be pointed out that the gradient of the periodic

function still faces the problem of being zero almost every-

where, therefore, it cannot be directly integrated within a

back-propagation algorithm based on gradient descent. To

solve this problem, we first rewrite the square wave function

as

wq = Sign (sin(ω0w)) , (1)

where ω0 = 2π
T is the angular frequency. We note that

this corresponds to applying the sign function to the first

harmonic of the periodic function. Based on (1), we can

approximate the gradient with respect to the weights as

∂L

∂w
=

∂L

∂wq

∂wq

∂w
≈

∂L

∂wq

∂ŵ

∂w
(2)

where ŵ = sin(ω0w). Note that the last differential term

in (2) corresponds to the gradient of a continuous differen-

tiable sinusoidal function, which is also a smooth periodic

function, and proportional to the frequency ω0.

2.1. Quantization Error Analysis

This section shows that an additional advantage of using the

periodic function is its flexibility to control the quantization

error. In particular, we mathematically demonstrate how

a lower quantization error can be achieved by setting the

fundamental period of the wave function. To this end, let

us first assume that the latent weights roughly follow the

zero-mean Laplace distribution, i.e., W ∼ La(0, b) [15]–

[17]. Since the weights ŵ before quantization are a function

of a random variable, they are also a random variable Ŵ ∈
[−1, 1]. Computing the probability density function (pdf)

of a random variable Y = g(X ) from the pdf of X (fX (x))
can be easily done employing the method of transformation

[18], if the function g is differentiable and strictly increasing

or decreasing, i.e., strictly monotonic. Thus, the pdf of Y
can be computed as

fY(y) =

{

fX (x1)
|g′(x1)|

= fX (x1) ·
∣

∣

∣

dx1

dy

∣

∣

∣
where g (x1) = y

0 if g(x) ̸= y.
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The more general case in which g is not monotonic requires

splitting the domain into n intervals, so that g is strictly

monotonic and differentiable on each partition. Then, the

pdf can be obtained as

fY(y) =

n
∑

k=1

fX (xk)

|g′ (xk)|
=

n
∑

k=1

fX (xk) ·

∣

∣

∣

∣

dxk

dy

∣

∣

∣

∣

, (3)

where x1, · · · , xn are real solutions to g(x) = y. For BiPer,
since the sin function is not monotonic, we can use (3)

to compute the pdf of Ŵ using the pdf of W . Letting

fW(w) = 1
b exp(|w|/b) denote the pdf of W , and setting

g as the sine function, we can divide the sinusoidal func-
tion into subsequent intervals of T/2 where it is strictly
increasing or decreasing, alternately. The summation in (3)
converges to the probability density function of the latent
weights before binarization ŵ for an arbitrary frequency ω0
given by

f
Ŵ
(ŵ) =

1

2bω0

1√
1− ŵ2

exp

(

−| arcsin(ŵ)|
bω0

)

+
1

2bω0

1√
1− ŵ2

cosh

(

arcsin(ŵ)

bω0

)

1

eπ/bω0 − 1
.

(4)

Figure 2. Probability density function of ŵ = sin(ω0w) assuming

that the random variable w follows a Laplace distribution with

parameter b and a fixed value of ω0 = 1.

Figure 2 depicts the distribution of the weights for different

values of the Laplace distribution parameter b and a fixed

frequency ω0 = 1. Note that different from the random

variable W which can take any real value, the codomain

of the random variable Ŵ is [−1, 1]. From Fig. 2 we can

observe that when the value of b increases the pdf of ŵ
behaves as an arcsin distribution with values concentrated

around -1 and 1. This reduces the quantization error in

comparison to the Laplacian distribution. Also, a similar

behavior occurs when the frequency value increases for a

fixed b. To further analyze these observations consider the

QE defined as

QE =

∫ +∞

−∞

fW (w) (sin(ω0w)− γ sign (sin(ω0w)))
2
dw,

(5)

where fW is the density distribution function of the latent

weights. Using the fact that |x| = xSign(x) along with the

properties of the absolute value, we can rewrite Eq. (5) as

QE =

∫ +∞

0

1

b
exp

(

−w

b

)

(|sin(ω0w)| − γ)
2
dw. (6)

The solution to this integral is given by

QE =
2(ω0b)

2

4(ω0b)2 + 1
−

2γω0b
(

eπ/ω0b + 1
)

(ω0b)2 + 1)
(

eπ/ω0b − 1
) + γ2.

(7)

On the other hand, the optimal solution of the scaling factor

γ in (5) can be computed as

γ = E{|sin(ω0w)|} =
ω0b

(

eπ/ω0b + 1
)

(ω0b)2 + 1)
(

eπ/ω0b − 1
) . (8)

Replacing γ from (8) into Eq. (7), we can rewrite the QE as

a function of the frequency ω0 and the parameter b. Figure

3 illustrates the QE as a function of the frequency ω0 for

different values of b. It can be seen that the maximum QE is

0.102835, which occurs when the product bω0 ≈ 0.954882
and can be reduced by varying the frequency.

Figure 3. Quantization error as a function of the frequency ω0 for

different values of b. The proposed BiPer approach is able to

control QE with the frequency of the periodic function.

It is worth noting that in contrast to current approaches that

progressively reduce the QE to zero, BiPer does not meet

this QE value. Nonetheless, further explorations can adapt

state-of-the-art surrogate estimators to smoothly converge

from the sine function to the square wave

3. Experiments

We evaluated BiPer for image classification with a widely

used neural network architecture, i.e., ResNet, trained on

Imagenet. In the following, we first describe the experiments

setup. Then, we compare BiPer with state-of-the-art BNN

approaches in terms of performance and complexity.
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3.1. Experiments Setup

Dataset: ImageNet [19] is a challenging data set be-

cause of its larger size and more diverse image categories.

Among its multiple versions, we adopted the widely used

ILSVRC12 version, divided into 1,000 categories, from

which 1.2 million are training images and, 50,000 test im-

ages. ImageNet is the most widely used data set to report

results on binary networks and, it allows us to show for the

first time that binary networks can perform competitively

on a large-scale data set.

Network Architectures We chose to binarize ResNet-

18/34. We adopted the double skip connections as in [20]

to provide fair comparisons. Following [21], the downsam-

pling layers are not quantized, and the double skip connec-

tions [20] were included. Following standard procedures of

the comparison methods, we binarized all layers but the first

and last.

Training Details and Procedures All experiments used

SGD optimization with 0.9 momentum. We followed the

data augmentation strategies in [22], which include random

crops and horizontal flips.

Two stage training: Recent works have shown that an ap-

propriate initialization is often required to improve network

performance. Two-stage training strategies are generally em-

ployed to alleviate feature quantization adverse effects, [23],

[24]. Particularly, in the first stage the network is trained

with real weights and binary features. Then, in the second

stage, a warm weight initialization is employed based on

the binary representation of the output weights from the first

stage, and the model is fully trained to binarize the weights.

In BiPer, we propose a two-stage training where the first

stage uses real-valued weights ŵ, and the second stage uses

the weight binarization from Eq. (1). By testing different

frequency values, we experimentally found that the hyperpa-

rameter frequency ω0 = 20 balances the QE and precision

of the full binary model. The frequency is the same and

fixed for both stages. The learning rate was set to 0.1 in the

first stage and, 0.01 in the second stage. In both stages the

learning rate was adjusted by the cosine scheduler.

3.2. Comparison with SOTA methods

We evaluate the proposed BiPer approach using ResNet-18

and ResNet-34, and training on the large-scale ImageNet

dataset. Table 1 shows a number of SOTA quantization

methods over ResNet-18 and ResNet-34, including XNOR-

Net [10], Bi-Real Net [20], PCNN [25], IR-Net [26], BONN

[27], LCR-BNN [28], HWGQ [29], RBNN [30], FDA [31],

ReSTE [32], ReCU [11], and DIR-Net [33]. We can ob-

serve that the proposed BiPer approach in the 1W/1A setting

achieves the best Top-1 and top-5 accuracy for both network

architectures. Specifically, for ResNet-18, we attained a top-

1 validation accuracy of 61.4%, outperforming the second-

Table 1. BiPer performance comparison with state-of-the-art BNN

on ImageNet. W/A: bit length of weights and activations. FP: full

precision model.

Network Method W/A Top-1 Top-5

ResNet-18

FP 32/32 69.6% 89.2%
XNOR-Net 1/1 51.2% 73.2%
Bi-Real Net 1/1 56.4% 79.5%
PCNN 1/1 57.3% 80.0%
IR-Net 1/1 58.1% 80.0%
BONN 1/1 59.3% 81.6%
LCR-BNN 1/1 59.6% 81.6%
HWGQ 1/1 59.6% 82.2%
RBNN 1/1 59.9% 81.9%
FDA 1/1 60.2% 82.3%
ReSTE 1/1 60.88% 82.59%
ReCU 1/1 61.0% 82.6%
DIR-Net 1/1 60.4% 81.9%
BiPer (Ours) 1/1 61.4% 83.14%

ResNet-34

FP 32/32 73.3% 91.3%
Bi-Real Net 1/1 62.2% 83.9%
IR-Net 1/1 62.9% 84.1%
RBNN 1/1 63.1% 84.4%
ReSTE 1/1 65.05% 85.78%
ReCU 1/1 65.1% 85.8%
DIR-Net 1/1 64.1% 85.3%
BiPer (Ours) 1/1 65.73% 86.39%

best result of 61.0% achieved by ReCu. Furthermore, our

top-5 performance reached 83.14%, surpassing the second-

best result of 82.6%, also achieved by ReCU. Likewise, for

ResNet-34, we achieved the highest top-1 and top-5 accu-

racies, namely 65.73% and 86.39%, respectively. These

results improve the second-best method (ReCU) by 0.63%
and 0.59% in top-1 and Top-5 accuracies, respectively.

4. Conclusions

An approach for neural network binarization using a binary

periodic function or square wave, dubbed BiPer, has been

proposed. To improve gradient stability we employed a

sinusoidal function with the same period of the square wave

as a differentiable surrogate during the backward pass. This

simple, yet powerful modification tackles the problem of

standard gradient mismatch between forward and backward

steps during network training, providing a suitable alter-

native that can be incorporated within back-propagation

algorithms based on stochastic gradient descent. Mathe-

matical analysis of BiPer quantization error demonstrated

that it can be controlled by the frequency of the periodic

function. Comparisons with respect to state-of-the-art BNN

approaches showed that BiPer outperforms prior works by

up to 0.63% on Imagenet. Although this work tested the

BiPer approach for classification, it can be easily extended

to other high-level tasks without increasing the complexity.
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