
Stable Differentiable Causal Discovery

Achille Nazaret * 1 2 Justin Hong * 1 2 Elham Azizi 1 2 3 David Blei 1

Abstract

Inferring causal relationships as directed acyclic

graphs (DAGs) is an important but challenging

problem. Differentiable Causal Discovery (DCD)

is a promising approach to this problem, fram-

ing the search as a continuous optimization. But

existing DCD methods are numerically unstable,

with poor performance beyond tens of variables.

In this paper, we propose Stable Differentiable

Causal Discovery (SDCD), a new method that im-

proves previous DCD methods in two ways: (1)

It employs an alternative constraint for acyclicity;

this constraint is more stable, both theoretically

and empirically, and fast to compute. (2) It uses

a training procedure tailored for sparse causal

graphs, which are common in real-world scenar-

ios. We first derive SDCD and prove its stability

and correctness. We then evaluate it with obser-

vational and interventional data and in both small

and large scale settings. We find SDCD outper-

forms existing methods in convergence speed and

accuracy, and can scale to thousands of variables.

1. Introduction

Inferring cause-and-effect relations between variables is a

fundamental challenge in many scientific fields, including

biology (Sachs et al., 2005), climate science (Zhang et al.,

2011), and economics (Hoover, 2006). Mathematically, a set

of causal relations can be represented with a directed acyclic

graph (DAG) where nodes are variables, and directed edges

indicate direct causal effects. The goal of causal discovery

is to recover the graph from the observed data.

The challenge of causal discovery is that searching for the

true DAG underlying the data is an NP-hard problem. Exact

*Equal contribution 1Department of Computer Science,
Columbia University, New York, USA 2Irving Institute for Cancer
Dynamics, Columbia University, New York, USA 3Department of
Biomedical Engineering, Columbia University, New York, USA.
Correspondence to: Elham Azizi <ea2690@columbia.edu>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

methods are intractable, even for modest numbers of vari-

ables (Chickering, 1996). Yet datasets in fields like biology

routinely involve thousands of variables (Dixit et al., 2016).

To address this problem, Zheng et al. (2018) introduced Dif-

ferentiable Causal Discovery (DCD), which formulates the

DAG search as a continuous optimization over the space of

graph adjacency matrices. A key element of this strategy is

an acyclicity constraint, in the form of a penalty, that guides

an otherwise unconstrained search toward acyclic graphs.

This optimization-oriented formulation often scales better

than previous methods, and it has opened opportunities to

harness neural networks (Lachapelle et al., 2019), incorpo-

rate interventional data (Brouillard et al., 2020), and use

matrix approximation techniques (Lopez et al., 2022). But,

while promising, existing DCD methods still struggle to

scale consistently beyond tens of variables, or they rely on

approximations that limit their applicability (see Section 4).

In this paper, we study the problems of DCD and improve

on it, so that it can scale more easily and apply to many

types of causal discovery problems. We trace the issues

with DCD to the instability of its objective function; in

particular, properties of the acyclicity constraint it uses to

find a DAG solution. We formalize this notion of stability,

show that previous DCD methods are unstable, and then

formulate a method, Stable Differentiable Causal Discovery

(SDCD), that is stable and scalable.

The main contributions of this work are:

• We develop a theoretical analysis of the acyclicity con-

straints used in DCD, and their numerical instabilities.

• We motivate an alternative acyclicity constraint with

superior stability, both theoretically and empirically.

• We propose the SDCD method for efficient DCD. It

leverages the stable constraint within a two-stage op-

timization procedure designed for training robustness.

We prove that SDCD does not compromise accuracy.

• We empirically study SDCD, and show that it effi-

ciently solves problems with thousands of variables.

2. Stable Acyclicity Constraint

In this section, we demonstrate how most existing acyclicity

constraints can lead to unstable numerical behaviors during

1

Stable Differentiable Causal Discovery

optimization, especially with large numbers of variables d.

We then motivate an alternative constraint, which we show

to be theoretically and empirically more stable. We briefly

introduce differentiable discovery and review its standard

notations in Appendix B.

2.1. Power Series Trace Constraints

We first introduce a family of constraints. It generalizes

existing constraints and reveals their similarities.

Definition 2.1 (The Power Series Trace Family). For any

non-negative coefficients (ak)k∈N∗ ∈ R
N

∗

≥0, consider the

power series fa(x) =
∞∑

k=1

akx
k.

Then, for any matrix A ∈ R
d×d
≥0 with non-negative entries,

we define the Power Series Trace (PST) function

ha(A) = Tr [fa(A)] =

∞∑

k=1

akTr
[
Ak
]
.

The quantity ha(A) is closely related to the cycles in the

graph represented by A. In ha(A), each Tr
[
Ak
]

equals the

total weight of all length-k cycles in A – where the weight

of a cycle is the product of its edge weights (Bapat, 2010).

The next theorem generalizes the result of Wei et al. (2020)

to show that most ha can be used to characterize acyclicity.

Theorem 2.2 (PST constraint). For any sequence

(ak)k∈N∗ ∈ R
N

∗

≥0, if we have ak > 0 for all k ∈ J1, dK, then,

for any matrix A ∈ R
d×d
≥0 , we have

ha(A) = 0⇔ A is acyclic,
ha(A) ≥ 0,
∇ha(A) = ha′(A⊤) with a′k = (k + 1)ak+1.

We say that ha is a PST constraint.

The proof is in Appendix C.1. In particular, sequences

of strictly positive ak satisfy the conditions for any d, so

several standard power series are PST constraints.

For example, the sequence aexpk = 1
k! recovers the penalty

hexp(A) = Tr(exp(A)) − d originally proposed in Zheng

et al. (2018).

Table 1 shows that other constraints introduced in the liter-

ature are also PST (Ng et al., 2020; Bello et al., 2022; Yu

et al., 2019; Zheng et al., 2018).
2.2. Limitations of PST constraints

In this section, we provide the criteria necessary for con-

straints to exhibit stable optimization behavior. We prove

that PST constraints do not satisfy these criteria and show

empirically that optimization with these constraints can be

slow or fail. As a solution, we suggest an alternative, non-

PST acyclicity constraint and demonstrate its stability.

Name ak fa ha ∇h⊤a

hexp 1/k! exp(x)− 1 Tr exp(A)− d exp(A)
hlog 1/k log 1

1−x
− log det(I −A) (I −A)−1

hinv 1 1
1−x

Tr(I −A)−1 (I −A)−2

hbinom
(
d
k

)
(1 + x)d − 1 Tr(I +A)d − d d(I +A)d−1

hρ – – |λd(A)| vdu
⊤
d /v

⊤
d ud

Table 1: (Top) Existing PST constraints with their power

series and gradients. (Bottom) The spectral acyclicity con-

straint, which is not PST.

Definition 2.3. An acyclicity constraint h is stable if these

three criteria hold for almost every A ∈ R
d×d
≥0 :

- E-stable. h(sA) = Os→∞(s)
- V-stable. h(A) ̸= 0⇒ h(εA) = Ωε→0+(ε)
- D-stable. h(A) and ∇h(A) are well-defined.

E-stability ensures that h does not explode to infinity; V-

stability ensures h does not vanish rapidly to 0; D-stability

ensures that h and its gradient exist.

These three criteria are all important for maximizing Sα,β(θ)
under the constraint h(Aθ) = 0. D-stability and E-stability

ensure the constraint remains well-defined and with bounded

values throughout the optimization procedure. The V-

stability is related to the nature of constrained optimization.

We now show that PST constraints are unstable as d grows.

Theorem 2.4 (PST instability). For d ≥ 2, any PST con-

straint h is both E-unstable and V-unstable. More precisely,

- E-unstable. ∃A ∈ R
d×d
≥0 , h(sA) = Ωs→∞(sd)

- V-unstable. ∃A ∈ R
d×d
≥0 , h(εA) = Oε→0+(ε

d)

Also, any PST constraint for which fa has a finite radius of

convergence is D-unstable (e.g., hlog, hinv).

Theorem 2.4 is proved in Appendix C.2. It shows that the

instability of the PST constraints worsens exponentially in d.

Fig. 1 empirically corroborates the theorem with two types

of adjacency matrices encountered during DCD: a cycle

and some uniformly random noise. It shows that all PST

constraints escalate to infinity or vanish to zero as the scale

of noise ε changes (Fig. 1 left) or as the number of variables

d increases (Fig. 1 right), reflecting their E-instability and

V-instability. In addition, the D-instability of hlog and hinv

appears even in small ϵ or d (vertical lines). We encounter

all three instabilities during causal discovery experiments

(Section 4.1), leading existing approaches to fail.

2.3. The Spectral Acyclicity Constraint

To overcome the limits of the PST constraint family, we

propose to use another type of constraint, one based on the

spectrum of A, which was first used in Lee et al. (2019).

This constraint draws from a characterization of DAG ma-

2

Stable Differentiable Causal Discovery

random weights in [0,ε] length-d/2 cycle of weights ε:

:

Figure 1: Constraint behaviors when evaluated on uniform

random matrices in [0, ϵ]d×d (dashed) or a cycle of length

d/2 with weights ε (solid). The y-axis is the constraint’s

value, and the x-axis is (left) the weights’ scale ε (right) the

number of variables d. Only the proposed hρ (orange) re-

mains stable; others vanish to zero exponentially or escalate

to infinity (as soon as d > 10). The vertical dotted lines

indicate the constraint escaped its domain of definition. All

these scenarios were encountered during DCD experiments.

trices from graph theory - that A is acyclic if and only if all

its eigenvalues are zero (Cvetković et al., 1980).

We write λ1(A) to λd(A) ∈ C, the d eigenvalues of A,

sorted from smallest to highest complex magnitude The

spectral radius

hρ(A) = |λd(A)|, (1)

is the largest eigenvalue magnitude of A.

The next theorem shows that the spectral radius can be used

as an acyclicity constraint.

Theorem 2.5 (Cvetković et al. (1980); Lee et al. (2019)).

The spectral radius Eq. (1) is an acyclicity constraint.

hρ(A) = 0⇔ A is a DAG.

We refer to it as the spectral acyclicity constraint. It is

differentiable almost everywhere, with gradient

∇hρ(A) = vdu
⊤
d /v

⊤
d ud,

where ud, vd are respectively the right and left eigenvectors

associated with λd(A) (Magnus, 1985).

Theorem 2.5 is proved in Appendix C.3. It implies that hρ
is D-stable. Next, we prove hρ is E-and-V-stable.

Theorem 2.6. hρ is stable.

We refer to Appendix C.4 for the proof.

Remark 2.7. As a corollary of Theorem 2.6, hρ is not an-

other PST constraint (since it is stable).

We complete Fig. 1 with the empirical behavior of hρ. As

theoretically expected, hρ retains non-extreme values and is

suitable for constraint-based optimization.

To further understand the impact of the constraints’ stability

on optimization, we empirically study the optimization path

of the augmented Lagrangian and the penalty method with

each constraint in Appendix Fig. 5. The instabilities of PST

constraints effectively slow their convergence and require

increasing γ and µ to excessively large values. In contrast,

the optimization paths with hρ take the least number of

iterations to converge, especially with the penalty method.

We are ready to perform DCD with the stable hρ.

3. Stable Differentiable Causal Discovery

With the stable acyclicity constraint hρ in hand, we now

introduce Stable Differentiable Causal Discovery (SDCD).

SDCD efficiently learns causal graphs in two stages.

3.1. The SDCD method

To solve the DCD optimization problem (8) with the spectral

acyclicity constraint hρ, SDCD optimizes the following

objective with gradient-based optimization:

θ̂ = argmax
θ

Sα,β(θ)− γ · hρ(Aθ), (2)

where hρ is used as a penalty with coefficient γ. SDCD

proceeds in two stages.

Stage 1: Edge Preselection. First, SDCD solves Eq. (2)

without the constraint, by setting γ = 0.

θ̂1 = argmax
θ

∀j,Aθ,jj=0

Sα1,β1
(θ) (3)

This stage amounts to solving simultaneously d independent

prediction problems of each variable given the others (the

constraint Aθ,jj = 0 prevents self-loops). The goal is to

identify nonpredictive edges and remove them in stage 2,

akin to feature selection.

SDCD selects the removed edges as R̂1 = {(j, l) ∈ J1, dK2 |
A

θ̂1,jl
< τ1} where τ1 is a threshold.

Stage 2: Differentiable Causal Discovery. Next, SDCD

re-solves Eq. (2), this time with the constraint and with

masking the removed edges from stage 1,

θ̂2 = argmax
θ

∀(j,l)∈R̂1,Aθ,jl=0

Sα2,β2
(θ)− γ2hρ(Aθ). (4)

The term γ2 is initialized at 0 and is increased by a constant,

γδ, after each epoch. Like other DCD methods, SDCD

forms the final graph ĜSDCD by selecting the edges in A
θ̂2

with weight above a threshold τ2. The details of the algo-

rithm can be found in Appendix E.2.

Compared to other methods, SDCD innovates in two ways:

(1) by using the constraint hρ with the penalty method and

3

Stable Differentiable Causal Discovery

10 20 30 40 50
d

0

100

200

 S
HD

of edges
SDCD

DCDI
NOTEARS

NOBEARS
DCDFG

sortnregress
GIES

DAGMA
SCORE

50 200 300 400 500
d

0

1k

2k

Figure 2: SHD on observational data across simulations

with increasing numbers of variables d. SDCD achieves the

best SHDs. It is the only method scaling above 200 variables

with nontrivial SHD. Missing data points imply the method

failed to run. Error bars indicate std on 30 random datasets

for d ≤ 50 and five for d > 50 (175 total). Lower is better.

(2) by using a two-stage optimization that preselects edges

in stage 1 and optimize the DCD objective only on those in

stage 2. Without explicit masking, stage 2 would be similar

to the barrier or penalty method (Ng et al., 2020; Bello et al.,

2022), with stage 1 only providing a warm start.

3.2. Theoretical guarantees

In Appendix D, we show that theoretically, stage 1 does

not remove true causal parents, and so, stage 2 returns an

optimal graph. In the next section, we study SDCD’s em-

pirical performance to examine the impact of finite data,

nonconvex optimization, and relaxations.

4. Empirical studies

We compare SDCD to state-of-the-art baselines on multiple

datasets. We find that SDCD achieves significantly better

scores in both observational and interventional settings, par-

ticularly excelling at recovering sparser graphs. SDCD is

the only method to scale to thousands of variables without

sacrificing accuracy. We provide details on the evaluation

setup and additional experiments in Appendix F.

4.1. Observational Data Experiments

We evaluate all eight methods on a wide range of number

of variables d, with a fixed average number of edges per

variable s = 4, and repeat the experiments over 30 random

datasets. Fig. 2 reports the results and detailed tables are

provided in Appendix G with additional baselines.

SDCD outperforms the other methods in accuracy at every

scale and speed. DCDI is competitive on small d but crashes

for d > 40 – as discussed in 2.2, for d = 50, NaNs appear

during training when hexp underflows due to V-instability;

s=2 s=4 s=6

d
=

2
0

d
=

3
0

d
=

4
0

Fraction of variables intervened on

Number of true edges = d sx = Edge Density = 2s / (d-1)

Figure 3: SHD across simulations with an increasing

proportion of variables intervened on, varying the total

number of variables d (columns) and average edges per

variable s (rows). SDCD is the only method to consistently

improve with interventional data and has the best SHDs for

sparse graphs (edge density δ ≤ 45%). Each boxplot over

5 random datasets (45 datasets total).

for d > 50 NaNs appear right at initialization when hexp

overflows due to E-instability. DAGMA fails to converge

under 6 hours for as few as 30 variables, which we find is

caused by the learned adjacency matrix escaping the domain

of definition of hlog due to D-instability.

To show that SDCD’s performance is robust to a compre-

hensive set of scenarios, we provide additional metrics for

these experiments in Appendix F.5 and Figs. 7 and 10.

The runtimes associated with Fig. 2 are presented in Ap-

pendix Fig. 6. SDCD-GPU runs under 15 minutes for all

values of d in Fig. 2 experiments (e.g., d = 500). In Ap-

pendix Fig. 8, we further demonstrate that SDCD can scale

up to 4,000 variables under 2h45.

4.2. Interventional Data Experiments

Next, we compare SDCD, DCDI, DCD-FG, and GIES over

datasets with an increasing proportion of intervened vari-

ables. We characterize the edge density of a graph, δ, as the

ratio of true edges to the maximum number of edges pos-

sible in a DAG. We show the results for SDCD and DCDI

in Figure 3 and all methods in the Appendix (DCD-FG

and GIES performed consistently worse). As expected, the

methods generally improve with more interventional data,

although SDCD is the only method to do so consistently.

We find that SDCD performs the best in most scenarios,

particularly on sparser graphs.

4

Stable Differentiable Causal Discovery

References

Bapat, R. B. Graphs and matrices, volume 27. Springer,

2010.

Bello, K., Aragam, B., and Ravikumar, P. DAGMA:

Learning DAGs via M-matrices and a Log-Determinant

Acyclicity Characterization. In Neural Information Pro-

cessing Systems, 2022.

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien,

S., and Drouin, A. Differentiable causal discovery from

interventional data. In Neural Information Processing

Systems, 2020.

Bühlmann, P., Peters, J., and Ernest, J. CAM: Causal addi-

tive models, high-dimensional order search and penalized

regression. The Annals of Statistics, 42(6):2526–2556,

2014.

Chickering, D. M. Learning Bayesian networks is NP-

complete. Learning from Data: Artificial Intelligence

and Statistics V, pp. 121–130, 1996.

Chickering, D. M. Optimal structure identification with

greedy search. Journal of Machine Learning Research, 3

(Nov):507–554, 2002.

Cvetković, D. M., Doob, M., and Sachs, H. Spectra of

Graphs: Theory and Application. Academic Press, 1980.

Deng, C., Bello, K., Aragam, B., and Ravikumar, P. K.

Optimizing notears objectives via topological swaps. In

International Conference on Machine Learning, pp. 7563–

7595. PMLR, 2023.

Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C. P., Jerby-

Arnon, L., Marjanovic, N. D., Dionne, D., Burks, T., Ray-

chowdhury, R., et al. Perturb-seq: dissecting molecular

circuits with scalable single-cell rna profiling of pooled

genetic screens. Cell, 167(7):1853–1866, 2016.

Eberhardt, F. and Scheines, R. Interventions and causal

inference. Philosophy of Science, 74(5):981–995, 2007.

Glymour, C., Zhang, K., and Spirtes, P. Review of causal

discovery methods based on graphical models. Frontiers

in genetics, 10:524, 2019.

Hauser, A. and Bühlmann, P. Characterization and greedy

learning of interventional markov equivalence classes of

directed acyclic graphs. Journal of Machine Learning

Research, 13(1):2409–2464, 2012.

Hoover, K. D. Causality in Economics and Econometrics,

pp. 1–13. Palgrave Macmillan UK, 2006.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge

university press, 2012.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien,

S. Gradient-based neural DAG learning. In International

Conference on Learning Representations, 2019.

Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin,

Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R., and

Weirauch, M. T. The human transcription factors. Cell,

172(4):650–665, 2018.

Lee, H.-C., Danieletto, M., Miotto, R., Cherng, S. T., and

Dudley, J. T. Scaling structural learning with NO-BEARS

to infer causal transcriptome networks. In Pacific Sympo-

sium on Biocomputing, 2019.

Lippe, P., Cohen, T., and Gavves, E. Efficient neural causal

discovery without acyclicity constraints. arXiv preprint

arXiv:2107.10483, 2021.

Loh, P.-L. and Bühlmann, P. High-dimensional learning of

linear causal networks via inverse covariance estimation.

The Journal of Machine Learning Research, 15(1):3065–

3105, 2014.

Lopez, R., Hütter, J.-C., Pritchard, J., and Regev, A. Large-

scale differentiable causal discovery of factor graphs. In

Neural Information Processing Systems, 2022.

Lorch, L., Sussex, S., Rothfuss, J., Krause, A., and

Schölkopf, B. Amortized inference for causal structure

learning. Advances in Neural Information Processing

Systems, 35:13104–13118, 2022.

Magnus, J. R. On differentiating eigenvalues and eigenvec-

tors. Econometric theory, 1(2):179–191, 1985.

Neapolitan, R. E. et al. Learning Bayesian Networks. Pren-

tice Hall, 2004.

Ng, I., Ghassami, A., and Zhang, K. On the role of sparsity

and DAG constraints for learning linear DAGs. In Neural

Information Processing Systems, 2020.

Ng, I., Lachapelle, S., Ke, N. R., Lacoste-Julien, S., and

Zhang, K. On the convergence of continuous constrained

optimization for structure learning. In International Con-

ference on Artificial Intelligence and Statistics, 2022.

Ng, I., Huang, B., and Zhang, K. Structure learning with

continuous optimization: A sober look and beyond. In

Causal Learning and Reasoning, pp. 71–105. PMLR,

2024.

Peters, J. and Bühlmann, P. Identifiability of gaussian

structural equation models with equal error variances.

Biometrika, 101(1):219–228, 2014.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B.

Causal discovery with continuous additive noise models.

Journal of Machine Learning Research, 15:2009–2053,

2014.

Reisach, A. G., Seiler, C., and Weichwald, S. Beware of the

simulated DAG! causal discovery benchmarks may be

easy to game. In Neural Information Processing Systems,

2021.

Replogle, J. M., Saunders, R. A., Pogson, A. N., Hussmann,

J. A., Lenail, A., Guna, A., Mascibroda, L., Wagner,

5

Stable Differentiable Causal Discovery

E. J., Adelman, K., Lithwick-Yanai, G., et al. Map-

ping information-rich genotype-phenotype landscapes

with genome-scale perturb-seq. Cell, 185(14):2559–2575,

2022.

Rolland, P., Cevher, V., Kleindessner, M., Russell, C., Janz-

ing, D., Schölkopf, B., and Locatello, F. Score matching

enables causal discovery of nonlinear additive noise mod-

els. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,

C., Niu, G., and Sabato, S. (eds.), Proceedings of the 39th

International Conference on Machine Learning, volume

162 of Proceedings of Machine Learning Research, pp.

18741–18753. PMLR, 2022.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and

Nolan, G. P. Causal protein-signaling networks derived

from multiparameter single-cell data. Science, pp. 523–

529, 2005.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-

brenner, N., Goyal, A., and Bengio, Y. Toward causal

representation learning. Proceedings of the IEEE, pp.

612–634, 2021.

Spirtes, P., Glymour, C. N., and Scheines, R. Causation,

prediction, and search. MIT press, 2000.

Triantafillou, S. and Tsamardinos, I. Constraint-based

causal discovery from multiple interventions over overlap-

ping variable sets. Journal of Machine Learning Research,

16(1):2147–2205, 2015.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-

min hill-climbing bayesian network structure learning

algorithm. Machine learning, 65:31–78, 2006.

Wang, Z. and Chan, L. Learning bayesian networks from

markov random fields: an efficient algorithm for linear

models. ACM Transactions on Knowledge Discovery

from Data (TKDD), 6(3):1–31, 2012.

Wei, D., Gao, T., and Yu, Y. Dags with no fears: A closer

look at continuous optimization for learning bayesian

networks. Advances in Neural Information Processing

Systems, 33:3895–3906, 2020.

Yang, K., Katcoff, A., and Uhler, C. Characterizing and

learning equivalence classes of causal dags under inter-

ventions. In International Conference on Machine Learn-

ing, 2018.

Yu, Y., Chen, J., Gao, T., and Yu, M. DAG-GNN: DAG

structure learning with graph neural networks. In Inter-

national Conference on Machine Learning, 2019.

Yu, Y., Gao, T., Yin, N., and Ji, Q. Dags with no curl:

An efficient dag structure learning approach. In Inter-

national Conference on Machine Learning, pp. 12156–

12166. Pmlr, 2021.

Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J.,

and An, Y. The causality analysis of climate change and

large-scale human crisis. In Proceedings of the National

Academy of Sciences, 2011.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.

DAGs with NO TEARS: Continuous optimization for

structure learning. In Neural Information Processing

Systems, 2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing,

E. Learning sparse nonparametric dags. In International

Conference on Artificial Intelligence and Statistics, 2020.

6

Supplementary Materials: Stable Differentiable Causal Discovery

A. Related Work

Causal discovery methods mainly fall into two categories: constraint-based methods and score-based methods (Glymour

et al., 2019).

Constraint-based methods identify causal relationships by testing for conditional independence among variables in the data.

For example, the PC algorithm (Spirtes et al., 2000) finds the graphs which conform to all the independencies present in the

data. COmbINE is an extension to support interventional data (Triantafillou & Tsamardinos, 2015).

On the other hand, score-based methods design a score S(G) that is maximized by the true graph G∗, and they aim to find

its maximizer Ĝ = argmaxG∈DAG S(G). Existing score-based methods differ in their choice of S and of the optimization

method to maximize it. GES (Chickering, 2002) and GDS (Peters & Bühlmann, 2014) optimize the BIC score of a Gaussian

linear model by greedily adding or removing edges. GIES modifies GES to support interventional data (Hauser & Bühlmann,

2012), and CAM supports non-linear additive models (Bühlmann et al., 2014).

Differentiable Causal Discovery (DCD), which our work extends, is a type of score-based approach that reformulates the

search of the score maximizer into a continuous optimization problem. It uses a numerical criterion to distinguish acyclic

graphs from cyclic ones (called the acyclicity constraint). It was initially introduced in (Zheng et al., 2018) as NO-TEARS,

which uses linear models, augmented Lagrangian optimization, and a constraint based on the adjacency matrix exponential.

Other works extend the methodology to incorporate polynomial regression (Lee et al., 2019), neural networks (Lachapelle

et al., 2019; Zheng et al., 2020), and support for interventional data (Brouillard et al., 2020).

Alternative acyclicity constraints (Lee et al., 2019; Ng et al., 2020; Bello et al., 2022) have been proposed, as well as

optimization schemes different than augmented Lagrangian (Ng et al., 2020, 2022; Bello et al., 2022). Deng et al. (2023)

introduced a hybrid approach combining gradient optimization with combinatorial optimization, while Lippe et al. (2021)

explored removing the acyclicity constraint entirely.

Despite a rich literature, DCD has difficulty scaling to a large number of variables, exhibiting long training times and

numerical instability. Wei et al. (2020); Ng et al. (2024) identified those limitations, and Lee et al. (2019); Lopez et al.

(2022) addressed these problems with elegant approximations, but they resulted in poor accuracy.

Here, we provide a theoretical understanding of some algorithmic issues with DCD and then use that understanding to

develop a better DCD method. Our proposed method builds on ideas that have been partially studied in previous work,

including the acyclicity constraint of Lee et al. (2019) and the penalty method of Ng et al. (2020). Lee et al. (2019) uses the

spectral acyclicity constraint for computational efficiency but otherwise does not expand on its advantages. In this work,

we provide a novel analysis of the constraint and incorporate it into a new strategy that is more accurate and scalable than

existing DCD algorithms. Table 8 recapitulates research in DCD and how this work fits in.

7

Stable Differentiable Causal Discovery

B. Background and Notations

We review the Differentiable Causal Discovery (DCD) approach and define the notations used in the paper.

B.1. Background on Causal Discovery

Causal discovery is the task of learning cause-and-effect relationships among a set of variables. In this work, we consider

variables that can be intervened on such that they no longer are affected by their causal parents. These interventions are

called structural or perfect interventions (Eberhardt & Scheines, 2007).

Causal Graphical Models. Causal graphical models (CGMs) provide a mathematical framework for reasoning about

causal relationships between variables. Consider a CGM over d variables and K possible interventions on it.

There are three components:

1. A directed acyclic graph (DAG), G∗ = (V,E), where each node, j ∈ V , represents a variable xj , and each edge,

(j, k) ∈ E, indicates a direct causal relationship from xj to xk.

2. A list of conditional distributions, p∗j (xj | xpaG∗

j
; 0), which specify the distribution of each xj given its causal parents

xpaG∗

j
without intervention (the 0 indicates no intervention).

3. A list of interventions, I = {I0, I1, ..., IK}, where I0 = ∅ (no intervention) and the others Ik ⊂ V define the target

variables of intervention k. Alongside is a list of interventional distributions, p∗m(xm; k), for each k > 0 and m ∈ Ik,

which define the distributions over xm after intervention k.

The joint distribution under intervention k writes:

p∗(x; k) =
∏

j∈V \Ik

p∗j (xj | xpaG∗

j
; 0)

∏

j∈Ik

p∗j (xj ; k). (5)

Note p∗(x; 0) is the joint on observational data.

Data. We observe n data points of the d variables X = {(xi1, ..., x
i
d)}

n
i=1 with labels T = {ti}

n
i=1 where ti ∈ {0, ...,K}

indicates which intervention was applied to xi (0 indicating no intervention). For example, in genomics, Perturb-seq screens

(Replogle et al., 2022) measure the expression of d genes across n cells, where each cell can be edited once to change the

expression of one of its genes.

Causal discovery with score-based methods. The goal of causal discovery is to infer the graph G∗ from the data (X,T).
In particular, score-based methods assign a score S(G) to every possible graph G, where the score function is designed so

that it is maximized on the true graph G∗. Score-based methods aim to find the maximizer

Ĝ = argmax
G∈DAG

S(G). (6)

Fix a model class that defines the conditional (and interventional) distributions for each possible DAG G as {p(· | G; θ, k)}θ.

We can define the score S(G) to be the maximum log-likelihood that can be achieved under graphGwith some regularization

over the number of edges |G| (Chickering, 2002):

Smle(G) = sup
θ

[

1

n

n∑

i=1

log p(xi | G; θ, ti)

]

− λ|G|. (7)

In the limit of infinite samples (n→∞), and under a few assumptions, any maximizer Ĝ of Eq. (7) is close to the true G∗

(Brouillard et al., 2020). More precisely, Ĝ and G∗ are I-Markov-equivalent: they share the same skeleton, v-structures,

and other restrictive properties at the intervened variables in I (Yang et al., 2018).

8

Stable Differentiable Causal Discovery

B.2. Differentiable Causal Discovery

The main challenge to a score-based method for causal discovery is how to search over the large space of DAGs. Differen-

tiable Causal Discovery (DCD) reformulates this combinatorial search into a continuous optimization problem over the

space of all graphs, including cyclic ones (Zheng et al., 2018). It introduces three key components.

Model Class with Implicit Graph. First, DCD defines a model class with no apparent underlying graph, where each

variable is conditioned on all others as p(· | θ, k) ∝
∏
pj(xj |x−j ; θ, k). Instead, θ defines the graph G implicitly, such that

if θ renders x−j 7→ pj(xj |x−j ; θ, 0) invariant to some xℓ ⊂ x−j , then there is no edge from l to j. The induced adjacency

matrix is denoted Aθ. When θ induces an acyclic Aθ, then p(· | θ, k) defines a valid CGM.

Acyclicity Function. Second, DCD introduces a differentiable function h(Aθ) that quantifies how “cyclic” Aθ is. h(Aθ)
is high when Aθ contains cycles with large edge weights, it is low when Aθ contains cycles with small weights, and

h(Aθ) = 0 when Aθ contains no cycles.

Optimization. Finally, DCD reformulates Eq. (7) into a constrained optimization problem only over θ.

θ̂ = argmax
θ

s.t. h(Aθ) = 0.

Sα,β(θ). (8)

It uses Aθ in place of G, uses the constraint h(Aθ) = 0 in place of G ∈ DAG, and uses a new objective Sα,β :

Sα,β(θ) =
1

n

n∑

i=1

log p(xi; θ, ti)− α∥Aθ∥1 − β∥θ∥
2
2, (9)

Sα,β is a relaxed version of Smle (Eq. (7)) where the discrete |G| is changed into an L1 regularization of Aθ (for α ≥ 0)

and an L2 regularization of θ is included (for β ≥ 0). The supθ in Smle (Eq. (7)) is now removed, as it merges with the

argmaxθ of Eq. (8).

With Eq. (8) in hand, different methods for DCD solve the constrained optimization in different ways. Some approaches use

the augmented Lagrangian method (Zheng et al., 2018; Lachapelle et al., 2019; Brouillard et al., 2020; Lopez et al., 2022),

some use the barrier method (Bello et al., 2022), and others use h as a regularizing penalty (Ng et al., 2020).

In all these approaches, the choices of h and the optimization method dictate the optimization behavior and the ultimate

quality of the inferred graph. In the next section, we highlight the importance of h.

9

Stable Differentiable Causal Discovery

C. Theoretical results

C.1. Proof of Theorem 2.2

Before proving Theorem 2.2, we precisely define an acyclic matrix and prove a few lemmas.

Definition C.1 (Cyclic and acyclic matrices). Take a matrix A ∈ R
d×d
≥0 .

We say that A has a cycle of length k if and only if:

∃(i0, ..., ik) ∈ J1, kKk+1, such that,

{
i0 = ik
∀ℓ ∈ J1, kK, Aiℓ−1,iℓ > 0

(10)

We say that A is cyclic if it contains at least one cycle. We note that if A contains a cycle of length k for k ∈ N
∗ (the set

of strictly positive integers), then A also contains a cycle of length k′ for k′ ∈ J1, dK (this follows from the pigeon hole

principle).

We say that A is acyclic if it does not contain any cycle (or equivalently if it does not contain any cycle of length k ≤ d).

Lemma C.2. For any matrix A ∈ R
d×d
≥0 ,

• Tr
[
Ak
]
≥ 0 for any k

• A has a cycle of length k if and only if Tr
[
Ak
]
> 0

• Ad = 0 if and only if A is acyclic.

Proof. Fix a matrix A ∈ R
d×d
≥0 . We have,

Tr
[
Ak
]
=

∑

(i0,...,ik)∈J1,dKk+1

i0=ik=i

k∏

ℓ=1

Aℓ−1,ℓ. (11)

Each addend is non-negative so Tr
[
Ak
]
≥ 0. Furthermore, the total sum is strictly positive if and only if at least one addend

is strictly positive. This happens if and only if A has a cycle of length k by definition.

Similarly, we have

(Ad)i,j =
∑

(i0,...,id)∈J1,dKd+1

i0=id=j

k∏

ℓ=1

Aℓ−1,ℓ. (12)

If Ad
i,j > 0, then one addend is strictly positive and so there exists (i0, ..., id) ∈ J1, dKd+1 such that i0 = id = j and

∏k
ℓ=1Aℓ−1,ℓ > 0. By the pigeon-hole principle, two iℓ are identical, which provides a cycle. Reciprocally, if (i0, ..., ik)

is a cycle of length k, then by repeating (i0, ..., ik, i1, i2...id mod k) until having a path of length d + 1, we have that

(Ad)i0,id mod k
> 0. Hence, Ad = 0 if and only if A is acyclic.

We recall Theorem 2.2.

Theorem 2.2 (PST constraint). For any sequence (ak)k∈N∗ ∈ R
N

∗

≥0, if we have ak > 0 for all k ∈ J1, dK, then, for any

matrix A ∈ R
d×d
≥0 , we have

ha(A) = 0⇔ A is acyclic,
ha(A) ≥ 0,
∇ha(A) = ha′(A⊤) with a′k = (k + 1)ak+1.

We say that ha is a PST constraint.

10

Stable Differentiable Causal Discovery

Proof. Fix a matrix A ∈ R
d×d
≥0 and a sequence (ak)k∈N∗ ∈ R

N
∗

≥0 such that ak > 0 for any k ∈ J1, dK.

By definition, we have,

ha(A) = Tr

[
+∞∑

k=1

akA
k

]

(13)

=
+∞∑

k=1

akTr
[
Ak
]

(14)

(15)

1. By Lemma C.2, Tr
[
Ak
]
≥ 0 and so ha(A) ≥ 0. This proves the second property.

2. Then, ha(A) = 0 if and only if Tr
[
Ak
]
= 0 for all k for which ak > 0. Since ak > 0 for any k ∈ J1, dK we conclude

that if ha(A) = 0, then A does not contain cycles of length k ≤ d, so A is acyclic by Definition C.1. Reciprocally, if A
is acyclic, it does not contain cycles of any length, so ha(A) = 0.

3. Finally, if we write ra the radius of convergence of fa, then ha converge absolutely over the set of matrices with

hρ(A) < ra so it is differentiable with gradient given by: ∇ha(A) =
∑+∞

k=1 akk(A
⊤)k−1.

This concludes the proof.

C.2. Proof of Theorem 2

We recall Theorem 2.4.

Theorem 2.4 (PST instability). For d ≥ 2, any PST constraint h is both E-unstable and V-unstable. More precisely, -

E-unstable. ∃A ∈ R
d×d
≥0 , h(sA) = Ωs→∞(sd)

- V-unstable. ∃A ∈ R
d×d
≥0 , h(εA) = Oε→0+(ε

d)

Also, any PST constraint for which fa has a finite radius of convergence is D-unstable (e.g., hlog, hinv).

Proof. Take a PST constraint ha for some (ak)k ∈ R
d×d
≥0 with ak > 0 for k ∈ J1, dK.

We will show the E-unstable and V-unstable results using a particular adjacency matrix C.

Define C as the adjacency matrix of the cycle 1→ 2→ ...→ d→ 1 with edges weights of 1. That is:

C =

0 1 0 0
0 1 0 . . . 0

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0
. . . 1

1 0 . . . 0

(16)

We have Cd = Id and Tr
[
Ck
]
=

{
d if k = 0 mod d
0 if k ̸= 0 mod d

.

We obtain for any w ∈ R≥0,

ha(wC) = d
+∞∑

ℓ=1

aℓdw
ℓd. (17)

• In particular, we have for any s ≥ 0, ha(wC) = dads
d = Ωs→+∞sd (since ad > 0). This proves the E-instability.

11

Stable Differentiable Causal Discovery

• Define u = min(1, ra/2) where ra is the radius of convergence of fa.

Then, for any ε ∈ [0, u2],

ha(εC) = d

+∞∑

ℓ=1

aℓdε
ℓd (18)

= εdd

(
+∞∑

ℓ=1

aℓdε
(ℓ−1)d

)

(19)

≤ εdd

(
+∞∑

ℓ=1

aℓdu
2(ℓ−1)d

)

(20)

≤ εdd

(
+∞∑

ℓ=1

aℓdu
ℓd + ad

)

(21)

≤ εdd (fa(uC) + ad) . (22)

= Oε→0+(ε
d) (23)

Where we obtain Eq. (21) by noting that 2(ℓ− 1) ≥ ℓ and u ≤ 1. Finally, since u < ra, fa(uC) is finite. Hence the

result.

The D-instability result follows from the definition of the radius of convergence.

C.3. Proof of Theorem 3

We recall Theorem 2.5.

Theorem 2.5 (Cvetković et al. (1980); Lee et al. (2019)). The spectral radius Eq. (1) is an acyclicity constraint.

hρ(A) = 0⇔ A is a DAG.

We refer to it as the spectral acyclicity constraint. It is differentiable almost everywhere, with gradient

∇hρ(A) = vdu
⊤
d /v

⊤
d ud,

where ud, vd are respectively the right and left eigenvectors associated with λd(A) (Magnus, 1985).

The two properties stated in Theorem 2.5 are standard results.

Proof.

• We provide proof for the statement hρ(A) = 0⇔ A is a DAG for the sake of completeness.

⇒ If hρ(A) = 0 then all eigenvalues λj(A) are zeros. But since Tr
[
Ak
]
=
∑d

j=1 λj(A)
k, we have Tr

[
Ak
]
= 0 for

any k ≥ 1 and by Lemma C.2, A is acyclic.

⇐ Assume A is acyclic, then Ad = 0 by Lemma C.2. But then all eigenvalues are 0 (as for eigenvalue λj(A) and

associated eigenvector vj(A), we have Advj(A) = λj(A)
dvj(A) = 0.

Hence, hρ is a valid acyclicity constraint.

• Magnus (1985) shows that hρ is differentiable at every A that has mutually distinct eigenvalues, with the formula

provided in Theorem 2.6. The set of matrices with all distinct eigenvalues is dense in the set of matrices (Horn &

Johnson, 2012)[Theorem 2.4.7.1], which proves the result

12

Stable Differentiable Causal Discovery

C.4. Proof of Theorem 4

We recall Theorem 2.6.

Theorem 2.6. hρ is stable.

Proof. We prove each stability criterion.

• E-stable: For any s > 0 and matrix A, hρ(sA) = |s|hρ(A) = Os→+∞(s).

• V-stable:For any ε > 0 and matrix A such that hρ(A) > 0, hρ(εA) = |ε|hρ(A) = Ωε→0+(ε).

• D-stable: Every matrix has eigenvalues (C is algebraically closed), so hρ is well defined everywhere. In addition,

Theorem 2.5 proved that hρ was differentiable almost everywhere.

Hence, hρ is a stable constraint.

13

Stable Differentiable Causal Discovery

D. Theoretical guarantees of SDCD

We provide correctness guarantees for the two stages of SDCD. We show that, theoretically, stage 1 does not remove true

causal parents, and so stage 2 returns an optimal graph.

With infinite data, Eq. (3)’s unrelaxed version writes,

θ̃1 = argmax
θ

∀j,Aθ,jj=0

K∑

k=0
Ik ̸∋j

πk E
p∗(x;k)

[log pj(xj |x−j ; θ, 0)]−λ|Aθ|, (24)

where πk is the proportion of data coming from intervention k. The next theorem characterizes the graph G̃1 = Aθ̃1
in

terms of Markov boundaries in the true graph G∗. A Markov boundary for j is a minimal set of variables that render j
independent of all the others. In a causal graph, each j has a unique Markov boundary, consisting of j’s parents, j’s children,

and j’s children’s parents (Neapolitan et al., 2004).

Theorem D.1. Under regularity assumptions detailed below, the candidate parents paG̃1

j of j selected by stage 1 are

precisely the Markov boundary of j in the true graph G∗, That is, paG̃1

j = paG
∗

j ∪ chG
∗

j ∪ paG
∗

chG
∗

j

.

The assumptions are similar to the ones detailed in Brouillard et al. (2020) to guarantee that differentiable causal discovery

can identify causal graphs. The assumptions are:

• π0 > 0 – we observe some observational data,

• ∃θ, s.t. ∀k, p∗(· ; k) = p(· ; θ, k) – the model class can express the true model p∗,

• The observational distribution p∗(x; 0) is faithful to the graph G∗ (that is any edge in G∗ indeed result in a nonzero

cause-and-effect relation in the distribution p∗(x; 0). See Neapolitan et al. (2004) for more details.

• The true distributions p∗(x; k) and any distribution of the model class p(x; θ, k) have strictly positive density p∗(x; k) >
0, p(x; θ, k) > 0. This avoids technical difficulty when forming conditional distributions (e.g., p∗(xj |xT ; k)).

• The expectations Ep∗(x;k)[log p
∗(x; k)] are well defined (they are finite). This enables us to consider the likelihood

expectations in the first place.

• The regularization strength λ is strictly positive and small enough (see the proof for how small).

The assumptions are reasonable: p∗ should be in the model class {pθ}, the expectations should be well defined, and

“faithfulness” should hold (that is, G∗ doesn’t have superfluous edges).

Theorem D.1 makes two guarantees: (1) stage 1 does not remove causal parents and (2) stage 1 returns only a subset of the

edges, not all of them. For instance, if G∗ is sparse such that each node has at most k parents, then only O(dk2) edges are

returned, which is essentially linear in d for small k (Appendix D.2).

Theorem D.1 implies that Brouillard et al. (2020, Theorem 1) still applies, and we deduce that stage 2 remains optimal under

the stated assumptions (see Appendix D.1).

Proof. Fix j ∈ J1, jK.

For clarity of notations, we rewrite ?? as

paG̃1

j = argmax
S⊂J1,dK\{j}

sup
θ

K∑

k=0
j ̸∈Ik

πk E
p∗(x;k)

[log pj(xj |xS ; θ, k)]− λ|S|, (25)

where the condition S = paAθ

j is fully captured by the notation pj(xj |xS ; θ, k).

Then, define

ψ(T) = sup
θ

∑

k
j ̸∈Ik

Ep∗(x;k) [πk log pj(xj |xS ; θ, k)]− λ|S|. (26)

14

Stable Differentiable Causal Discovery

Further, define B = boG
∗

j to be the Markov boundary of node j in the true causal graph G∗.

We will show that ψ(B) > ψ(T) for any other T ⊂ J1, dK\ {j}.

We compute,

ψ(B)− ψ(T) = sup
θ

∑

k
j ̸∈Ik

πkEp∗(x;k) [log pj(xj |xB ; θ, k)]− sup
θ

∑

k
j ̸∈Ik

πkEp∗(x;k) [log pj(xj ;xT ; θ, k)] (27)

− λ|B|+ λ|T |

= − inf
θ

∑

k
j ̸∈Ik

πkEp∗(x−j ;k)

[
DKL

(
p∗j (xj |x−j ; k) ∥ pj(xj |xB ; θ, k)

)]
(28)

+ inf
θ

∑

k
j ̸∈Ik

πkEp∗(x−j ;k)

[
DKL

(
p∗j (xj |x−j ; k) ∥ pj(xj ;xT ; θ, k)

)]

− λ(|B| − |T |)

= inf
θ

∑

k
j ̸∈Ik

πkEp∗(x−j ;k)

[
DKL

(
p∗j (xj |x−j ; k) ∥ pj(xj ;xT ; θ, k)

)]
(29)

+ λ(|T | − |B|).

The line 28 comes from Ep∗(x;k) [log pj(xj |xB ; θ, k)] = −Ep∗(x−j ;k)

[
DKL

(
p∗j (xj |x−j ; k) ∥ pj(xj |xB ; θ, k)

)]
+

Ep∗(x;k)

[
log p∗j (xj |x−j ; k)

]
where we added and substracted the log p(k) term (the Ep∗(x;k) is decomposed into

Ep∗(x−j ;k)Ep∗(xj ;k), where the second expectation is in the KL divergence). We use the assumption of strictly positive

density here to define the conditional p∗j (xj |x−j ; k) without technical difficulties.

The line 29 comes from the assumption of sufficient model class capacity and the definition of the Markov boundary. Indeed,

we first have p∗j (xj |x−j ; k) = p∗j (xj |xB ; k) by definition of the Markov boundaryB, and since the model class is expressive

enough, there exists θ such that DKL

(
p∗j (xj |x−j ; k) ∥ pj(xj |xB ; θ, k)

)
= 0.

We further have:

ψ(B)− ψ(T) ≥ π0 inf
θ
Ep∗(x−j ;0)

[
DKL

(
p∗j (xj |xB ; 0) ∥ pj(xj |xT ; θ, 0)

)]
+ λ(|T | − |B|) (30)

= π0Ep∗(x−j ;0)

[
DKL

(
p∗j (xj |xB ; 0) ∥ p

∗
j (xj |xT ; 0)

)]
+ π0 inf

θ
Ep∗(x;0)

[

log
p∗j (xj |xT ; 0)

pj(xj |xT ; θ, 0)

]

(31)

+ λ(|T | − |B|)

≥ π0Ep∗(x−j ;0)

[
DKL

(
p∗j (xj |xB ; 0) ∥ p

∗
j (xj |xT ; 0)

)]

︸ ︷︷ ︸

η(T)

+λ(|T | − |B|). (32)

where line 32 follows from Ep∗(x;0)

[

log
p∗

j (xj |xT ;0)

pj(xj |xT ;θ,0)

]

= Ep∗(xT)

[
DKL

(
p∗j (xj |xT)∥pj(xj |xT ; θ, 0)

)]
≥ 0.

Let’s finally define u = min
({

η(T)
|B|−|T | | T ⊂ J1, dK\{j} and η(T) > 0 and |B| > |T |

}

∪ {1}
)

and fix any λ ∈]0, u[.

Let’s assume now that ψ(T) ≥ ψ(B) for some T ⊂ J1, dK\{j}, and show that we obtain contradictions.

First, we would have λ(|B| − |T |) ≥ η(T). In particular we deduce that |B| ≥ |T | (since η(T) ≥ 0).

Now, two possibilities:

1. If η(T) > 0, then |B| > |T | and by definition of λ, λ > λ which is absurd.

2. If η(T) = 0, then π0Ep∗(x−j ;0)

[
DKL

(
p∗j (xj |xB ; 0) ∥ p

∗
j (xj |xT ; 0)

)]
= 0. This implies that

DKL

(
p∗j (xj |xB ; 0) ∥ p

∗
j (xj |xT ; 0)

)
= 0 for all (x−j); since p∗(x−j ; 0) has positive density and π0 > 0. Hence, the

conditional p∗j (xj |xB ; 0) and p∗j (xj |xT ; 0) are identical. Since B was the Markov boundary of xj , that makes T also a

15

Stable Differentiable Causal Discovery

Markov blanket of xj . But then, by minimality of the Markov boundary in a faithful graph, we have B ⊂ T . Remember

that we had deduced |B| ≥ |T |. So B = T .

This ends the proof, where λ ∈]0, u[.

D.1. Proof for Stage 2

Since stage 1 does not remove any true causal parents, theorem 1 of Brouillard et al. (2020) remains valid.

D.2. Lemma: Asymptotic Bound on number of edges returned in Stage 1

We denote the Markov boundary of j in G∗ by boG∗

j , and recall that boG∗

j = paG
∗

j ∪ chG∗

j ∪ paG
∗

chG
∗

j

\{j}.

The following lemma upper-bounds the theoretical number of edges returned by stage 1 when each node has at most k
parents.

Lemma D.2. Assume G∗ is sparse such that each node has at most k parents. Then, the total size of all the Markov

boundaries is upper-bounded by dk(k + 2) = O(dk2).

Proof. First, note that if each node has at most k parents, then |E| ≤ dk. Finally,

∑

j∈V

|boG∗

j | =
∑

j∈V

|boG∗

j | (33)

≤
∑

j∈V

|paG
∗

j |+ |chG∗

j |+ |paG
∗

chG
∗

j

| (34)

≤ |E|+ |E|+
∑

j∈V

∑

k∈chG
∗

j

|paG
∗

k | (35)

≤ 2kd+
∑

k∈V

∑

j∈paG
∗

j

|paG
∗

k | (36)

≤ 2kd+ dk2 (37)

16

Stable Differentiable Causal Discovery

E. Methods

Stage 1

Edge Preselection

Stage 2

Differentiable Causal Discovery
True edge

Preselected

edge

Inferred

edge

Figure 4: Visual representation of the SDCD method.

E.1. Model Details

In SDCD, the conditional distributions, pj(xj |x−j ; θ, k), are modeled as Gaussian distributions where the mean and variance

are learned by a neural network that takes in all of the other x−j as input. The initial layer of the network applies d
independent linear transformations followed by a sigmoid nonlinearity to the input and outputs d hidden states of size 10.

Each of the d hidden states corresponds to the features then used to predict each variable. Each hidden state is fed into

two linear layers: one to predict the mean parameter of the conditional and one to predict the variance parameter of the

conditional. For the variance, a softplus operation is applied to the output of the linear layer to constrain the variance to be

strictly positive.

E.2. Algorithm Details

E.2.1. SPECTRAL ACYCLICITY CONSTRAINT ESTIMATION

As described in Theorem 2.5, the gradient of the spectral acyclicity constraint can be computed as hρ(A) = vdu
⊤
d /v

⊤
d ud,

where ud, vd are the right and left eigenvectors of A respectively. Using the power iteration method, which involves a fixed

number of matrix-vector multiplications, ud, vd can be estimated in O(d2). Specifically, the updates are as follows:

u
(i+1)
d :=

A⊤u(i)d

∥ud∥2
, v

(i+1)
d :=

Av
(i)
d

∥vd∥2

where ud, vd are initialized as u
(1)
d , v

(1)
d := [1√

d
, . . . , 1√

d
] at the very first epoch of SDCD. In our implementation, we use

15 iterations to estimate the spectral acyclicity constraint value.

Importantly, we re-use the estimates of ud and vd from one epoch to another, as we don’t expect A (and its eigenvectors) to

change drastically.

Hence, at each epoch, we initialize ud, vd using their last epoch’s value and perform 15 power iterations.

E.2.2. SDCD ALGORITHM

The SDCD algorithm follows a two-stage procedure. In the first stage, the coefficient of the spectral acyclicity constraint, γ,

is fixed at zero. We use an Adam optimizer with a learning rate, η1, specific to stage 1 to perform minibatch gradient-based

optimization. The coefficients corresponding to the L1 and L2 penalties, α1 and β1, respectively, are fixed throughout

training. The stage 1 training loss is written as:

L1(X, θ, α1, β1) = Sα1,β1
(θ)

=
1

n

n∑

i=1

log p(xi; θ, ti)− α1∥Aθ∥1 − β1∥θ∥
2
2.

17

Stable Differentiable Causal Discovery

To prevent the model from learning implicit self-loops, the weights corresponding to the predicted variable are masked out

for every hidden state output by the initial neural network layer. Thus, the prediction of each variable is prevented from

being a function of the same variable.

In interventional regimes, the log-likelihood terms corresponding to the prediction of intervened variables are zeroed out.

The intervened variables do not have to be modeled as we assume perfect interventions.

Stage 1 is run for a fixed number of epochs. By default, stage 1 also has an early stopping mechanism that uses the

reconstruction loss of a held-out validation set of data (sampled uniformly at random from the training set) as the early

stopping metric. If the validation reconstruction loss does not achieve a new minimum after a given number of epochs, the

stage 1 training loop is exited.

At the end of stage 1, the learned input layer weights are used to compute a set of removed edges, R̂, for stage 2. Let

W ∈ R
d×d×10 represent the input layer weights. Then, each value of the implicitly defined weighted adjacency matrix is

computed as the L2 vector norm for the corresponding set of weights (i.e., Aθ,i,j := ∥Wi,j,:∥2). This weighted adjacency

matrix is discretized with a fixed threshold, τ1, such that each edge, (i, j), is removed if it falls below the threshold (i.e.,

Aθ,i,j < τ1).

In stage 2, the spectral acyclicity constraint is introduced. Like stage 1, we use an Adam optimizer with learning rate, η2,

and perform minibatch gradient-based optimization. Once again, the L1 and L2 coefficients, α2, β2, are fixed throughout

training. Rather than a fixed γ, SDCD takes an increment value, γ+ ∈ R
+, determining the rate at which γ increases every

epoch. The training loss for stage 2 is as follows:

L2(X, θ, R̂, α2, β2, γ) = Sα2,β2
(θ)− γhρ(Aθ)

=
1

n

n∑

i=1

log p(xi; θ, ti)− α2∥Aθ∥1 − β2∥θ∥
2
2 − γhρ(Aθ).

The same masking strategy as in stage 1 is used to prevent self-loops in Aθ. However, the input layer weights corresponding

to edges (i, j) ∈ R̂ are also masked.

Like before, the reconstruction loss terms corresponding to intervened variables are removed from the loss.

To reduce the sensitivity of stage 2 to the choice of γ+ and to prevent the acyclicity constraint term from dominating the

loss, the linear increment schedule is frozen when Aθ achieves a DAG at the final threshold, τ2. In practice, the DAG check

is performed every 20 epochs. If the adjacency matrix returns to being cyclic throughout training, the γ increment schedule

restarts to increase from where it left off.

The early stopping metric is computed similarly to stage 1, but in stage 2, the early stopping can only kick in when γ has

been frozen. If the γ schedule is resumed due to Aθ reintroducing a cycle, the early stopping is reset.

Lastly, once stage 2 is complete, Aθ is computed and thresholded according to a fixed threshold, τ2. All values exceeding

the threshold (i.e., Aθ, i, j ≥ τ2) are considered edges in the final graph prediction.

The thresholded adjacency matrix may contain cycles if stage 2 runs to completion without hitting early stopping. To ensure

a DAG, we follow a greedy edge selection procedure detailed in Algorithm 2.

Pseudocode for a simplified SDCD algorithm (excludes γ freezing and early stopping) is provided in Algorithm 1.

E.2.3. MOTIVATION FOR STAGE 1

Dedicating stage 1 to removing unlikely edges is motivated by the hypothesis that real-life causal graphs are sparse. For

example, individual genes in biological systems are typically regulated by a few other genes rather than all other genes

(Lambert et al., 2018). A similar hypothesis underlies work in sparse mechanism shift (Schölkopf et al., 2021). Hence,

stage 1 will likely remove many false edges and facilitate stage 2. Alternative approaches for variable selection (e.g.,

markov boundaries (Loh & Bühlmann, 2014; Wang & Chan, 2012), skeletons (Tsamardinos et al., 2006), preliminary

neighborhood selection (Bühlmann et al., 2014; Lachapelle et al., 2019)) can be motivated for the same reasons. Here, we

found a simple modification to the objective function can effectively serve this purpose. In practice, we find that stage 1

improves convergence speed and accuracy (Section 4, Table 6). Notably, we find that stage 1 improves the stability of the

18

Stable Differentiable Causal Discovery

training in stage 2, even when PST constraints are used in place of the spectral one (Table 7). For this reason, stage 1 may

also serve as a beneficial preprocessing step for other causal discovery methods. In Theorem D.1, we prove that stage 1 does

not remove true causal parents.

E.2.4. TIME AND SPACE COMPLEXITY

The time complexity of each iteration of SDCD is O(d2). The forward pass in stage 1 can be computed in O(d2) time.

On the other hand, each of the d prediction problems can be computed independently. This allows for parallelizing the d
problems, each taking O(d) time. Stage 2 also takes O(d2) time as the spectral acyclicity constraint and the forward pass

both take O(d2) time to compute. Thus, the time complexity of each iteration in both stages is O(d2).

If the sparsity pattern of the underlying causal graph is known beforehand such that each variable has at most k parents, we

can further tighten the time complexity of SDCD. By Appendix D.2, we know the size of the set of remaining edges after

stage 1 is O(dk2). Using sparse matrix multiplication, the spectral acyclicity constraint can be done in O(dk2), which is

effectively linear in d if k ≪ d. However, this improvement only becomes significant when d > 10, 000 (from experiments

not reported in this paper).

The space complexity of the algorithm is O(d2), as the number of parameters in the input layer scale quadratically in the

number of features.

Algorithm 1 SDCD

Require: α1, α2 ∈ R
+, β1, β2 ∈ R

+, γ+ ∈ R
+,

τ1, τ2 ∈ R
+, η1, η2 ∈ R

+, E1, E2 ∈ Z
+

A
(0)
θ ← 0⃗G×G

θ
(0)
−Aθ
← RandomGaussianInit()

e← 0
while e < E1 do

θ(e+1) := AdamUpdate(θ(e),∇L1(X, θ
(e), α1, β1), η1)

e← e+ 1
end while

R̂ := Threshold(A
(E1)
θ , τ2)

A
(E1)
θ ← 0⃗G×G

θ
(E1)
−Aθ
← RandomGaussianInit()

γ ← 0
while e < E1 + E2 do

θ(e+1) := AdamUpdate(θ(e),∇L1(X, θ
(e), R̂, α2, β2, γ), η2)

γ ← γ + γ+

e← e+ 1
end while

output DAGTrim(A
(E2)
θ , τ2)

Algorithm 2 DAGTrim

Require: Aθ ∈ R
D×D, τ ∈ R

+

E ← ∅ {Initialize the set of final edges.}
C ← [(i, j) ∈ J1, dK2 | (Aθ,i,j > τ] {Candidate edges above threshold τ .}
Sort C by decreasing Aθ,i,j .

for each (i, j) ∈ C do

if the graph with edges E ∪ {(i, j)} is still acyclic then

E ← E ∪ {(i, j)} {We add the edge if it does not create a cycle.}
end if

end for

19

Stable Differentiable Causal Discovery

F. Empirical Studies Details

F.1. Simulation Details

We simulate observational and interventional data for a wide range of d (number of variables), varying the graph density

with s (the average number of parents per node), and varying the number of variables that are intervened on. The simulations

proceed as done in Brouillard et al. (2020); Bello et al. (2022), by sampling a random graph, modeling its conditionals with

random neural networks, setting its interventional distribution to Gaussian, and drawing samples from the obtained model.

In detail, we generated simulated data according to the following procedure:

• Draw a random undirected graph from the Erdős-Rényi distribution.

• Convert the undirected graph into a DAG G∗ by setting the direction of each edge i→ j if π(i) < π(j), where π is a

random permutation of the nodes.

• Form d possible sets of interventions that target one variable at a time: Ij = {j} and I0 = ∅.

• Draw a set of random fully connected neural networks MLP(j) : R| paG∗

j | → R
100 → 1, each one with one 100-

dimensional hidden layer. Each neural network parametrizes the mean of the observational conditional distributions:

p∗j (xj | xpaG∗

j
; 0) ∼ N

(

µ = MLP(j)(xpaG∗

j
), σ = 0.5

)

.

• For intervention distribution k ≥ 1, perform a hard intervention on variable k and set

p∗j (xk; k) ∼ N (0, 0.1).

• Draw the data according to the model, with 10,000 observational samples and 500 extra interventional samples per

target variable.

• Standardize the data.

We consider several values of d to simulate different scenarios.

F.2. Choice of Hyperparameters

Consistent with prior work (e.g., DAGMA, NOTEARS), we do not conduct hyperparameter optimization for the experiments.

Instead, we fix a single set of parameters for all experiments.

We fixed the hyperparameters as follows: α1 := 1e−2, β1 := 2e−4, η1 := 2e−3, τ1 := 0.2, α2 := 5e−4, β2 :=
5e−3, η2 := 1e−3, γ+ := 0.005, τ2 := 0.1. We found that these selections worked well empirically across multiple

simulated datasets and were used in all experiments without simulation-specific fine-tuning.

Each stage was run for 2000 epochs with a batch size of 256, and the validation loss was computed over a held-out fraction

of the training dataset (20% of the data) every 20 epochs for early stopping. In stage 2, the DAG check of the implicit

adjacency matrix was performed every 20 epochs before the validation loss computation.

F.3. Baseline Methods

For interventional data. For datasets with interventional data, we compare SDCD against DCDI (Brouillard et al., 2020),

DCD-FG (Lopez et al., 2022), and GIES (Hauser & Bühlmann, 2012).

For observational data. When the dataset contains only observational data, we include the interventional methods and

further compare against NO-TEARS (Zheng et al., 2018), NO-BEARS (Lee et al., 2019), DAGMA (Bello et al., 2022), and

SCORE (Rolland et al., 2022). In addition, we report sortnregress (Reisach et al., 2021), a trivial baseline that should be

outperformed (see Robustness Checks). We further included NOCURL (Yu et al., 2021) and AVICI (Lorch et al., 2022) in

Appendix G.

Implementation details. Here, we provide details on the baseline methods and cite which implementations were used for

the experiments. For DCDI and DCDFG, we used the implementations from https://github.com/Genentech/

20

https://github.com/Genentech/dcdfg
https://github.com/Genentech/dcdfg
https://github.com/Genentech/dcdfg

Stable Differentiable Causal Discovery

dcdfg, using the default parameters for optimization. For DCDFG, we used 10 modules in our benchmarks, as reported in

the paper experiments. For GIES, we used the Python implementation from https://github.com/juangamella/

gies, using the default parameters. For DAGMA, we used the original implementation from https://github.

com/kevinsbello/dagma with the default parameters. For NOTEARS, we used the implementation from https:

//github.com/xunzheng/notears, and for NOBEARS, we used the implementation from https://github.

com/howchihlee/BNGPU. For NOTEARS and NOBEARS, we found the default thresholds for determining the final

adjacency matrix performed poorly or did not return a DAG, so for each of these baselines, we followed the same procedure

described in Lopez et al. (2022): we find the threshold that returns the largest possible DAG via binary search. sortnregress

(Reisach et al., 2021) is a trivial baseline meant to ensure that the causal graph cannot be easily inferred from the variance

pattern across the variables. For this baseline, we used the implementation in https://github.com/Scriddie/

Varsortability. For all methods, the training time on CPU is measured on an AMD 3960x with 4-core per method; on

GPU on an AMD 3960x with 16-core and an Nvidia A5000.

F.4. Metrics

We evaluate performance using the structural Hamming distance (SHD) between the true DAG G∗ and each method’s

output graph. SHD is the standard metric reported in causal discovery. It quantifies the minimum number of edge additions,

deletions, and reversals needed to transform one graph into the other. A lower SHD indicates better reconstruction of G∗.

F.5. Robustness Checks

Previous works detailed common issues with the SHD metric (Tsamardinos et al., 2006) and data simulation processes

(Reisach et al., 2021). Below, we discuss three categories of issues that commonly arise when evaluating causal discovery

methods and address each issue with a diagnostic metric.

Sparsity. Particularly when the true causal graph is sparse, SHD may favor sparser predictions since, in the extreme case,

the empty graph achieves an SHD equal to the number of true edges. To show the relative performance of the benchmarked

methods with respect to this trivial solution, we indicate the number of true edges for each simulated setting in Fig. 2 and

Fig. 3. We find that most methods outperform this baseline. Additionally, we report the F1 score and the recall of the

predictions (see Figs. 7 and 10), two metrics that suffer when a method predicts many false negatives. We find that SDCD

still outperforms other methods with these metrics.

Identifiability. In settings with incomplete or no interventional data, the true causal graph may be unidentifiable, meaning

multiple I-Markov equivalent graphs can maximize the score (Brouillard et al., 2020). Therefore, graphs in the same

Markov equivalence class as the true causal graph may have positive SHD values despite being optimal with respect to the

available data. As proposed in Peters et al. (2014), we also compute an adapted version of the SHD to compare the Markov

equivalence class of the methods’ results against the true Markov equivalence class instead of the graphs themselves. This

metric, called SHD-CPDAG, is computed as the SHD between the completed partially directed acyclic graph (CPDAG) of

the predicted graph and the CPDAG of the true graph. Unlike the regular SHD metric, this metric is zero if two graphs are

in the same equivalence class. We report it alongside SHD for our experiments in Fig. 7 to better represent the results in

scenarios with an unidentifiable causal graph. We find very similar results.

Simulation issues. As discussed in Reisach et al. (2021), certain simulation processes used for causal discovery

benchmarking exhibit an issue where the order of the variables, when sorted by sample variance, reflects the true causal

ordering of the graph. As a result, methods that exploit this phenomenon to accurately infer the causal graph may be

misrepresented. To ensure that our simulation process does not suffer from this issue and that the methods are being properly

evaluated, we take two complementary steps recommended in Reisach et al. (2021): (i) we standardize the data before

being input into any of the evaluated methods so that no artificial sample variance information can be exploited, and (2)

we include the trivial baseline, sortnregress (Reisach et al., 2021), which is designed to exploit sample variance artifacts

from a flawed simulation, and should be outperformed by an effective, scale-invariant algorithm. We find that sortnregress

performs poorly, which confirms that our normalization scheme removes simulation artifacts, and we find that SDCD and its

competing methods beat sortnregress by a wide margin.

21

https://github.com/Genentech/dcdfg
https://github.com/Genentech/dcdfg
https://github.com/Genentech/dcdfg
https://github.com/Genentech/dcdfg
https://github.com/juangamella/gies
https://github.com/juangamella/gies
https://github.com/kevinsbello/dagma
https://github.com/kevinsbello/dagma
https://github.com/xunzheng/notears
https://github.com/xunzheng/notears
https://github.com/howchihlee/BNGPU
https://github.com/howchihlee/BNGPU
https://github.com/Scriddie/Varsortability
https://github.com/Scriddie/Varsortability

Stable Differentiable Causal Discovery

F.6. Additional Experiments

Ablation Experiments. We performed ablation studies to judge the impact of each innovation implemented in SDCD. We

evaluated modifications of SDCD where (1) only stage 2 is performed without stage 1 and where (2) in stage 2, the spectral

constraint is substituted for alternative PST acyclicity constraints. As the results show in Tables 6 and 7, both stages are

essential to the success of SDCD.

Experiment against the best baseline. To further validate the results against the strongest baseline, we evaluate SDCD

on the simulated data generated in Brouillard et al. (2020) (DCDI) and compare our results against their reported SHD

values. In Supplementary Table 2 we report the results of SDCD on the simulated data presented in Brouillard et al. (2020)

alongside their original DCDI results. SDCD outperforms DCDI on all its sparse datasets (s = 1). Only for datasets where

d = 10, s = 4, does SDCD perform worse than DCDI. However, we find the edge density (δ = 88.9%) of these graphs to

be unrepresentative of realistic scenarios.

22

Stable Differentiable Causal Discovery

G. Supplementary Figures and Tables

0k 2k 4k 6k
Epoch

0.00

0.01

0.02

0.03

0.04
Th

re
sh

ol
d

to
 D

AG

With Penalty

hexp
hlog
hinv

h
h +

0k 50k 100k 150k
Epoch

With Augmented Lagrangian

Figure 5: The effect of constraints on the learned graph throughout training. The training with penalty hρ+ (dashed purple,

exactly hρ with a hard mask on the diagonal as to prevent self-loops, as implemented in SDCD) converges the fastest toward

a DAG. (left) training with h as a regularization penalty. (right) training with h as an augmented Lagrangian constraint.

Threshold to DAG is the smallest η at which all edges with weight > η form a DAG.

s d δ Method SDCD DCDI-G DCDI-DSF

1 10 22.2% L 0.7±1.2 1.3±1.9 0.9±1.3

NL-Add 0.6±0.7 5.2±7.5 4.2±5.6

NL-NN 0.7±0.7 2.3±3.6 7.0±10.7

20 10.5% L 1.4±3.4 5.4±4.5 3.6±2.7

NL-Add 4.1±3.0 21.8±30.1 4.3±1.9

NL-NN 3.0±2.5 13.9±20.3 8.3±4.1

4 10 88.9% L 5.2±3.5 3.3±2.1 3.7±2.3

NL-Add 4.8±2.1 4.3±2.4 5.5±2.4

NL-NN 7.3±3.0 2.4±1.6 1.6±1.6

20 42.1% L 18.8±10.5 23.7±5.6 16.6±6.4

NL-Add 18.0±7.3 35.2±13.2 26.7±16.9

NL-NN 14.9±1.9 16.8±8.7 11.8±2.1

Table 2: Means and standard deviations of SHD scores over simulations from Brouillard et al. (2020). The “Method”

column refers to the model used to simulate the causal relationships. “L” refers to linear model, “NL-Add” refers to

nonlinear, additive model, and “NL-NN” refers to nonlinear, non-additive (neural network) model. We refer to Brouillard

et al. (2020) for the simulation details. The results are reported alongside the values presented in the original paper. s refers

to the expected number of edges per node, d denotes the number of nodes, and the edge density, δ, is computed as the

fraction of
d(d−1)

2 , the maximum number of edges for a DAG. The lowest average SHD values are set in bold.

23

Stable Differentiable Causal Discovery

10 20 30 40 50
d

0m

30m

1h

1.5h

Tr
ai

ni
ng

 T
im

e

SDCD
DCDI

NOTEARS
NOBEARS

DCDFG
GIES

DAGMA SDCD-GPU

50 200 300 400 500
d

0
1h
2h
3h
4h
5h

Figure 6: Training runtimes across simulations from Fig. 2. SDCD on GPU (dashed) scales to 500 variables in under 20

minutes. Error bars indicate std on 5 random datasets for d < 50 and 3 random datasets for d ≥ 50.

SDCD SDCD-GPU DCDI DCDFG GIES DAGMA NOTEARS NOBEARS SCORE sortnregress AVICI NOCURL

d

10 14.7 ±5.5 NT 24.3 ±3.9 24.6 ±6.0 27.8 ±3.9 25.3 ±6.2 35.3 ±1.9 33.5 ±3.0 14.4 ±4.0 28.6 ±4.7 23.52 33.23

20 35.7 ±6.2 NT 31.7 ±6.5 108.0 ±14.3 123.4 ±12.3 62.0 ±12.0 75.4 ±4.0 74.2 ±3.0 118.6 ±8.5 81.6 ±6.3 60.93 82.37

30 53.8 ±11.9 NT 55.5 ±10.7 258.8 ±32.6 NA 89.4 ±10.9 113.1 ±4.8 113.7 ±3.3 275.9 ±21.0 134.6 ±8.4 97.13 134.60

40 64.0 ±13.7 NT 102.4 ±21.6 426.6 ±73.7 NA 115.3 ±13.4 147.9 ±6.0 151.1 ±3.4 454.3 ±52.8 172.9 ±12.2 135.83 179.93

50 69.9 ±12.3 68.3 ±13.3 NA 660.8 ±126.1 NA NA 183.4 ±7.4 192.0 ±3.5 619.4 ±59.7 216.6 ±12.4 170.83 240.93

100 92.7 ±9.1 89.7 ±11.0 NA 1807.3 ±788.2 NA NA 327.3 ±7.5 389.0 ±3.6 NA 421.3 ±12.0 366.50 513.07

200 225.3 ±13.7 228.0 ±18.3 NA 5657.3 ±2982.6 NA NA 619.0 ±4.2 770.0 ±7.8 NA 824.0 ±19.0 NT NT

300 350.0 ±12.5 360.0 ±nan NA 7284.7 ±5072.3 NA NA NA 1149.0 ±14.0 NA 1190.7 ±26.3 NT NT

400 466.3 ±62.4 471.7 ±68.0 NA 3779.7 ±507.3 NA NA NA 1534.7 ±3.1 NA 1585.0 ±59.3 NT NT

500 621.7 ±10.7 621.0 ±10.5 NA 7252.7 ±3284.6 NA NA NA 1915.7 ±18.8 NA 1974.3 ±34.6 NT NT

Table 3: Detailed results of SHD means and standard deviations from Fig. 2. SDCD-GPU was only run for d ≥ 50. All

other NA values correspond to failed runs (possibly from timeout after 6h, e.g., GIES, or from training error, e.g., DCDI).

NT corresponds to the method not having been tested on that particular example.

10 20 30 40 50
d

0

100

200

SH
D-

CP
DA

G

of edges
SDCD
DCDI
NOTEARS
NOBEARS
DCDFG
sortnregress
GIES
DAGMA
SCORE10 20 30 40 50

d

0

0.25

0.5

0.75

1

F1
 S

co
re

Figure 7: F1 and SHD-CPDAG metrics across simulations from Fig. 2, observational data with increasing numbers of

variables d. Missing data points imply the method failed to run. Error bars indicate std on 30 random datasets.

24

Stable Differentiable Causal Discovery

1000 2000 3000 4000
d

0
4000
8000

12000
16000

SH
D

SDCD-GPU # of edges

1000 2000 3000 4000
d

0
30m
60m
90m

120m
150m

Tr
ai

ni
ng

 T
im

e

Figure 8: SDCD on GPU (dashed) scales to 4000 variables under 3 hours while maintaining competitive SHD. Error bars

indicate std on 3 random datasets for d = 1000, 2000 and 2 random datasets for d = 3000, 4000.

d SDCD-GPU

1000 1438.7 ±59.2

2000 3356.7 ±70.0

3000 5172.5 ±89.8

4000 7567.0 ±343.7

Table 4: Detailed results of SHD means and standard deviations from Fig. 8.

25

Stable Differentiable Causal Discovery

In addition to SHD, we computed precision and recall metrics over the predicted edges with respect to the true edges for

both observational and interventional scenarios. The precision is the fraction of true edges among all the predicted edges.

The recall is the fraction of true edges that have been correctly predicted.

10 20 30 40 50
d

0.0

0.2

0.4

0.6

0.8

1.0

 P

re
cis

io
n

SDCD
DCDI

NOTEARS
NOBEARS

DCDFG
sortnregress

GIES
DAGMA

SCORE

50 200 300 400 500
d

Figure 9: Precision across simulations from Fig. 2, observational data with increasing numbers of variables d. The

SDCD(-CPU) and SDCD-GPU lines overlap, indicating consistent results. Missing data points imply the method failed to

run. Error bars indicate std on 30 random datasets for d < 50 and 5 random datasets for d ≥ 50.

10 20 30 40 50
d

0.0

0.2

0.4

0.6

0.8

1.0

 R

ec
al

l

SDCD
DCDI

NOTEARS
NOBEARS

DCDFG
sortnregress

GIES
DAGMA

SCORE

50 200 300 400 500
d

Figure 10: Recall across simulations from Fig. 2, observational data with increasing numbers of variables d. The SDCD(-

CPU) and SDCD-GPU lines overlap, indicating consistent results. Missing data points imply the method failed to run. Error

bars indicate std on 30 random datasets for d < 50 and 5 random datasets for d ≥ 50.

26

Stable Differentiable Causal Discovery

1000 2000 3000 4000
d

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

SDCD-GPU

1000 2000 3000 4000
d

0.0
0.2
0.4
0.6
0.8
1.0

Re
ca
ll

Figure 11: Precision and recall across simulations from Fig. 8, observational data with increasing numbers of variables d.

Error bars indicate std on 3 random datasets for d = 1000, 2000 and 2 random datasets for d = 3000, 4000.

27

Stable Differentiable Causal Discovery

s=2 s=4 s=6 s=8

d
=

2
0

d
=

3
0

d
=

4
0

Number of true edges = d sx = Edge Density = 2s / (d-1)

Figure 12: SHD across simulations with an increasing proportion of variables intervened on, varying the total number of

variables d (columns) and average edges per variable s (rows). Extended version of Fig. 3 with DCDFG and GIES and

s = 8. Boxplots over 5 random datasets.

28

Stable Differentiable Causal Discovery

s d δ
Fraction of Variables

Intervened on
SDCD DCDI DCDFG GIES

0.00 18.0 ±6.5 24.8 ±4.6 112.3 ±25.8 80.3 ±26.1

0.25 13.4 ±5.7 27.4 ±8.6 99.0 ±7.8 70.0 ±36.8

2 20 21% 0.50 9.4 ±5.4 25.4 ±8.5 109.0 ±31.4 69.7 ±41.9

0.75 9.0 ±2.1 19.8 ±4.8 76.0 ±14.2 62.7 ±22.0

1.00 9.0 ±2.8 18.8 ±3.3 98.0 ±19.7 65.7 ±18.5

0.00 24.6 ±9.6 56.0 ±32.9 183.0 ±102.1 NA

0.25 26.8 ±13.1 60.4 ±40.9 204.3 ±51.4 NA

30 13% 0.50 21.8 ±9.0 56.2 ±26.6 206.7 ±84.3 NA

0.75 16.2 ±3.4 43.2 ±17.8 207.0 ±119.7 NA

1.00 18.2 ±2.2 31.7 ±6.1 283.7 ±15.2 NA

0.00 44.2 ±4.1 109.2 ±27.6 465.0 ±131.8 NA

0.25 33.4 ±3.6 123.8 ±62.1 372.7 ±84.3 NA

40 10% 0.50 33.0 ±3.5 105.6 ±38.8 479.7 ±103.5 NA

0.75 27.6 ±3.4 76.0 ±24.4 469.3 ±126.6 NA

1.00 27.0 ±7.5 63.0 ±26.9 333.7 ±135.5 NA

0.00 36.0 ±6.4 31.2 ±4.1 104.0 ±3.5 110.7 ±25.3

0.25 32.2 ±6.6 33.0 ±3.6 105.7 ±4.2 110.7 ±20.0

4 20 42% 0.50 34.6 ±10.6 30.4 ±7.6 107.7 ±9.5 101.3 ±22.3

0.75 25.8 ±8.8 29.6 ±8.2 102.0 ±6.1 105.7 ±22.8

1.00 22.4 ±7.1 25.8 ±6.4 107.0 ±10.4 105.3 ±12.2

0.00 54.0 ±9.8 57.6 ±7.9 234.7 ±42.9 NA

0.25 43.8 ±10.3 67.0 ±4.0 269.3 ±36.7 NA

30 27% 0.50 39.2 ±8.6 72.4 ±15.5 262.0 ±15.7 NA

0.75 35.0 ±9.9 72.2 ±10.7 232.7 ±24.0 NA

1.00 29.0 ±6.5 60.3 ±5.7 236.0 ±42.8 NA

0.00 69.0 ±11.7 99.0 ±30.7 460.0 ±47.8 NA

0.25 56.8 ±15.4 107.0 ±39.2 438.3 ±73.1 NA

40 20% 0.50 50.4 ±13.0 105.6 ±41.6 457.7 ±21.2 NA

0.75 41.4 ±10.7 97.8 ±33.9 426.3 ±52.6 NA

1.00 34.4 ±11.3 93.5 ±16.3 458.7 ±55.3 NA

0.00 51.2 ±7.5 56.6 ±10.4 112.0 ±12.3 117.7 ±11.9

0.25 44.0 ±6.5 37.8 ±10.2 92.3 ±17.0 117.3 ±11.6

6 20 63% 0.50 42.2 ±8.6 29.0 ±10.8 97.0 ±11.5 112.7 ±7.6

0.75 38.8 ±8.3 25.2 ±10.0 94.0 ±11.5 91.3 ±16.6

1.00 34.0 ±5.1 23.8 ±7.7 93.3 ±1.5 86.0 ±7.9

0.00 85.4 ±6.5 75.8 ±4.4 256.7 ±30.6 NA

0.25 79.8 ±12.5 69.2 ±15.4 260.7 ±12.4 NA

30 41% 0.50 69.4 ±14.8 80.6 ±17.2 257.3 ±18.6 NA

0.75 67.0 ±12.2 86.2 ±23.3 245.3 ±23.7 NA

1.00 57.4 ±11.3 82.0 ±5.3 259.7 ±19.5 NA

0.00 95.4 ±27.7 107.8 ±36.3 460.3 ±63.3 NA

0.25 75.6 ±23.6 130.2 ±43.3 401.0 ±112.8 NA

40 30% 0.50 63.6 ±17.0 146.0 ±51.7 370.0 ±87.1 NA

0.75 57.4 ±19.6 128.3 ±16.3 387.7 ±81.1 NA

1.00 47.2 ±12.2 114.5 ±31.8 469.0 ±28.2 NA

0.00 53.6 ±10.2 82.8 ±14.5 117.7 ±11.4 111.7 ±16.5

0.25 51.0 ±8.1 58.2 ±12.6 108.3 ±19.7 96.7 ±15.8

8 20 84% 0.50 47.0 ±5.3 41.4 ±13.8 100.7 ±7.6 91.0 ±23.5

0.75 40.8 ±6.7 26.0 ±3.8 73.7 ±8.1 86.0 ±31.2

1.00 43.0 ±9.0 19.8 ±4.9 81.7 ±22.4 79.7 ±10.8

0.00 111.8 ±9.8 93.4 ±13.3 255.0 ±27.1 NA

0.25 90.8 ±7.5 75.6 ±8.2 242.7 ±14.6 NA

30 55% 0.50 89.6 ±13.2 78.8 ±12.2 255.0 ±22.1 NA

0.75 77.6 ±9.3 81.2 ±9.4 226.3 ±15.1 NA

1.00 71.0 ±4.6 81.6 ±12.5 222.3 ±13.0 NA

0.00 150.4 ±16.9 151.0 ±23.1 450.0 ±44.5 NA

0.25 127.0 ±12.4 188.4 ±27.4 452.0 ±7.0 NA

40 41% 0.50 113.4 ±20.2 200.0 ±33.9 424.3 ±43.0 NA

0.75 104.4 ±21.3 193.0 ±14.1 426.7 ±34.6 NA

1.00 92.0 ±17.6 190.0 ±nan 422.0 ±18.1 NA

Table 5: Detailed results of SHD means and standard deviations from Fig. 12. GIES failed to run on d ≥ 30.

29

Stable Differentiable Causal Discovery

s=2 s=4 s=6 s=8

d
=

2
0

d
=

3
0

d
=

4
0

Number of true edges = d sx = Edge Density = 2s / (d-1)

Figure 13: Precision across simulations from Fig. 12 increasing proportion of variables intervened on, varying the total

number of variables d (columns) and average edges per variable s (rows). Boxplots over 5 random datasets.

30

Stable Differentiable Causal Discovery

s=2 s=4 s=6 s=8

d
=

2
0

d
=

3
0

d
=

4
0

Number of true edges = d sx = Edge Density = 2s / (d-1)

Figure 14: Recall across simulations from Fig. 12 increasing proportion of variables intervened on, varying the total number

of variables d (columns) and average edges per variable s (rows). Boxplots over 5 random datasets.

31

Stable Differentiable Causal Discovery

Name d=10 d=20 d=30 d=40

SDCD 14.7 40.3 54.3 69.0

SDCD-warm 14.7 40.7 55.0 68.7

SDCD-warm-nomask 19.3 69.7 156.0 272.7

SDCD-no-s1 19.3 68.3 155.3 272.3

SDCD-no-s1-2 16.3 56.7 95.0 135.0

DCDI 24.0 35.7 56.7 87.0

Table 6: Ablation study for SDCD stage 1. We observe that the described version of SDCD performs the best out of all

variations. SDCD-warm performs competitively but generally provides little benefit. SDCD-warm-nomask performs much

worse than SDCD, demonstrating that enforcing the mask during stage 2 is important. We report mean SHD over three

random seeds of observational data (no interventions) with a fixed number of edges per variable, s = 4, for a range of

numbers of variables, d. SDCD-warm refers to starting stage 2 of SDCD, where the input layer is ported over from stage 1

instead of re-learned. SDCD-warm-nomask performs the same warmstart as SDCD-warm but does not enforce the mask in

stage 2. SDCD-no-s1 only performs stage 2. SDCD-no-s1-2 only does stage 2, but sets (α2, β2) to the default values from

stage 1 (α1, β1). We report these values alongside DCDI. The lowest SHD values are bolded for each value of d.

Name d = 10 d = 20 d = 30 d = 40 d = 50

SDCD 13.33 33.47 54.07 70.80 76.60

SDCD-exp 11.60 44.33 69.07 85.07 89.93

SDCD-log 11.20 52.00 87.47 117.87 116.00

Table 7: Ablation study for SDCD stage 2 (choice of the constraint). We observe that SDCD performs the best out of the

three variations. Additionally, the variations using the PST constraints do not crash for any of the runs, even for those with

d = 50. We attribute this improved stability (as compared to DCDI and DAGMA) to stage 1 since there are fewer non-zero

parameters contributing to the value of the constraint. We report mean SHD over five random seeds of observational data

(no interventions) with a fixed number of edges per variable, s = 4, for a range of numbers of variables, d. SDCD-exp is

SDCD except using the hexp constraint in place of the hρ, and SDCD-log uses the hlog constraint.

Method Stable

Training

Scalable

Constraint

Can Use

Interventions

Expressive

Model Class

SDCD ✓ O(d2) ✓ ✓

DCDI ✕ O(d3) ✓ ✓

DCDFG ✕ O(md) ✓ ✕

DAGMA ✕ O(d3) ✕ ✓

NO-TEARS ✕ O(d3) ✕ ✕

NO-BEARS ✓ O(d2) ✕ ✕

Table 8: Comparison of Differentiable Causal Discovery methods including our proposed SDCD method. Expressive model

class refers to the capability to approximate any causal graph with non-linear structural equations.

32

