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Abstract

We show how to transform a non-differentiable

rasterizer into a differentiable one with minimal

engineering efforts and no automatic differentia-

tion. To do so, we improve on Stochastic Gradi-

ent Estimation by using a Per-Pixel Loss which

leverage the fact that only a few primitives con-

tribute to a given pixel. Estimating gradients on

a per-pixel basis bounds the dimensionality of

the optimization problem and makes the method

scalable. To track parameters contributing to a

pixel, we use ID- and UV-buffers, which are often

already available or trivial to obtain. With these

minor modifications, we obtain an in-engine op-

timizer for 3D assets with millions of geometry

and texture parameters.

1. Introduction

Motivation for differentiable rendering. A differen-

tiable renderer is a rendering engine that computes a 2D

image for a given 3D scene and has, in addition, the abil-

ity to provide gradients for the 3D scene parameters via

backpropagation through the rendering calculations. The

benefits of having these gradients is that it makes possible

to optimize the 3D scene parameters to obtain a target 2D

image via gradient descent. This allows for many applica-

tions such as object placement [1], object reconstruction [2],

[3], model simplification [4], material estimation [5], etc.

Objective. We assume that a rasterization engine is avail-

able and we wish to use differentiable rendering to optimize

assets for their final in-engine rendering. Ideally, the solu-

tion should keep the workflow simple and self-contained, i.e.

without using other tools and dependencies than the engine

itself. In this context, implementing a renderer from scratch

within a differentiable frameworks such as Dr.JIT [6] or
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Slang.D [7] is not an option. Using existing differentiable

rasterizers such as NVDIFFRAST [8] requires externalizing

the workflow and relying on external (sometimes vendor-

specific) dependencies, which is also problematic. This is

why we aim at transforming an existing non-differentiable

rasterizer into a differentiable one.

Contribution. Our method is based on the concept of

Stochastic Gradient Estimation [9], a stochastic variant of fi-

nite differentiation that allows for estimating gradients with-

out a differentiable framework. However, akin to finite dif-

ferentiation, this method does not scale to high-dimensional

problems: the more dimensions, the noisier the gradient esti-

mates, the more optimization steps are required. Our idea is

to cut down the dimensionality by estimating gradients on a

per-pixel basis rather than on the whole image. Indeed, the

number of parameter contributing to a given rasterized pixel

is of tractable dimensionality, regardless of the total number

of parameters in the scene. This idea yields a method to

make an existing rasterizer differentiable. Namely:

• It is simple to implement. Our base differential raster-

ization component consists of adding ID/UV-buffers to

the existing raster targets and two compute shaders.

• It keeps the workflow self-contained by bringing the

benefits of differentiable rasterization to an existing

conventional rasterizer without requiring external de-

pendencies.

• It is cross-platform since it uses only conventional

graphics API functionalities. This is a significant bonus

point for adoption given that existing differential ren-

dering solutions are bound to vendor-specific hardware

and/or software.

• It is efficient and scales well in scene complexity. We

optimize scenes with 1M+ parameters in seconds on a

customer GPU.

• It covers multiple use cases. We estimate gradients for

meshes, displacement mapping, Catmull-Clark subdi-

vision surfaces [10], semi-transparent geometry, physi-

cally based materials, 3D volumetric data and 3D Gaus-

sian Splats [11].
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Figure 1: Overview of our differentiable rasterizer. The first compute shader (P) perturbs the scene parameters before

they are rasterized (R). The second compute shader (G) accumulates the error differences, which provide a gradient estimate.

The key point of our approach is that it accumulates the contribution of a pixel (in red in the images) only in its contributing

parameters (in red in the vectors).

2. Per-Pixel Stochastic Gradient Estimation

Our per-pixel method builds on Stochastic Gradient Estima-

tion to differential rasterization. There, the objective is to

optimize a 3D scene such that a rasterized 2D image from

this scene matches a target image. To do this, we need to

estimate the gradients of the rasterization computations.

2.1. Stochastic Gradient Estimation

In this context, the vector θ ∈ R
d represents a 3D scene

defined by a set of parameters, typically geometry, textures,

etc. A rasterizer computes a 2D image I(θ) using this

3D scene. Finally, the objective function f(θ) is the error

between the rasterized image I(θ) and a target image I .

Our goal is to compute the gradient of the loss function w.r.t.

the input parameters: ∂f
∂θi

. Instead of relying on automatic

differentiation, we estimate the gradient stochastically

∂̂f

∂θi
=

f(θ + s⊙ ϵ)− f(θ − s⊙ ϵ)

2 si ϵi
. (1)

where ϵ = (ϵ1, .., ϵd) is a user-defined perturbation mag-

nitude vector s = (s1, .., sd) is a random sign vector,

si ∈ {−1,+1}, where each sign has equal probability. We

note s⊙ ϵ the element-wise product of both vectors.

2.2. Per-Pixel Formulation

The stochastic gradient estimate of Equation (1) is noisy,

especially in a high-dimensional parameter space (Figure 2,

first row). In our use case, the error of a pixel contributes

to every parameter, even if this parameter is never used to

compute the pixel’s value. Hence, every parameter receives

noisy gradients from every pixel, increasing the variance of

the estimator. We propose to compute gradients per-pixel to

alleviates this problem and makes the method scalable.

Derivation. We assume that the loss function we use (the

l2 error in our applications), is a sum of per-pixel errors:

f(θ) =
∑

(w,h)∈W×H

fw,h(θ), (2)

and the gradient can be defined in the same way:

∂f

∂θi
=

∑

(w,h)∈W×H

∂fw,h

∂θi
. (3)

Note that if the parameter θi is not implicated in the compu-

tation of pixel (w, h) then
∂fw,h

∂θi
= 0. We can thus rewrite

the gradient with a sparse sum where only impacted pixels

contribute:

∂f

∂θi
=

∑

(w,h) impacted by θi

∂fw,h

∂θi
. (4)

By applying the estimator of Equation (1) to Equation (4)

we obtain the stochastic gradient estimate our method is

based on:

∂̂f

∂θi
=

∑

(w,h) impacted by θi

f̂w,h

∂θi
. (5)

In Section 3, we show how to implement this equation with

a rasterizer and compute shaders.

3. Turning a Rasterizer Differentiable

We turn a rasterizer based renderer (denotedR) to a differ-

entiable one with 2 compute shaders: a P (perturbation) and

a G (gradient) shaders which implements Equation (5) We

provide an overview of our pipeline in Figure 1 and detail

its three steps next.

2



Differentiable Raterizer using Stochastic Gradient Estimation

3.1. Perturbation (Compute shader P)

First, we launch a compute shader that execute Algorithm 1

over d threads (one thread per scene parameter). The shader

computes the perturbed scene parameters θ + s ⊙ ϵ and

θ − s ⊙ ϵ and store them in GPU memory. Its main in-

gredient is the generation of the random sign vector s via

randomsign(), which we implement with a random hash

function [12].

Algorithm 1 Compute shader P (perturbation)

Require: thread ID i

load θi, ϵi ▷ load 2 float

si = randomsign() ▷ hash function [12]

store siϵi, θi + siϵi, θi − siϵi ▷ store 3 float

3.2. Rasterization (R)

Then we utilize the perturbed parameter to rasterize the

scene twice. First, using parameters θ + s ⊙ ϵ and then

using parameters θ − s ⊙ ϵ. We thus obtain two images:

I(θ+ s⊙ ϵ), and I(θ− s⊙ ϵ). Those are used to evaluate

the gradient in the next shader.

3.3. Gradients Estimate (Compute shader G)

Finaly, we launch a compute shader that execute Algo-

rithm 2 over W × H threads (one thread per pixel). The

shader computes the pixel errors fw,h(θ + s ⊙ ϵ) and

fw,h(θ − s ⊙ ϵ) between the perturbed-scene images

I(θ+s⊙ ϵ) and I(θ−s⊙ ϵ) and the target image I . Once

these errors are available, they provide the gradient estimate

for each parameter i contributing to pixel (w, h) following

Equation (5). We add the result to the gradient estimate

using an AtomicAdd operation to avoid interferences be-

tween multiple threads (pixels) adding simultaneously their

gradient contribution to the same parameter. Note that the

critical point of this algorithm is the ability to loop over each

parameter i contributing to pixel (w, h): R has to output an

ID buffer (else, we get it from another rasterization step).

Algorithm 2 Compute shader G (gradient)

Require: thread ID (w, h)
load Iw,h(θ + s⊙ ϵ), Iw,h(θ − s⊙ ϵ), Iw,h ▷ load 3

float3 (3× rgb)

fw,h(θ + s⊙ ϵ) = ∥Iw,h − Iw,h(θ + s⊙ ϵ)∥
2

fw,h(θ − s⊙ ϵ) = ∥Iw,h − Iw,h(θ − s⊙ ϵ)∥
2

for each parameter θi contributing to pixel (w, h) do ▷

implementation of Equation (5)

load siϵi ▷ load 1 float

AtomicAdd
(

∂f
∂θi
←

fw,h(θ+s⊙ϵ)−fw,h(θ−s⊙ϵ)
2 si ϵi

)
▷

atomic add 1 float

end for

4. Results

We provide results of our method and compare it to a vanilla

stochastic difference approach. For all our example, we

modified Unity to apply our compute shaders and the Adam

optimizer (as a compute shader) once the gradients are com-

puted. All our results are timed on an NVIDIA 4090 GPU.

Optimizing Triangle Meshes. In Figure 2 we illustrate

the difference between the full-image approach of Equa-

tion (1) and the per-pixel approach of Equation (5). In this

experiment, each triangle is represented by 12 parameters (3

vertices + 1 RGB color). Using 100K triangles, we obtain a

total of 1228800 parameters. Optimizing with the full-image

error is impractical with that numbers of parameters. The

per-pixel gradients permit a quick convergence.
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Figure 2: Validation of the per-pixel formulation. In this

experiment, we optimize triangles soups to match a 2D im-

age. The full-imagevariant implements Equation (1) where

the error over the whole image contributes to every parame-

ter and the per-pixel approach implements Equation (5).

Optimizing various primitives. Figures 3 showcase op-

timizing subdivision surfaces [10], PBR textures, volumes,

and Gaussian Splats [11]. For Catmull-Clark subdivision

surfaces [10], we optimize the control mesh and tessellate

it on the fly in the rasterizer [13]. We write the control

mesh’s triangle in the ID buffer. We additionaly optimize

the displacement and normal maps and further store UV

coordinates. For physically based shading, we optimize

roughness, metallicity, albedo, height and normal maps.

Similary to the subdivision surface case, we need to store

the UV coordinate in the ID buffer. For 3D Gaussian splats,

we rasterize transparent quads and use a front-to-back sort-

ing to output a deep ID buffer. To improve the results, we

implement an additional resampling and a splat subdivision

compute shader executed after each gradient descent, follow-

ing Kerb et al. [11]. Lastly, for 3D volumes, we rely on an

additional ray marching phase in compute shader G to splat

the gradients and avoid to store all the voxels coordinates.
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Figure 3: Optimizing 3D Assets. We showcase different application of our method. We can optimize either subdivision

surfaces, PBR materials, 3D Gaussian Splats, and voxels.

5. Conclusion

We have proposed a method to transform a non-

differentiable rasterizer into a differentiable one. Our exper-

iments have shown that our transformed rasterizer supports

the same applications as state-of-the-art differentiable ras-

terizers without critical performance or qualitative penalty.

We successfully used it to optimize meshes, subdivision

surfaces, physically based materials, volumes, and 3DGS.

However, we do not position our method as a replacement

for other state-of-the-art differentiable rasterizers. We aim

to bring the benefits of differentiable rasterization to an au-

dience that already possesses a rasterization engine and has

workflow or platform constraints that prevent using existing

differentiable rasterizers. Our method makes it possible to

enjoy the possibilities of differentiable rasterization within

the existing engine.
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