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Abstract

Unconventional computing devices leverage the

intrinsic dynamics of a physical substrate to per-

form fast, energy-efficient, and special-purpose

computations. Granular metamaterials have great

potential for creating such computing devices.

However, there is no general framework for the

inverse design of large-scale granular materials.

Here, we develop a gradient-based optimization

framework for harmonically driven granular ma-

terials to obtain a target wave response. Using

this framework, we design basic logic gates in

which mechanical vibrations carry the informa-

tion at predetermined frequencies. Our findings

show that a gradient-based optimization method

can greatly expand the design space of computa-

tional metamaterials and provide the opportunity

to systematically traverse their parameter space to

find materials with the desired functionalities.

1. Introduction

Advances in physics, chemistry, and materials science, along

with revolutionary fabrication and manufacturing technolo-

gies, have provided the opportunity to explore unconven-

tional computing paradigms that abandon the notion of cen-

tralized processing units and harness the natural dynam-

ics of the physical system to perform the desired computa-

tion. With this perspective, any controllable physical system

with rich intrinsic dynamics can be exploited as a com-

putational resource. This has resulted in the development

of mechanical (Lee et al., 2022), optical (Anderson et al.,

2023), electromechanical (El Helou et al., 2022) and biolog-

ical (Roberts & Adamatzky, 2022) computing units. Such

physics-based computing devices offer potential advantages

1Department of Computer Science, University of Vermont,
Burlington, VT, USA 2Department of Mechanical Engineering
and Materials Science, Yale University, New Haven, CT, USA.
Correspondence to: Atoosa Parsa <atoosa.parsa@gmail.com>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

for fast and efficient computation that avoids analog-to-

digital conversion and allows massively parallel operations

(Yasuda et al., 2021). However, finding the best hardware

setup is often a challenging task beyond the intuitive limits

of human experts and can benefit from automatic design

methodologies to tune various aspects of the system accord-

ing to the application (Finocchio et al., 2023).

This paper focuses on the inverse design methodologies for

computational metamaterials. Metamaterials are engineered

composite materials designed with particular spatial config-

urations that exhibit macroscopic behaviors different from

their constituent parts (Xia et al., 2022). They can possess

non-natural static or dynamic properties such as negative

bulk moduli and mass density, non-reciprocity, and auxetic

behavior (Kadic et al., 2019; Jiao et al., 2023). Mechanical

metamaterials, especially those made of field-responsive

materials, have received immense attention for robotics ap-

plications where they can respond to various stimuli and

reconfigure to adapt to different environmental conditions

(Rafsanjani et al., 2019). They provide increased robustness

and reduced power consumption in the system and enable

the design of highly tunable multifunctional mechanisms

that integrate sensing, information processing, and actuation

in fully autonomous engineered systems (Pishvar & Harne,

2020). The ability to create metamaterials that can manipu-

late mechanical vibrations of varying frequencies has made

them an excellent platform for mechanical computation (Ya-

suda et al., 2021).

Here, we concentrate on a subset of metamaterials with

particulate structures, namely granular materials. These are

composite materials made of noncohesive particles with

various material properties and shapes, which are densely

packed in random or carefully designed configurations

(Karuriya & Barthelat, 2023). Due to their discrete na-

ture and the nonlinearity of interparticle contacts, granular

materials exhibit highly tunable dynamic responses and are

utilized in a broad range of applications, including energy

localization and vibration absorption layers (Zhang et al.,

2015; Taghizadeh et al., 2021), acoustic computational units

like switches and logic elements (Li et al., 2014; Parsa et al.,

2023), granular actuators (Eristoff et al., 2022), acoustic fil-

ters (Boechler et al., 2011), and sound focusing/scrambling

devices (Porter et al., 2015).
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Granular materials are commonly studied in a confined struc-

ture subject to external vibrations. Their nonlinear dynamic

response is highly tunable by local changes to individual

particles’ properties. Therefore, they possess great poten-

tial for wave-based physical computation. However, with

such high-dimensional parameter space and strongly non-

linear discrete dynamics, tuning their vibrational response

is extremely challenging. Many studies are limited to ex-

perimental measurements (Boechler et al., 2011; Li et al.,

2014; Lawney & Luding, 2014; Cui et al., 2018) or nu-

merical integration of the equations of motion (Boechler

et al., 2011; Chong et al., 2017). Analytical methods for

such granular systems primarily focus on reduced-order lin-

earized approximations. In most such investigations, the

discrete nature of the system is ignored, and the system is

analyzed in the continuum limit. However, such analysis

fails to capture nonlinear phenomena that emerge from the

non-integrable discreteness in the system and the response

can diverge significantly from the predictions (Somfai et al.,

2005; Nesterenko et al., 2005). Therefore, there is currently

no general systematic methodology for studying the tem-

poral and spatial characteristics of the wave response in

disordered granular crystals and designing materials with

the desired dynamic response (Ganesh & Gonella, 2017).

In this paper, we develop a differentiable simulator for gran-

ular materials that can be incorporated into an optimization

pipeline to find the best material properties to perform me-

chanical computations. Appendix A provides a summary of

related works.

2. Methods

Figure 1 presents an overview of the optimization frame-

work. A dense packing of circular particles with different

material properties is subjected to external mechanical vi-

brations by displacing the selected input particle(s) with a

predefined oscillatory force indicated as X(t). The system’s

hidden state (ht = (r, ṙ)t) can be described with the posi-

tion (rt) and velocity (ṙt) of the particles in time. In the

forward pass, the system’s state evolves according to the

dynamics dictated by the physical system and depends on

the state in the previous time step (ht−1), physical param-

eters (θ), and the input at time t (Xt). The physics model

describes the nonlinear relation between the state, input, and

the parameters as ht = f(θ, ht−1, Xt). This is analogous

to Recurrent Neural Networks (RNNs), where the hidden

state allows the network to remember the past information

fed into the network and enables learning of the temporal

structure and long dependencies in the input. The output

is defined as the measurements of a physical property of

the system in time such as the displacement of the chosen

output particle(s) Ŷt. To train the physical network, we need

to update the trainable parameters θ, which are the mate-

...
unfold

 

...

End-to-end differentiable simulator

Figure 1. Inverse design of computational granular crystals. When

the granular crystal is vibrated at its boundary, the elastic compres-

sion waves (indicated by the red shades in the panels) propagate

in the material until they are scattered or attenuated by disorder,

affected by dispersion, or distorted by (self-)demodulation and fre-

quency mixing at nonlinear interparticle contacts (Forward Pass).

The waves arriving at the output particle(s) are recorded and the dif-

ference between the desired (Y (t)) and recorded response (Ŷ (t))
is utilized in a loss function (L) to adjust the trainable parameters

(θ). f relates the input Xt, parameters θ, and the hidden state

of the system ht−1 to the hidden state at the next time step ht.

An end-to-end differentiable physics simulator allows us to track

the partial derivatives in the Backward Pass indicated by the pink

arrows in the figure. The particles’ material properties can be

optimized with a gradient-based method to produce the desired

nonlinear wave response.

rial properties of the particles (equivalent to weights of an

RNN), to reduce the loss L defined between the real Ŷt and

desired Y (t) outputs over T time steps.

An end-to-end differentiable simulator allows us to retain

the gradients of the loss function with respect to the trainable

parameters (∇θL) to be used in backpropagation. Similar

to traditional RNNs, the gradients are obtained by taking

the partial derivatives and using the chain rule as follows:

∇θL =

T
∑

t=1

dL

dht

dht

dθ

dL

dht

=
∂L

∂ht

+
∂L

∂ht+1

∂ht+1

∂ht

∂L

∂ht

=
∂L

∂Yt

∂Yt

∂ht

dht

dθ
=

∂f

∂θ
(1)

Having the gradients of the loss function with respect to

the physical parameters of the network, a gradient-based

optimization method can be used to update the parameters

(θ) at time step T and start the next forward pass.
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2.1. Differentiable Simulator

Figure 2 shows an overview of the granular crystals we aim

to optimize in this work. Deformable spherical particles

with identical diameters and various elasticity are placed on

a hexagonal lattice with fixed boundaries in both x and y
directions. In this system, the repulsive force between two

neighboring particles is nonlinear and can be described by

the Hertz law (Hertz, 1882). More details about the physics

model are provided in Appendix B.

Stiffness
1 2 3 4 5 6 7 8 9 10

Figure 2. A granular crystal is made of spherical particles with

identical size (diameter σ) and various stiffnesses (represented in

different shades of grey) in a confined configuration with fixed

boundaries. Hertz’s law describes the relation between the parti-

cle’s overlap (δ = σij − rij) and applied force (F ) as F = αδβ .

Here, β is a constant that depends on the particle geometry and

determines the nonlinearity of the contact forces. A commonly

used value for spherical contacts is β = 3

2
, which produces a cubic

nonlinearity in the equations of motion. rij = |ri − rj | is the

interparticle distance and σij =
σi+σj

2
is the maximum distance,

after which the particles lose contact. As it is shown in the plot

on the right, the interparticle potential is one-sided, and unlike a

Hookean spring, the force becomes zero when the two particles

lose contact.

Discrete Element Method (DEM) (Cundall & Strack, 1979)

can be used to numerically simulate the motion of the in-

teracting particles in a granular crystal. In this paper, we

developed a differentiable simulator with the same method

(details available in Appendix B.3) in the PyTorch frame-

work (Paszke et al., 2017).

2.2. Optimization Setup

When a disordered granular crystal, such as the one shown

in Figure 2, is vibrated at its boundaries, the produced elas-

tic waves propagate through the material and scatter at the

particle-particle interfaces. The material properties of the

individual particles (elasticity, density, etc.), their geome-

try (shapes and sizes), and their arrangement (neighboring

contact points) determine the distortion of the elastic waves

and their frequency and amplitude-dependent attenuation.

In this paper, we formulate the optimization problem of

finding the stiffness values of the particles in a hexagonal

granular crystal to achieve a desired wave response. There-

fore, the trainable parameters, as defined in Equation (1), are

θ = ki, i ∈ [0, N ] where N is the total number of the parti-

cles. The desired wave response is defined in terms of the

displacement of the selected output particles and formulated

into the loss function L for the optimization.

2.3. Gradient-based Optimization

To enable the gradient-based optimization of granular crys-

tals, we used PyTorch’s automatic differentiation (autod-

iff ) engine to compute the gradients of the loss function

with respect to the trainable material properties (θ). We

implemented custom submodules for the granular crystal

simulation. Adam optimizer (Kingma & Ba, 2017) with an

adaptive learning rate is utilized for the training process.

3. Experiments

To demonstrate the application of our gradient-based design

framework we considered three design problems, including

an acoustic waveguide (Appendix C), a mechanical AND

gate, and a mechanical XOR gate (Appendix D). The de-

tailed description of the simulation and model parameters is

presented in Appendix B.

3.1. Acoustic Logic Gate

input 1 input 2 output

St
iff
ne
ss

Figure 3. Experimental setup for the acoustic logic gates. The

granular crystal is made of circular particles with various stiffness

values represented in different shades of grey. The two particles on

the left (with green and blue markers) are selected as the input ports

where the external sinusoidal oscillations are applied to the system.

As noted in the truth table, the 0/1 values at the ports are encoded

as harmonic vibrations at a particular frequency f . The 00 case has

a trivial solution that is always correct: since there are no power

sources in the system, the lack of input vibrations means the output

is 0, which is true for both AND and XOR gates. For the other

three cases (01, 10, and 11) the horizontal displacement of the

output particle from its equilibrium position (rx(t)) is measured

to infer the output of the logic function.

To demonstrate the computational capabilities of new physi-

cal substrates as alternatives to traditional digital electronics,

many studies show designs for basic logic gates as a rea-

sonable benchmark (Yasuda et al., 2021). In this paper, we

first showed the design of an acoustic AND gate. To show-

case the exploitation of the nonlinear dynamics of granular

crystals for mechanical computing, we also investigated the

design of an XOR gate as it performs a nonlinear input-

output transformation. Figure 3 shows our experimental

setup for the realization of acoustic logic gates.

The input and output signals are mechanical vibrations of

the selected particles in the granular crystals. To design
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logic functions, we first need to define a representation

relation that dictates how we encode the binary values. Here,

we measure the horizontal displacement of the particles

from their equilibrium positions: using the amplitude of

the input vibration as the baseline, a significant periodic

displacement is interpreted as the binary 1 value, and a

negligible one is interpreted as 0. We apply sinusoidal

vibrations as the input and for the experiments in this section,

we fixed the operational frequency of the logic gate at a

predetermined frequency (f = 15[Hz]), which was chosen

according to the material properties of the granular crystal

and its frequency spectrum. The amplitude of oscillations

(A) is fixed at a value of 10−3.

To tune the particles’ stiffness values, we define the L-1 loss

function (Mean Absolute Error, MAE) between the intensity

of the horizontal displacement of the output particle (Ŷ =
[rxoutput(t)]

T
t= 2T

3

) and the desired output (Y ) as follows:

LMAE(Y, Ŷ ) =∥ Y − Ŷ ∥MAE

=
1

N

N
∑

n=1

|(Y n − Ŷ n| (2)

where N is the number of samples in the training dataset D,

and the superscript n represents the output for each sample.

When calculating the wave intensity, we only use the last

one-third of the simulation time ([ 2T
3
, T ], where T is the

total simulation) to ignore the transient part of the signals.

3.2. AND Gate

We start with designing an AND gate because, due to its

linear nature, we expect the design process to be straightfor-

ward. Although, due to the strong nonlinearity in the system,

the material is theoretically capable of more complex com-

putations, the high-dimensional parameter space (10× 11
real numbers in [1.0, 10.0]) can make the gradient-based

optimization challenging. The training dataset D is made

of time series for the three binary input cases as follows:

D = {

(X01 = [X1 = A sin 2πft,X2 = 0]Tt=1, Y
01 = [0]Tt=1),

(X10 = [X1 = 0, X2 = A sin 2πft]Tt=1, Y
10 = [0]Tt=1),

(X11 = [X1 = A sin 2πft,X2 = A sin 2πft]Tt=1,

Y 11 = [A sin 2πft]Tt=1)} (3)

Figure 4 presents the training loss and an example of the

optimized material from one of the 10 independent trials in

each of the two setups. It should be noted that the sudden

changes in the training loss at specific instances are due to

the incorporation of an adaptive learning rate. We incorpo-

rated a multi-step adaptive learning rate with a decay rate

of γ = 0.1 and step sizes at [150, 300, 400] epochs for the

fixed-value initialization and [100, 200, 300] epochs for the

Figure 4. Gradient-based design of an acoustic AND gate.The gran-

ular crystal is initialized as a homogeneous assembly of particles

with a stiffness value located in the middle of the permitted range.

Each light graph in the top left panel shows the training loss for

one of the 10 independent trials over 500 epochs. One example

of the optimized material is shown on the right. The plots on

the bottom show the inputs and output of the logic gate, as the

horizontal displacement of the particles in time. Each row shows

one of the three cases (01, 10, and 11).

randomly initialized case. The starting value of the learning

rate is set to lr = 0.001 in both cases.

4. Conclusions

Motivated by the growing interest in unconventional com-

puting substrates, we explored the application of gradient-

based optimization frameworks for designing computational

granular materials. We showed that by developing a differen-

tiable simulator, we can employ gradient-based optimization

to tune the material properties of the constituent particles of

a granular crystal to allow for the desired wave responses.

Unlike previous work such as Mechanical Neural Networks

that train the physical system directly (Lee et al., 2022),

here we trained the physics model in a differentiable simu-

lator. Therefore, transferring the designs to reality can be

challenging because of the discrepancies between the real

and simulated systems. In future work, we can address this

by including random amounts of reasonable noise to the

parameters and finding designs that tolerate reasonable man-

ufacturing errors. Despite this, our approach can provide

valuable insights into the design space of granular crystals.

For example, using our design framework we can inves-

tigate which physical properties of the physical substrate

offer more opportunities for a desired computational task.
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47–65, March 1979. ISSN 0016-8505, 1751-7656. doi:

10.1680/geot.1979.29.1.47.

Echeverri Restrepo, S., Sluiter, M. H. F., and Thijsse, B. J.

Atomistic relaxation of systems containing plasticity el-

ements. Computational Materials Science, 73:154–160,

June 2013. ISSN 0927-0256. doi: 10.1016/j.commatsci.

2013.03.001.

El Helou, C., Grossmann, B., Tabor, C. E., Buskohl, P. R.,

and Harne, R. L. Mechanical integrated circuit materials.

Nature, 608(7924):699–703, August 2022. ISSN 1476-

4687. doi: 10.1038/s41586-022-05004-5.

Eristoff, S., Kim, S. Y., Sanchez-Botero, L., Buckner, T.,
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Puliafito, V., Åkerman, J., Takesue, H., Trivedi, A. R.,

Mukhopadhyay, S., Roy, K., Sangwan, V. K., Hersam,

M. C., Giordano, A., Yang, H., Grollier, J., Camsari, K.,

Mcmahon, P., Datta, S., Incorvia, J. A., Friedman, J.,

Cotofana, S., Ciubotaru, F., Chumak, A., Naeemi, A. J.,

Kaushik, B. K., Zhu, Y., Wang, K., Koiller, B., Aguilar,

G., Temporão, G., Makasheva, K., Sanial, A. T., Hasler,

J., Levy, W., Roychowdhury, V., Ganguly, S., Ghosh, A.,

Rodriquez, D., Sunada, S., Evershor-Sitte, K., Lal, A.,

Jadhav, S., Di Ventra, M., Pershin, Y., Tatsumura, K., and

Goto, H. Roadmap for Unconventional Computing with

Nanotechnology, January 2023.

Franklin, S. V. and Shattuck, M. D. Handbook of Granular

Materials. CRC Press, 2016.

Ganesh, R. and Gonella, S. Nonlinear waves in lattice mate-

rials: Adaptively augmented directivity and functionality

enhancement by modal mixing. Journal of the Mechanics

and Physics of Solids, 99:272–288, February 2017. ISSN

0022-5096. doi: 10.1016/j.jmps.2016.11.001.

Gao, G.-J., Blawzdziewicz, J., and O’Hern, C. S. Geomet-

rical families of mechanically stable granular packings.

Physical Review E, 80(6):061303, December 2009. doi:

10.1103/PhysRevE.80.061303.
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A. Related Work

Physical computing has been an active research topic in recent years, and many attempts have been made to take inspiration

from deep learning concepts and incorporate machine learning techniques in designing novel computational hardware.

Physical Reservoir Computing (PRC) is one such direction where a physical system is exploited for computation by applying

the inputs to a physical substrate, collecting the raw measurements, and only training a linear “readout” layer to match

the desired outputs (Nakajima, 2020). Recently, Physical Neural Networks (PNNs) have been introduced in which the

hardware’s physical transformation is trained in a similar manner to DNNs to perform the desired computations. Here,

unlike PRC, the system’s input-output transformation is directly trained with an algorithm called physics-aware training

(PAT) that enables backpropagation on physical input and output sequences (Wright et al., 2022). Optical Neural Networks

are an example of PNNs, that propose running deep learning frameworks for any task, such as classification or natural

language processing, directly on an optical hardware instead of a digital electronic one such as a GPU (Anderson et al.,

2023; Huo et al., 2023). In PNNs, the mechanical properties of the physical system do not change during the training;

instead, the applied physical input is tuned with backpropagation using a differentiable model of the system to achieve the

desired input-output transformation. Training PNNs with BP has a couple of drawbacks such as needing accurate knowledge

of the physical system and being unsuitable for online training. Direct feedback alignment (DFA) was developed to address

this by omitting the need for layer-by-layer propagation of error. However, it still requires modeling and simulation of the

physical system (Nakajima et al., 2022).

Mechanical Neural Networks (MNNs) are another type of physical network that, unlike the previous works, tune the

mechanical properties of the physical system during training. Lee et al. have developed a framework where the stiffness

values of interconnected beams in a lattice are tuned for desired bulk properties like shear and Young’s modulus or

mechanical behaviors such as shape morphing (2022). Similar works have been done for analog wave-based computing

where a differentiable model is developed based on the finite difference discretization of the dynamical equations describing

a scalar wave field in continuous elastic metamaterials (Hughes et al., 2019; Jiang et al., 2023). The same approach is

utilized in (Papp et al., 2021) for designing computing devices with spin waves propagating in a magnetic thin film. Here,

a magnetic field distribution is designed to steer the spin waves in order to achieve the desired behavior. However, the

system is not trained in hardware; instead, the material is discretized into cells with various material properties, that are

determined using an approximate differentiable simulator. Such an approximate model will not capture the full dynamical

behavior in the strongly nonlinear regime. Moreover, after manufacturing the optimized design there are no methods for

online adaptation of the structural parameters and therefore such physical substrates are more suitable for tasks where a

system is trained once and then used for inference many times.

Granular metamaterials are particulate systems where the properties of the individual particles can be modified independently.

Therefore they offer the opportunity to build reconfigurable multifunctional materials. While gradient-based optimization

has been explored to a great extent in designing continuous photonic materials (Tahersima et al., 2019; Yao et al., 2019;

Mao et al., 2021; Jiang et al., 2021), designing granular crystals with desired dynamic responses has not been explored.

There exists an extensive body of research on granular materials dating back over 200 years. However, a general connection

between their dynamic wave response and their constituents’ shapes and material properties remains unknown. Moreover,

analytical exploration of the parameter space of granular materials is infeasible without imposing simplifying assumptions

and approximations. In this paper, we present a gradient-based optimization framework for designing granular crystals with

desired dynamic wave responses.

B. Physics Model

The granular crystals discussed in this paper are finite-length two-dimensional configurations of spherical particles with

identical diameters and variable elasticity placed on a horizontal flat surface (Figure 2). The system is a macroscopic scale

granular system (particle sizes are in the millimeter-to-centimeter range), so the only forces acting on each particle are the

finite-range repulsive interparticle contact forces. On the scale of particle contacts, we consider normal forces resulting from

the adjacent particles’ overlaps and ignore the tangential forces and particle rotations. With these assumptions, the local

potential between each pair of particles i and j can be written as:

Vij(rij) =
ϵ

α
(1−

rij
σij

)
α

Θ(1−
rij
σij

) (4)

where ϵ is the characteristic energy scale, rij is the particles’ separation, and σij is the center-to-center separation at which
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the particles are in contact without any deformation. In the case of spherical particles with diameters σi and σi we’ll have:

σij =
σi+σj

2
. Θ in this equation is the Heaviside function, which ensures that the potential field is one-sided, meaning that

the particles only affect their adjacent neighbors when they are overlapping:

Θ(1−
rij
σij

) =











0
rij
σij

≥ 1

1
rij
σij

< 1
(5)

This is the simplest model for a granular crystal that neglects special aspects such as particles’ rotation and alignment, which

might be more important in higher dimensional experimental setups but are negligible in smaller scales. The separation

between two spherical particles is computed based on their Cartesian coordinates as follows:

|rij | = |−→ri −
−→rj | =

√

x2
ij + y2ij (6)

In Equation (4), α determines the nonlinearity of the contact force. In this paper, we consider Hertzian (α = 5

2
) contacts to

provide enough nonlinearity in the physical substrate for performing the desired computations. Interparticle forces can be

obtained by taking the derivative of the potential (Vij) with respect to the displacement:

Fij = −
∂Vij(rij)

∂rij

=
ϵ

σij

(1−
rij
σij

)
α−1

Θ(1−
rij
σij

)
∂rij

∂(xij or yij)

(7)

We assume that the particles have similar mass (m) but can have different stiffness values. In this case, ϵ can be calculated

using the effective stiffness as follows:

ϵij =







ki = kj : if ki = kj

ki × kj
ki + kj

: if ki ̸= kj
(8)

Using the above notation, we can write Newton’s equations of motion as:

mir̈i = Fi =

N
∑

j=1,j ̸=i

Fij + Fext (9)

where the first term is the total force from the neighboring particles, and the second term is the system’s external forces,

which include the interaction force from the walls (in case of a fixed boundary condition) and the excitation applied to the

system in the form of harmonic vibrations. Using Equation (7), we can obtain the partial forces in a one-dimensional system

as:

F x(rij) =
ϵij
σij

(1−
xij

σij

)
α−1

Θ(1−
xij

σij

)

F x
iw =

ϵ

σi/2
(1−

xi − xw

σi/2
)
α−1

Θ(1−
xi − xw

σi

) (10)

where F x
iw is the force between particle i and the wall placed at xw. In a two-dimensional system, the forces are given by:
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F x(rij) =
ϵij
σij

(1−
rij
σij

)
α−1 xij

rij
Θ(1−

rij
σij

)

F y(rij) =
ϵij
σij

(1−
rij
σij

)
α−1 yij

rij
Θ(1−

rij
σij

)

F x
iw =

ϵ

σi/2
(1−

xi − xw

σi/2
)
α−1

Θ(1−
xi − xw

σi

)

F y
iw =

ϵ

σi/2
(1−

yi − yw
σi/2

)
α−1

Θ(1−
yi − yw

σi

) (11)

B.1. Dissipation

To capture the dissipation effects in real granular crystals, we remove the Hamiltonian assumption and incorporate a dash-pot

form of dissipation with a velocity-dependent functional form and characteristic constants for background, particle-particle,

and particle-wall interactions. This adds extra terms to the equations of motion of each particle i (Equation (9)), and we’ll

have:

mir̈i = Fi =

N
∑

j=1,j ̸=i

Fij +
∑

walls

Fiw − Fib + Fext (12)

where mi is the mass of particle i and the dissipation Fib is:

Fib = Bvi

+
∑

j

BppvijΘ(1−
rij
σij

)

+
∑

walls

BpwviΘ(1−
ri − rw

σi

),

vi =
∂ri
∂t

, vij = vi − vj (13)

The damping coefficients (B: background damping, Bpp particle-particle damping, and Bpw particle-wall damping) are

usually determined by curve fitting in an experimental setup.

B.2. Strength of Nonlinearity

The discrete nature of the granular crystals makes it possible to tune the degree of nonlinearity in the system’s dynamics.

As was mentioned in the introduction, we study the particles in a confined space and under an initial static compression,

which keeps the particles in place. By controlling the amount of precompression, the system can transition from a linear to a

strongly nonlinear regime. To study this effect, we introduce the packing fraction as follows:

ϕ =
Apart

Asys

(14)

where Apart is the sum of the area of the particles, and Asys is the area of the system (the confining box). In this paper, we

assume that the unforced system is mechanically stable and above the jamming state (ϕj , mechanical rigidity). Because of

the initial precompression, the system will have a nonzero initial energy that depends on the amount of overlap between

adjacent particles. To find the initial particle positions (δ0,i) and interparticle overlaps, an energy minimization algorithm is

used, which will be explained in the next subsection.

B.3. Numerical Simulation

We use the Discrete Element Method (DEM) (Cundall & Strack, 1979) to simulate the motion of the interacting particles in

a granular crystal. The simulation starts with the initial configuration and updates the positions and velocities by numerically
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integrating the equations of motion (Equation (9)). Since our granular packings are made of particles with various material

properties and are initially compressed with a uniform force, we need to ensure that the initial configuration is statically

stable (the ground state u = 0 and u̇ = 0 is the minimum of energy). Here, we adopt a packing generation protocol that

applies successive compression/decompression by changing the particle sizes (Gao et al., 2009; Franklin & Shattuck, 2016).

An energy minimization technique, Fast Inertial Relaxation Engine (FIRE) (Echeverri Restrepo et al., 2013), is used to

relax the interparticle forces and reach equilibrium following the repetitive deformations. With this method, we can find

the particles’ initial positions for a mechanically stable configuration with a given boundary condition (Asenjo-Andrews,

2013). To integrate the equations of motion, we use the Velocity Verlet integration algorithm, which is derived by the Taylor

expansion of the particle positions at a small period ∆t around time t (Verlet, 1967).

B.4. Simulation Parameters

Table 1 includes the parameter values for the physics model and numerical simulations used in the experiments.

Table 1. Simulation parameters.

PARAMETER VALUE

TOTAL TIME (T ) 3× 103

TIME STEP (∆t) 5× 10−3

LATTICE SIZE (N = Nx ×Ny ) 10× 11
MASS (m) 1.0
STIFFNESS (k) ∈ [1.0, 10.0]
PACKING FRACTION (φ) 0.1
DIAMETER (σ) 0.1
BACKGROUND DAMPING (B) 1.0
PARTICLE-PARTICLE DAMPING (Bpp) 0.0
PARTICLE-WALL DAMPING (Bpw) 0.0

C. Acoustic Waveguide

Granular crystals have a discrete band structure with a high cut-off frequency that depends on the particle properties (size,

Young modulus, and Poisson ratio), boundary conditions, and the applied longitudinal static stress (Franklin & Shattuck,

2016). In a harmonically driven system, only waves with frequencies within the pass band can propagate, and waves

above the cut-off frequency are attenuated significantly. This phenomenon provides the opportunity to design granular

crystals with desired band gaps and tunable filtering behavior that act as acoustic filters and waveguides (Spadoni & Daraio,

2010), acoustic switches and logic gates (Li et al., 2014). In an acoustic waveguide, the vibrational energy is localized

toward specific locations. In the first experiment, we demonstrate how the dynamics of a granular crystal can be tuned by

changing the particles’ stiffnesses to selectively direct acoustic waves toward one of the two output particles based on the

frequency content of the input signal. Figure 5 presents the setup for this experiment. A particle near the left boundary

is selected as the input port where the acoustic vibration is injected into the system. The input vibration is in the form

of a horizontal sinusoidal wave that displaces particle i from its equilibrium position (δ0,i, see Appendix B) such that

rxi (t) = δ0,i +A sinωt, where A is the amplitude of the input oscillation, and ω = 2πf is its frequency. Similar to the input

port, two particles are chosen near the right boundary as the output ports. The horizontal displacements of these output

particles are recorded during the simulation, and the wave intensity is calculated as follows:

Ŷi =

T
∑

t=T
3

(rxi (t))
2

, i ∈ 1, 2 (15)

where rxi (t) is the displacement of the particle in x direction at time t, T is the length of the simulation and i indicates

the particle index which is 1 or 2, representing one of the two output ports. To remove the effect of transient responses,

the first one-third of the simulation time is not included in calculating the wave intensity. The predicted output of the

physical neural network is a vector with two scalar values which are the normalized wave intensities at each of the output

ports as Ŷ n = [
Ŷ n
1

Ŷ n
1
+Ŷ n

2

,
Ŷ n
2

Ŷ n
1
+Ŷ n

2

]. n indicates the sample from the training dataset which has two entities and is defined
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Figure 5. Experimental setup for the acoustic waveguide. The input particle (blue marker) is harmonically vibrated with the amplitude A

and one of the two predefined frequencies, f1 or f2. The applied elastic vibrations propagate through the material, toward the output ports

(red and gold markers). The existence of the input frequency in the displacement signal of the output particles indicates the computational

response. Each of the two output particles is expected to only respond to one of the two input frequencies.

as D = {(X1 = [A sin 2πf1t]
T
t=1, Y

1 = [0, 1]), (X2 = ([A sin 2πf2t]
T
t=1, Y

2 = [1, 0])}. To tune the material with a

gradient-based optimization framework, we defined a Cross-entropy (CE) loss as follows:

LCE(Ŷ , Y ) = −
1

N

N
∑

n=1

log
exp(Ŷ n

c )

exp(Ŷ n
1 ) + exp(Ŷ n

2 )

c = argmax(Y n) (16)

where N is the size of the minibatch and c is the port index for the desired output for sample n from the minibatch. In

epoch 0 epoch 40 epoch 80 epoch 120 epoch 160 epoch 200

Figure 6. Inverse design of an acoustic waveguide. The training loss is plotted over 200 epochs. The mean and standard deviation of 5
independent runs are shown with solid and dashed lines respectively. Snapshots of the granular crystal are shown at intermediate stages

during the training for one example trial.

this experiment, we applied small-amplitude vibrations to enforce the dynamics to stay in the weakly nonlinear regime
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(A = 10−2 × σ = 10−3). The training dataset D consists of sinusoidal waves at two selected frequencies, f1 = 7[Hz], and

f2 = 15[Hz]. As mentioned before, one-hot encoding is utilized to indicate the desired output according to the truth table

provided in Figure 6.

We initialized the stiffness profile (θ0) with a stiffness value of k = 5.0 for all the particles at epoch 0 (see Figure 6). Adam

optimizer is used with a fixed learning rate of 0.001 to train the network for 200 epochs. Figure 7 presents the training loss,

averaged over 5 independent runs. As it can be seen in the optimized design at epoch 200 in Figure 7, the stiffness pattern of

Figure 7. The optimized acoustic waveguide. The stiffness pattern enables the material to direct the vibration toward one of the output

ports according to its frequency. The plots on the left show the horizontal displacement of the input (blue) and output particles (red

and gold) during the simulation time. The optimized material directs the input vibration toward the top particle when the frequency is

f1 = 7[Hz] and the bottom particle when the frequency is f1 = 15[Hz].

the granular crystal is tuned such that the low-frequency vibration is guided toward the top particle. On the other hand, the

softer particles around the bottom port enable larger displacements around the second output port when the input is at a high

frequency.

D. XOR Gate

We repeated the design problem for an XOR gate with the same set of parameters for the simulator and the optimizer. As

in the previous section, a dataset containing the time series of the inputs and the target is produced and incorporated for

optimizing the stiffness values of the particles as follows:

D = {

(X01 = [X1 = A sin 2πft,X2 = 0]Tt=1,

Y 01 = [A sin 2πft]Tt=1),

(X10 = [X1 = 0, X2 = A sin 2πft]Tt=1,

Y 10 = [A sin 2πft]Tt=1),

(X11 = [X1 = A sin 2πft,X2 = A sin 2πft]Tt=1,

Y 11 = [0]Tt=1)} (17)

The optimization results are shown in Figure 8.
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Figure 8. Gradient-based design of an acoustic XOR gate. The granular crystal is initialized as a homogeneous assembly of particles with

a stiffness value located in the middle of the permitted range. Each light graph in the top left panel shows the training loss for one of the

10 independent trials over 500 epochs. One example of the optimized material is shown on the right. The plots on the bottom show that,

as we expect, the output particle oscillates with a higher amplitude when only one of the input ports is vibrated. This is consistent with the

desired functionality of an XOR gate.
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