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Abstract

Training Binary Recurrent Networks on tasks that

span long time horizons is challenging, as the

discrete activation function renders the error land-

scape non-differentiable. Surrogate gradient train-

ing replaces the discrete activation function with

a differentiable one in the backward pass but still

suffers from exploding and vanishing gradients.

We leverage the connection between gradient sta-

bility and Lyapunov exponents to address this

issue from a dynamical systems perspective, ex-

tending our previous work on Lyapunov exponent

regularization to non-differentiable systems. We

use differentiable linear algebra to regularize sur-

rogate Lyapunov exponents, a method we call

surrogate gradient flossing.

We show that surrogate gradient flossing en-

hances performance on temporally demanding

tasks.

1. Introduction

Quantizing neural networks reduces computational cost and

memory usage but complicates gradient-based training due

to non-differentiable discrete activation functions. Tradi-

tional approaches, such as surrogate gradients [1], mitigate

this issue by replacing the discrete nonlinearity with a dif-

ferentiable expression in the backward pass. This technique

is widely used for training spiking neural networks [2].

This paper extends our previous work on Lyapunov expo-

nent regularization [3] to non-differentiable models. We

introduce surrogate Lyapunov exponents to quantify surro-

gate gradient stability, provide analytical expressions for

these exponents, and analyze the impact of the sharpness of

the surrogate gradient.
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2. Surrogate Lyapunov Exponents
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Figure 1. Surrogate Lyapunov exponents quantify vanishing and

exploding gradients of surrogate gradient training of binary

neural networks A) In binary networks hs+1 = W sgn(hs) +
Vxs+1, the step-like activation function leads to discontinuous,

non-differentiable dynamics, creating a rugged error landscape

in gradient-based learning. Surrogate gradient training replaces

the step-like activation function with a continuous function φ in

the backward pass, implemented here as a normalized derivative

for φ(x) = tanh(x) with φ′

g(x) = sech(gx)2. The subscript

denotes the sharpness g of the surrogate gradients. B) Surrogate

Lyapunov exponents λS
i for different values of the surrogate sharp-

ness g. C) Vanishing and exploding gradients in discrete recurrent

networks arise from the attenuation or amplification of the prod-

uct of surrogate Jacobians
∏t−1

τ ′=τ

∂h
τ′+1

∂h
τ′

D) Surrogate Jacobian

D
surrogate = W ⊙ φ′(hs) for g = 10, which results in a column-

sparse Jacobian matrix. Note the logarithmic scale.

We introduce surrogate Lyapunov exponents as a tool for

analyzing and mitigating vanishing and exploding gradients

in discrete recurrent networks, described by

hs+1 = W sgn(hs) +Vxs+1. (1)

The core idea is to calculate surrogate Lyapunov exponents,

which quantify exploding and vanishing gradients, based

on the derivative of the surrogate activation function used

in the backward pass. This differs from the conventional

Lyapunov exponents that measure how small perturbations

in the forward pass grow or shrink on average [4].
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In surrogate gradient training, network parameters θ are

gradually changed to reduce a loss Lt by smoothing the non-

differentiable state transitions with a differentiable function

for the backward pass (see Fig 1A). For the discretized dy-

namics of a binary or spiking recurrent neural network, the

surrogate gradient of the loss Lt with respect to parameters θ
is computed by unrolling the network dynamics backwards

in time and propagating error signals across time steps (See

Fig 1C):

∂Lt

∂θ
=

∂L
∂ht

τ=t−1∑

τ=0

(
t−1∏

τ ′=τ

D
surrogate
τ ′

)
∂hτ

∂θ
, (2)

where D
surrogate
s = ∂hs+1

∂hs

is the surrogate Jacobian that de-

scribes the propagation of infinitesimal state changes across

one time step using a differentiable approximation of the

activation function sgn. See Fig 1D for an example surro-

gate Jacobian of a binary recurrent network with surrogate

sharpness g = 10 and Appendix E for the derivation of

the analytical surrogate Jacobian for a LIF network. The

product of surrogate Jacobians
∏t−1

τ ′=τ D
surrogate
τ ′ in Eq. 2 re-

flects the recursive dependence of network states on their

past values and tends to give rise to vanishing and explod-

ing gradients, making training across long time horizons

challenging in both discrete and continuous recurrent neural

networks.

Recent studies have shown that the singular values of the

product of Jacobians, which measure the rate of gradient

explosion, are mathematically closely related to Lyapunov

exponents [4]–[11]. Lyapunov exponents are a core con-

cept in dynamical systems theory, quantifying stability and

chaos. The largest Lyapunov exponent λ1 measures the

average rate of divergence or convergence of nearby initial

conditions. An N -dimensional system has N Lyapunov

exponents that quantify the average growth rates of volume

elements in the tangent space. To define surrogate Lyapunov

exponents, we adapt this concept for surrogate gradients by

instead considering the evolution of perturbations near the

reference trajectory when evaluating the surrogate activation

function (see Fig. 1C). We thus linearize along a reference

trajectory of the forward dynamics of the discrete neural

network but evaluate the surrogate Jacobians:

λsurrogate
i = lim

t→∞
1

t
log

[
σi

(
t−1∏

τ ′=0

D
surrogate
τ ′

)]
, (3)

where σi denotes the ith singular value of the surrogate Ja-

cobian product. These exponents reflect the average asymp-

totic growth rates of infinitesimal perturbations in the surro-

gate tangent space of the forward dynamics, thus constrain-

ing signal propagation during BPTT over long time horizons.

Specifically, modes with surrogate Lyapunov exponents near

zero indicate directions along which error signals are, on

average, neither strongly attenuated nor amplified, facili-

tating reliable information propagation across many time

steps. We note that the surrogate Lyapunov exponents of

discretized spiking network dynamics are different from the

true Lyapunov exponents of the forward dynamics [12]–[18].

Figure 1B shows the surrogate Lyapunov exponents for dif-

ferent values of surrogate sharpness g in a binary RNN. We

find that with increasing g, most surrogate Lyapunov expo-

nents become very negative, leading to vanishing gradients

and an ill-conditioned product of surrogate Jacobians during

training (See Appendix G and F for details). Conversely,

for small values of g, we find, depending on W, and V,

many surrogate Lyapunov exponents close to zero, which

more easily give rise to oscillations or exploding gradients

during task training once the spectral radius of the recurrent

weights grows slightly. See supplementary Figures 7 and 8

in Appendix L for an analysis of the convergence of surro-

gate Lyapunov exponents with simulation time for different

values of g.

3. Surrogate Gradient Flossing

Our recent work built upon the mathematical relationship

between Lyapunov exponents and the challenge of exploding

and vanishing gradients in training of recurrent networks,

and introduced a novel regularization technique termed gra-

dient flossing [3]. This method stabilizes the training pro-

cess by constraining Lyapunov exponents to values close to

zero, ensuring more trainable network dynamics through

a better-conditioned product of Jacobians. Here, we apply

this idea for binary neural networks trained with surrogate

gradients. In our approach, we regularize the surrogate Lya-

punov exponents, extending the concept of gradient flossing

from conventional Lyapunov exponents to the surrogate do-

main [3]. To mitigate exploding and vanishing gradients,

we regularize the mean of the squares of the first k largest

surrogate Lyapunov exponents λ1, λ2, . . . , λk, resulting in

an additional loss term Lsurrogate flossing = 1
k

∑k
i=1 λ

2
i . To

calculate the surrogate Lyapunov exponents, we employ an

established iterative orthonormalization method using QR

decomposition [4], [8], [19], rather than directly evaluating

the product of surrogate Jacobians (Eq.2). This method is

numerically robust, avoiding issues with the ill-conditioned

long-term surrogate Jacobian (See AppendixA for details

and pseudocode). Surrogate Lyapunov exponents are ob-

tained by time-averaging the logarithms of the diagonal

entries of the Rs matrices obtained during QR decompo-

sitions: λi = limt→∞
1
t

∑t
s=1 logR

s
ii. To backpropagate

the gradient of the squared surrogate Lyapunov exponents,

we leverage recent progress in differentiable linear algebra,

which provided an analytical expression for the pullback of

the QR decomposition (See Appendix B). For clarity, we

described surrogate gradient flossing in terms of stochastic

gradient descent, but we actually implemented it with the
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ADAM optimizer [20] using standard hyperparameters η,

β1, and β2. An example implementation in Julia [21] using

Flux [22] is available here. This algorithm is versatile and

can be applied to various neuron models and network ar-

chitectures. The surrogate Jacobian matrix Dsurrogate can be

calculated analytically, as done here, or through automatic

differentiation.

4. Control of Surrogate Lyapunov Exponents
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Figure 2. Surrogate gradient flossing regularizes surrogate Lya-

punov exponents and facilitates gradient signal propagation in

binary neural networks A) The first surrogate Lyapunov expo-

nent of a recurrent binary network plotted as a function of training

epochs for different surrogate sharpness g. The square of the first

surrogate Lyapunov exponent is minimized using gradient descent.

B) Surrogate Lyapunov spectrum of a recurrent binary network

after different numbers of Lyapunov exponents k have been driven

towards zero via surrogate gradient flossing for k ∈ {1, 16, 32}.

The gray lines show the surrogate Lyapunov spectra before surro-

gate gradient flossing. Parameters: network size N = 80, g = 1
for B. Input as in Fig. 3. The thin semitransparent lines in A and B

indicate nine network realizations; the full lines are their average.

Figure 2 demonstrates that surrogate gradient flossing can

set one or several surrogate Lyapunov exponents to a target

value via gradient descent with the ADAM optimizer in

networks of binary neurons for different values of surrogate

gradient sharpness g. The initial entries of the recurrent

weight matrix W are independently drawn from a Gaussian

distribution with zero mean and variance 1/N . The recur-

rent binary network receives a random binary input stream,

and the input weights V are drawn from N (0, 1/Nin). W,

g, and V are all modified by surrogate gradient flossing.

Figure 2A shows that for randomly initialized binary RNNs,

the surrogate Lyapunov exponent can be modified by sur-

rogate gradient flossing to approach a desired target value.

During surrogate gradient flossing, the exponents quickly

approached the target value of zero for various surrogate

gradient sharpness values g. Notably, networks with large

g converge more slowly towards the target value of zero or

may not converge at all.

Figure 2B shows surrogate gradient flossing for different

numbers of flossed surrogate Lyapunov exponents k. Dur-

ing gradient descent, the mean of the squares of 1, 16, or

32 surrogate Lyapunov exponents is used as the loss. The

resulting surrogate Lyapunov spectrum after flossing shows

the corresponding number of exponents driven close to zero.

We conclude that surrogate gradient flossing can selectively

manipulate one, several, or all surrogate Lyapunov expo-

nents before or during network training, thereby shaping

both the norm and the condition number of the surrogate

gradients over long time horizons.

5. Surrogate Gradient Flossing Enhances

Trainability
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Figure 3. Gradient flossing improves binary RNN training

A) Test accuracy for binary RNNs trained on the delayed temporal

binary XOR task yt = xt−d/2 ⊕ xt−d with adaptive gradient

flossing during training (orange) and without gradient flossing

(blue) for d = 18. Solid lines are the median across 9 network

realizations, and individual network realizations are shown in trans-

parent fine lines. B) Mean final test accuracy as a function of task

difficulty (delay d) for delayed XOR task. C) Gradient norm with

respect to initial network state h0. D) Gradient norm with respect

to initial network state as a function of temporal task complexity

T averaged over training epochs.

We present numerical results on a task with variable tem-

poral complexity, demonstrating that adaptive surrogate

gradient flossing enhances the trainability of binary RNNs.

In adaptive surrogate gradient flossing, we initialize the

input weights V, recurrent weights W, and output weights

randomly, set g = 1, and first employ surrogate gradi-

ent flossing for 500 epochs by minimizing Lflossing =
1
k

∑
i = 1kλ2

i . We then alternated between surrogate gra-

dient flossing and task training every 100 epochs until task

training epoch 500, and then continued with pure task train-

ing. Afterwards, we performed one episode of gradient

flossing adaptively whenever either λS
1 > 0.2 or the gradi-

ent norm |∂LT

∂W | exceeded 1.

We consider a temporal XOR task that requires the binary

RNN to perform a nonlinear input-output computation on a

sequential stream of random binary input with a delay of d
steps. Specifically, the target output y is yt = xt−d/2⊕xt−d,

where x is a random Bernoulli process x ∈ {0, 1}. This

task requires retaining d items in memory and performing a

nonlinear operation on them. While solving the task is triv-

ial and the correct solution could be implemented manually,

RNNs trained on this task quickly encounter exploding or

vanishing gradients. We train the network by minimizing

3
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the cross-entropy loss between the one-hot encoded target

output and a linear readout. To successfully solve this task,

the recurrent binary network must bridge the time horizon

of d steps. We change the temporal complexity of the task

by scaling the delay d. Figures 3A and B show that adaptive

surrogate gradient flossing helps train networks for sub-

stantially longer delays d, while networks without flossing

fail on this temporally challenging task. Figures 3C and D

show that binary networks suffer from vanishing gradients,

as revealed by measuring the gradient with respect to the

initial network state h0. This issue is mitigated by adaptive

surrogate gradient flossing.

6. Limitations

When adapting the input weights, recurrent weights, and

g during surrogate gradient flossing, we observed that g
became very small, causing the surrogate function ϕ to be-

come close to linear. In that situation, the binary RNNs were

still able to solve linear tasks, such as a delayed copy task,

but not XOR. Additionally, binary networks with very small

g were sometimes susceptible to oscillations or diverging

gradients. We addressed this by using adaptive gradient

flossing and successively increasing g whenever the maxi-

mum surrogate Lyapunov exponent estimate λS
1 > 0.2 or

the gradient norm |∂LT

∂W | exceeded 1. In general, binary

RNNs with surrogate gradients seem to have a trade-off

between the ability to bridge long time horizons and the

ability to solve nonlinear tasks such as XOR.

We focused our analysis on recurrent binary and spiking

neural networks because their recurrent interactions make

them an interesting and powerful dynamical system. How-

ever, the insights from our study could also help address

vanishing and exploding gradients in deeply layered feed-

forward quantized neural networks, where these issues can

be linked to transient chaos or transient stability [23].

A limitation of the proposed surrogate gradient flossing im-

plementation is that QR decomposition scales with O(Nk2),
where N is the network size and k is the number of sur-

rogate Lyapunov exponents being flossed. The number of

surrogate Lyapunov exponents that need to be pushed to-

wards zero depends on the task. For tasks requiring more

than O(
√
N) surrogate Lyapunov exponents close to zero,

the QR decomposition would become the computational

bottleneck. We previously suggested strategies to address

this computational bottleneck [3].

7. Discussion

Training discrete networks is challenging because of the

non-differentiable error landscapes created by discrete in-

teractions. Surrogate gradient training is commonly used

for binary and spiking neural networks, but it often leads to

exploding or vanishing gradients, especially in temporally

complex tasks. We adopted a dynamical systems perspec-

tive to analyze and improve the surrogate gradient training

of binary and spiking neural networks.

We introduced surrogate Lyapunov exponents, a novel set of

indicators based on dynamical systems, to quantify the sur-

rogate gradient flow in the backward pass, which is crucial

for addressing exploding and vanishing gradients. Surrogate

Lyapunov exponents account for the entire trajectory, reveal-

ing complex neuronal interactions previously neglected in

the analysis of surrogate gradients (see Appendix H for more

literature review). We called them surrogate Lyapunov expo-

nents because, unlike conventional Lyapunov exponents that

stem from a linearization of the forward dynamics, these

arise from the surrogate dynamics of the backward pass.

Using differentiable linear algebra, we implement surrogate

gradient flossing to push surrogate Lyapunov exponents to-

wards zero. This method slows collective timescales in the

tangent space, facilitating error propagation during train-

ing. Unlike previous related work that introduced gradient

flossing to shape the Lyapunov exponents of the forward

dynamics and thus improve the trainability of differentiable

dynamical systems [3], we specifically address the surro-

gate gradients in the backward pass of models that have

non-differentiable error landscapes. We demonstrate that

surrogate gradient flossing prevents the gradient norm from

exploding or vanishing during training. Empirically, surro-

gate gradient flossing enhances training on tasks that require

bridging long time horizons.

Prior research that addressed vanishing and exploding gra-

dients for surrogate training focused mostly on optimizing

the surrogate functions of individual neurons [24], [25],

or optimized naturalistic network initializations [26]. In

contrast, we studied the collective network state and the

tangent dynamics in the backward pass that involves many

neurons and many time steps. We find that the sharpness

of the surrogate gradient g, which shapes how strongly the

activation function is smoothed during the backward pass,

plays a crucial role in determining the norm and condition

number of the surrogate gradient. This is because g shapes

the sparsity of the surrogate Jacobian and thus the shape of

the surrogate Lyapunov spectrum. Compared to a previous

method to control Lyapunov exponents of vanilla RNNs

with continuous activation function [3], here we addressed

discrete networks and optimized the surrogate gradients rel-

evant to the backward pass of gradient training.

Future studies should evaluate surrogate gradient flossing

in real-world applications and extend testing to complex ar-

chitectures, including deep spiking networks, spiking trans-

formers, and quantized neural networks.
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A. Algorithm and Pseudocode for Surrogate Gradient Flossing

We implement Surrogate Gradient Flossing by making the established method for calculating Lyapunov exponents

differentiable and combining it with analytical surrogate Jacobians. In the established reorthonormalization method,

an orthonormal system Qs = [q1
s,q

2
s, . . . ,q

k
s ] is evolved in the tangent space along the network trajectory using the

surrogate Jacobian D
surrogate
s = ∂hs+1

∂hs

. This process involves the calculation of: Q̃s+1 = D
surrogate
s Qs at each time step. .

Subsequently, the exponential growth rates are extracted via QR decomposition: Q̃s+1 = Qs+1R
s+1, which decomposes

Q̃s+1 into an orthonormal matrix Qs+1 and an upper triangular matrix Rs+1 with positive diagonal elements.

Surrogate Lyapunov exponents are then determined by the time-averaged logarithms of the diagonal entries of Rs:

The following pseudocode implements the surrogate gradient flossing algorithm, with surrogate gradient function steps in

red and conventional forward dynamics in blue.

B. Backpropagation Through QR Decomposition

The adjoint of the QR decomposition is given by [8], [27]–[30]

Q =
[
Q+Qcopyltu(M)

]
R−T , (4)

where M = RR
T −Q

T
Q and the copyltu function generates a symmetric matrix by copying the lower triangle of the

input matrix to its upper triangle, with the element [copyltu(M)]ij = Mmax(i,j),min(i,j) [27]–[30]. Adjoint variable are

written here as T = ∂L/∂T .

Using an analytical pullback is more memory-efficient and less computationally costly than directly performing au-

tomatic differentiation through the QR decomposition. We provide implementations of surrogate gradient flossing

both in Julia (using the Julia package BackwardsLinalg.jl by Jinguo Liu available here) and in PyTorch available at

https://github.com/RainerEngelken/SurrogateGradientFlossing.

C. Details on Surrogate Gradient Flossing for Binary Networks

We consider binary recurrent networks [31], with parallel update of the N units that follows:

hs+1 = W sgn(hs) +Vxs+1. (5)

where sgn denotes the sign function. The initial entries of W are drawn independently from a Gaussian distribution with

zero mean and variance 1/N . In the backward pass of binary networks, we replace the pullback of sgn with the surrogate
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function ϕ′
g(x) := sech(gx)2. The surrogate Jacobians are given by D

surrogate
s = ∂hs+1

∂hs

= W ⊙ ϕ′(hs), where ⊙ denotes

the Hadamard product.

For large random networks, the largest Lyapunov exponent λmax can be obtained from dynamic mean-field theory, as

described earlier in both the discrete and continuous-time cases with constant input and additive Gaussian white noise drive

[32]–[36] or other time-varying inputs [35], [37], [38]. These insights can be leveraged for surrogate gradient training. For

large binary networks, not only the first but also the full surrogate Lyapunov spectrum can be approximated analytically at

initialization for arbitrary g [4] based on results on product of uncorrelated Gaussian matrices, whose eigenvalue distribution

approximately follows a triangle law [39], [40]. This results in:

λi =

{
λmax +

1
2 log

(
1− i

pN

)
, i ≤ pN

−∞, i > pN
(6)

where p = erf
(

1√
2g∆0

)
is the average fraction of neurons that are not in the saturated regime of the surrogate gra-

dient. This fraction depends on both the sharpness g and the variance of h, which can be obtained using dynamic

mean-field theory [4], [34]. This extends earlier work [4], [41], [42], which used the triangular law for the complete

Lyapunov spectrum of the forward dynamics of discrete-time recurrent neural networks, to an analysis of the gradient

norm and condition number in the backward pass. We provide code for surrogate gradient flossing in binary networks at

https://github.com/RainerEngelken/SurrogateGradientFlossing. We find that surrogate gradient flossing also helps train

binary networks on tasks with many time steps, such as the copy task and the temporally delayed XOR task. A full analytical

description of surrogate gradient flossing for binary networks would be a promising avenue for future research, as networks

with binary dynamics can still have complex nonlinear learning dynamics. Moreover, quantized networks are increasingly

of interest because of their memory efficiency. However, this is beyond the scope of the work presented here.

D. Additional Details on Spiking Network Model and Parameter Initialization

In the case of spiking networks, we considered a time-discretized implementation of a network of N leaky integrate-and-fire

neurons with exponentially decaying synaptic currents, following the notation of [2], [26]:

Ui[n+ 1] = (βUi[n] + (1− β)Ii[n])(1− Srec
i [n]) (7)

where β ≡ exp
(
− ∆t

τmem

)
reflects the decay due to leak, Ui is the membrane potential of neuron i, Ii is the synaptic current.

Similarly, the synaptic currents are updated as follows:

Ii[n+ 1] = αIi[n] +
∑

j

VijS
rec
j [n] +

∑

j

WijS
in
j [n] (8)

Unless noted otherwise, we used the default parameters ∆t = 2 ms, τmem = 10 ms, and τmem = 5 ms. We chose

these time constants for both the recurrent neurons and the readout neurons. Our implementation in Julia [21] using Flux

[22] is available at https://github.com/RainerEngelken/SurrogateGradientFlossing. We initialized the recurrent network

in the fluctuation-driven regime following [26] by adjusting the input weights Wij and recurrent weights Vij to induce a

fluctuation-driven regime at initialization.

We note that during task training, LIF networks can develop unphysiological negative voltage excursions if the input variance

becomes large, inducing bursty network activity states with a coefficient of variation of the interspike interval distribution

larger than one, indicating super-Poissonian spiking statistics [43], [44]. It will be important to further study surrogate

gradient flossing and spiking network training when constraining networks to a biologically plausible activity regime and

when imposing further biological constraints like Dale’s principle and dynamical balance of excitatory and inhibitory input

currents [45], [46].

E. Analytical Surrogate Jacobian of the Spiking Neural Network

To calculate surrogate Lyapunov exponents, we first need to obtain the surrogate Jacobian, D
surrogate
n = ∂hn+1

∂hn

, either through

automatic differentiation or analytically. The surrogate Jacobians evaluated along the forward trajectory describe how an
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infinitesimal perturbation of the network state (e.g., here all membrane potentials and synaptic currents) evolves in one time

step.

Here, we give the analytical expression of the 2N × 2N surrogate Jacobian for the discretized dynamics of a recurrent

network of leaky integrate-and-fire neurons with exponential synapses. We only consider the dynamics of the recurrent

neurons and not of the readout neurons, as these are nonspiking and only passively driven and therefore have trivial surrogate

Lyapunov exponents of the relaxation time constants − 1
τsyn

and − 1
τmem

.

δhn+1 = Dsurrogate
n δhn (9)

The surrogate Jacobian matrix, D
surrogate
n , is block-structured, according to the partial derivatives of the membrane potentials

and synaptic currents between subsequent time steps:

Dsurrogate
n =

(
∂U[n+1]
∂U[n]

∂U[n+1]
∂I[n]

∂I[n+1]
∂U[n]

∂I[n+1]
∂I[n]

)
(10)

Often in surrogate gradient training, the voltage reset term (1−Si) is ignored in the backward pass [2]. Here, we provide the

surrogate Jacobian entries both including and excluding the voltage reset term. If the voltage reset is ignored, the Jacobian

entries are given by:

∂Ui[n+ 1]

∂Uj [n]
= βδij + Vijϕ

′
g(Uj [n]− ϑ) (11)

∂Ui[n+ 1]

∂Ij [n]
= αδij (12)

∂Ii[n+ 1]

∂Uj [n]
= Vijϕ

′
g(Uj [n]− ϑ) (13)

∂Ii[n+ 1]

∂Ij [n]
= αδij (14)

ϕ′
g(x) is the surrogate gradient function. We use here the derivative of the fast sigmoid ϕ′

g(x) =
1

(g|x|+1)2 [47]. Note that

we absorbed the term (1− β) from Eq 7 into the input weights and recurrent weights.

If the voltage reset term is not ignored in the derivative, the Jacobian entries are:

∂Ui[n+ 1]

∂Uj [n]
=
(
δijβ + Vijϕ

′
g(Uj [n]− 1)

)
(1− Si[n])

− (βUi[n] + αIi[n] + xi[n] + I rec
i [n])ϕ′

g(Ui[n]− 1), (15)

∂Ui[n+ 1]

∂Ij [n]
= δijα (1− Si[n]) , (16)

∂Ii[n+ 1]

∂Uj [n]
= Vijϕ

′
g(Uj [n]− 1), (17)

∂Ii[n+ 1]

∂Ij [n]
= δijα. (18)

where I rec
i [n] =

∑
j Vijϕg(Uj [n]− ϑ) and xi[n] =

∑
j WijS

in
j [n].

To corroborate these analytical expressions, we compare them in the following to expressions of the Jacobian obtained

through automatic differentiation:

F. Linking Surrogate Lyapunov Exponents & Gradient Norm

We here show in more detail that surrogate Lyapunov exponents give access to the norm and structure of the surrogate

gradients for long time horizons, by utilizing a recently discovered link between Lyapunov exponents of RNNs and the

exploding and vanishing gradient problem for the case of surrogate gradient training of spiking networks. [4], [6]–[11].
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Figure 4. Comparison of analytical and numerical surrogate Jacobians A) Analytical surrogate Jacobian for g = 1. B) surrogate

Jacobian obtained from automatic differentiation for g = 10. C) log2 of absolute value of difference between AD and analytical surrogate

Jacobian. The difference is close to machine precision. log2(|D
AD
ij −Danalytical

ij |)
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Figure 5. Same as 4 for g = 10
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Figure 6. Same as 4 for g = 100

Note that the complete error gradient of backpropagation through time in Eq 2 is composed of a summation of products

of surrogate Jacobians, reflecting the number of ”loops” the error signal traverses through the recurrent spiking dynamics

before reaching its target. Consequently, when the leading singular values of the surrogate Jacobians are smaller than 1, the

influence of the shorter loops typically dominates the surrogate gradients.

In the case of vanishing surrogate gradients, the gradient norm is dominated by the shorter loops, even though the actual

signal in the surrogate gradient originates from the loop of duration T , where T is the maximum temporal delay relevant for

solving the temporal credit assignment of the task. To mitigate the contamination of spurious signals from shorter loops and

effectively extract the gradient that spans long time horizons, we focus on the gradient at the last time point LT with respect

to the initial conditions h0.

∂LT

∂h0
=

∂LT

∂hT

τ=T−1∑

τ=0

(
T−1∏

τ ′=τ

∂hτ ′+1

∂hτ ′

)
∂hτ

∂h0
=

∂LT

∂hT

T−1∏

τ ′=0

∂hτ ′+1

∂hτ ′

(19)

We note that the sum conveniently drops the only summand that contributes is the product of surrogate Jacobians going

from 0 to T . We note that we considered the binary cross entropy loss which makes the derivative ∂Lt

∂ht

trivial. Using the

13



Analyzing and Improving Surrogate Gradient Training in Binary Neural Networks Using Dynamical Systems Theory

definition of surrogate Lyapunov exponents in Eq 3 and the definition of the spectral norm, we obtain

∣∣∣∣∣

T−1∏

τ ′=0

∂hτ ′+1

∂hτ ′

∣∣∣∣∣
2

= sup
∥x∥2=1

∥
T−1∏

τ ′=0

∂hτ ′+1

∂hτ ′

x∥2 = σ1

(
T−1∏

τ ′=0

D
surrogate
τ ′

)
≈ exp(λS

1 T )

we can thus approximate the surrogate gradient norm |∂LT

∂h0
| ∝ exp(λS

1 T ).

G. Linking Surrogate Lyapunov Exponents with Gradient Dimensionality

We pointed out in the main text that a surrogate Lyapunov exponents correspond to exponentially exploding gradient modes,

while negative surrogate Lyapunov exponents correspond to exponentially vanishing surrogate gradient modes.

A well-conditioned surrogate Jacobian is essential for efficient and fast learning [48]–[50]. Surrogate gradient flossing

improves the condition number of the long-term Jacobian which constrains the error signal propagation across long time

horizons in backpropagation [3].The condition number κ2 of a linear map A measures how close the map is to being

singular and is given by the ratio of the largest singular value σmax and the smallest singular values σmin, so κ2(A) =
σmax(A)
σmin(A) .

According to the rule of thumb given in [51], if κ2(A) = 10p, one can anticipate losing at least p digits of precision when

solving the equation Ax = b. Note that the long-term Jacobian Tt is composed of a product of surrogate Jacobians, which

generically makes it ill-conditioned.

Our theoretical estimate of the condition number κ2 of an orthonormal system Q of size N ×m that is temporally evolved

by the long-term Jacobian Tt

κ2(Q̃t+τ ) = κ2

(
Tt(hτ )Qt

)
=

σ1(Tt(hτ ))

σm(Tt(hτ ))
≈ exp ((λ1 − λm)(t− τ)) . (20)

where σ1(Tt(hτ )) and σm(Tt(hτ )) are the first and mth singular value of the long-term Jacobian. We note that this

theoretical estimate of the condition number follows from the asymptotic definition of Lyapunov exponents and should be

exact in the limit of long times. Given that gradient flossing reduces the condition number by a factor whose magnitude

increases exponentially with T , we can expect that surrogate gradient flossing has a stronger effect on problems with a long

time horizon to bridge.

Moreover, surrogate Lyapunov exponents enable the estimation of the number of gradient dimensions available for the

backpropagation of error signals. Generally, the long-term Jacobian is ill-conditioned, however, the Lyapunov spectrum

provides for a given number of tangent space dimensions an estimate of the condition number. This indicates how close

to singular the gradient signal for a given number of tangent space dimensions is. Given a fixed acceptable condition

number—determined, for example, by noise level or floating-point precision—we observe that gradient flossing increases

the number of usable tangent space dimensions for backpropagation.

We stress that these insights go beyond mean-field methods, which usually only consider uncorrelated i.i.d. weight matrices

and become exact only in the large-network limit N → ∞ [52].

H. Further Relation to Previous Literature

Generally, most previous analyses of the notorious vanishing and exploding gradient problem addressed differentiable

neural networks and considered different strategies against vanishing and exploding gradients, for instance suitable choice

of weights that guarantee well-conditioned Jacobian at initialization [23], [48], [53]–[61], specialized neuron models whose

gating interactions shield the latent memory state and which can therefore transport information across long time horizons

steps [62]–[64] or pragmatic training tricks like gradient clipping, which re-scales the gradient norm [65] or their individual

elements [66] if they become too large [67]. Moreover, specialized network architectures were introduced to tackle gradient

issues, for example, antisymmetric networks [68], orthogonal/unitary initializations [48], [69], [70], coupled oscillatory

RNNs [71], Lipschitz RNNs [72], state-space models [73]–[76], echo state networks [77], [78], (recurrent) highway networks

[79], [80], and stable limit cycle neural networks [9]–[11]. The work presented here can be seen as complementary to the

latter.
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I. Further Details and Analysis of Surrogate Gradient Flossing

An example implementation of surrogate gradient flossing in PyTorch and Flux [22], a machine learning library in Julia [21]

is available at https://github.com/RainerEngelken/SurrogateGradientFlossing. We also provide code to directly reproduce

Fig 1.

J. Computational Complexity of Surrogate Gradient Flossing

We present here a more in-depth scaling analysis of the computational cost of surrogate gradient flossing. There are

three main contributors to the computational cost (table 1): First, the forward dynamics of the spiking RNN, which has

a computational complexity of O
(
N2 b

)
per time step, where N is the dimension of the recurrent network state (which

in the case of leaky integrate-and-fire neurons with exponentially decaying synapses is twice the number of units) and b
is the batch size both in the forward and backward pass. Second, the Jacobian step which scales with O

(
N2k

)
per time

step, where k is the number of flossed surrogate Lyapunov exponents. Third, the QR decomposition, which scales with

O
(
N k2

)
, where k is the number of surrogate Lyapunov exponents considered.

Together, this results in a total amortized cost of O
(
N2 b T

)
per training epoch, where T is the number of training time

steps and a total amortized costs per flossing epoch of O
(
N2 Tf (1 + k/tONS + k)

)
where Tf is the number of flossing time

steps.

In the case of surrogate preflossing, thus, the total computation cost scale with O
(
N2[EbT + Ep Tf (1 + k/tONS + k)]

)
,

where E is the number of training epochs and Ep is the number of surrogate preflossing epochs.

For surrogate gradient flossing during training (assuming that there is also surrogate preflossing done), the amortized

cost scale with O
(
N2[EbT + Ep Tp + Ef Tf (1 + k/tONS + k)]

)
, where Ef is the total number of flossing epochs during

training.

We note that as long as k <
√
N the QR decomposition is not the computational bottleneck.

Moreover, we find empirically that both the number of surrogate preflossing epochs Ep and surrogate flossing episodes Ef

necessary for training success is much smaller than the total number of training epochs E. It remains an important challenge

to infer the suitable number of surrogate flossing time steps Tf for tasks with unknown temporal correlation structure.

It would also be interesting to investigate how the CPU hours/wall-clock time/flops/Joule/CO2-emission spent on surrogate

gradient flossing vs on training networks with larger N are trading off against each other. For this, we would suggest first

finding the smallest network that on median successfully trains on a binary temporal XOR task for a fixed given delay T and

measuring the computational resources involved in training it, e.g. in terms of CPU hours. Then compare it to a network

with surrogate gradient flossing.

K. Additional Background on Lyapunov Exponents of RNNs

An autonomous dynamical system is usually defined by a set of ordinary differential equations dh/dt = F(h), h ∈ R
N in

the case of continuous-time dynamics, or as a map hs+1 = f(hs) in the case of discrete-time dynamics. In the following, the

theory is presented for discrete-time dynamical systems for ease of notation, but everything directly extends to continuous-

time systems [81]. Together with an initial condition h0, the map forms a trajectory. As a natural extension of linear

stability analysis, one can ask how an infinitesimal perturbation h′
0 = h0 + ϵu0 evolves in time. Chaotic systems are

sensitive to initial conditions; almost all infinitesimal perturbations ϵu0 of the initial condition grow exponentially with

time |ϵut| ≈ exp(λ1t)|ϵu0|. Finite-size perturbations, therefore, may lead to a drastically different subsequent behavior.

The largest Lyapunov exponent λ1 measures the average rate of exponential divergence or convergence of nearby initial

conditions:

λ1(h0) = lim
t→∞

1

t
lim
ϵ→0

log
||ϵut||
||ϵu0||

(21)

In dynamical systems that are ergodic on the attractor, the Lyapunov exponents do not depend on the initial conditions as

long as the initial conditions are in the basins of attraction of the attractor. Note that it is crucial to take the limit ϵ → 0 first

and then t → ∞, as λ1(h0) would be trivially zero for a bounded attractor if the limits are exchanged, as limt→∞ log ||ϵut||
||ϵu0||

is bounded for finite perturbations even if the system is chaotic. To measure k Lyapunov exponents, one has to study the

evolution of k independent infinitesimal perturbations us spanning the tangent space:
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forward pass backward pass

RNN dynamics O
(

N2 b
)

”

Jacobian step O
(

N2 k
)

”

QR step O
(

N k2
)

”

total amortized costs
per training epoch

O
(

N2 b T
)

”

total amortized costs
per surrogate gradient floss-
ing epoch

O
(

N2 Tf (1 + k/tONS + k)
)

”

total amortized costs
of surrogate preflossing

O
(

N2[EbT + Ep Tf (1 + k/tONS + k)]
)

”

total amortized costs
flossing during training

O
(

N2[EbT + Ep Tp + Ef Tf (1 + k/tONS + k)]
)

”

Table 1. Computational cost for surrogate gradient flossing and training of RNNs

N denotes number of neurons, b is the batch size, T is the number of time steps in forward pass of training, Tf is the number of time steps

in forward pass of flossing, tONS is the reorthonormalization interval, k is the number of flossed Lyapunov exponents, E is the number of

training epochs, Ep is the number of surrogate preflossing epochs, Ef is the number of flossing epochs during training. Empirically, we

find that the necessary number of surrogate preflossing epochs Ep and flossing episodes Ef is much smaller than both the total number of

training epochs E. Moreover, Tp can be smaller than T .

us+1 = Dsus (22)

where the N ×N Jacobian Ds(hs) = df(hs)/dh characterizes the evolution of generic infinitesimal perturbations during

one step. Note that this Jacobian along the trajectory is equivalent to a stability matrix only at a fixed point, i.e., when

hs+1 = f(hs) = hs.

We are interested in the asymptotic behavior, and therefore we study the long-term Jacobian

Tt(h0) = Dt−1(ht−1) . . .D1(h1)D0(h0). (23)

Note that Tt(h0) is a product of generally noncommuting matrices. The Lyapunov exponents λ1 ≥ λ2 · · · ≥ λN are defined

as the logarithms of the eigenvalues of the Oseledets matrix

Λ(h0) = lim
t→∞

[Tt(h0)
⊤Tt(h0)]

1
2t , (24)

where ⊤ denotes the transpose operation. The expression inside the brackets is the Gram matrix of the long-term Jacobian

Tt(h0). Geometrically, the determinant of the Gram matrix is the squared volume of the parallelotope spanned by the

columns of Tt(h0). Thus, the exponential volume growth rate is given by the sum of the logarithms of its first k (sorted)

eigenvalues. Oseledets’ multiplicative ergodic theorem guarantees the existence of the Oseledets matrix Λ(h0) for almost

all initial conditions h0 [82]. In ergodic systems, the Lyapunov exponents λi do not depend on the initial condition h0.

However, for a numerical calculation of the Lyapunov spectrum, Eq 24 cannot be used directly because the long-term

Jacobian Tt(h0) quickly becomes ill-conditioned, i.e., the ratio between its largest and smallest singular value diverges

exponentially with time.

L. Convergence of Surrogate Lyapunov Exponents of discretized Spiking Neural Network

In Fig 7, we demonstrate the convergence of the surrogate Lyapunov exponents. We show ing Fig 7A the estimate of the

surrogate Lyapunov exponents λS
i for i = 1, 20, 60, 80 for different random seeds for both the network weights, the input

weights, the random input, the orthonormal system and the initial conditions of the network state. B Shows the same, but for

one fixed network weight realization, where the seed of input, the initial conditions, and the orthonormal system are varied.

We note that with fixed network parameters, the different estimates of the surrogate Lyapunov exponent converge tighter.
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Figure 7. Convergence of Lyapunov exponents for g = 1 A Convergence of selected Lyapunov exponents λi for ten identical network

realizations with different initial conditions with simulation time (i = 1, 26, 52, 77, 103, 128) for g = 1. B Same as A but for fixed

network parameters. (Other parameters: N = 64, tsim = 1.5 seconds, tONS = 1).
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Figure 8. Convergence of Lyapunov exponents for g = 20 A Convergence of selected Lyapunov exponents λi for ten identical network

realizations with different initial conditions with simulation time (i = 1, 26, 52, 77, 103, 128) for g = 1. B Same as A but for fixed

network parameters. (Other parameters: N = 64, tsim = 1.5 seconds, tONS = 20).
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