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Abstract

Weighted automata have been used extensively

for studying quantitative properties of systems,

modeling the behavior of probabilistic systems,

and various text, speech, and image processing

domains. Moreover, they have become popular

in reinforcement learning for task specifications

in the form of reward machines. This is due to

their ability to assign a quantitative score to some

sequence of inputs in the problem domain. While

the weighted automaton formalism is powerful

and well-studied in literature, its inherently dis-

crete structure makes it difficult to use in gradient-

based pipelines. In this paper, we present a sys-

tematic framework for designing differentiable

weighted automata that can leverage automatic

differentiation tools to compute the gradient of

the weight calculated by a weighted automaton

with respect to its input sequence.

1. Introduction

Weighted automata are a generalization of finite-state au-

tomata over algebraic semiring structures that arose from

the connection of finite automata and rational formal power

series [1]–[3]. Here, in addition to checking if an input

sequence (or word) is accepting or rejecting, a weight is

associated with the input word and the run induced by in-

put word in the weighted automaton. Weighted automata

have extensively been used for the verification of quanti-

tative properties [4]–[7], for reasoning about probabilistic

systems [8], [9], and for text, speech, and image processing

[10]–[13]. In recent literature on reinforcement learning, a

specialization of weighted automata — reward machines

— have been introduced to express reward functions for

complex spatiotemporal tasks [14]–[18].
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While weighted automata are powerful tools to compute

quantitative costs or weights of structured input sequences —

images, words, robot trajectories — they have been challeng-

ing to use in gradient-based pipelines due to their inherently

discrete structures. For example, in trajectory optimization

and control theory, automata-based techniques decompose

the optimization problem over the automaton as “sub-tasks”.

Such frameworks usually reduce to a graph game on a com-

position of the specification automaton and an underlying

model of the system [19], [20]; or as hierarchical hybrid sys-

tems [21]–[24]. In a similar vein, recent literature on reward

machine-based reinforcement learning, various frameworks

learn policies for such sub-tasks. The works in [25] and [26]

propose compositional approaches to learning policies for

sub-tasks in reward machines to satisfy a global task. These

methods are inherently restricted use to the state explosion

that happens by decomposing the automaton, and thus, don’t

scale well to more complex specifications and systems.

Our Contributions In this paper, we present a construc-

tion of weighted automata using matrix semirings that al-

lows for the automaton to be directly deployed in neural

network-based pipelines. We describe a set of necessary

conditions to construct a class of weighted automata that

can be differentiable with respect to their inputs, thereby

leveraging state-of-the-art automatic differentiation tools

[27]. Further, we present empirical results in trajectory

optimization for some sequential, time-dependent tasks.

While a notion of differentiable weighted automata for natu-

ral language processing has been explored in [28], [29] —

over graph operations on the automata, i.e., with respect to

other automata or the transitions of an automaton — our

approach looks at an orthogonal problem. Specifically, we

study the semantics of differentiability of the weights out-

putted by a fixed automaton with respect to the input se-

quences — a common occurrence in trajectory optimization

and reinforcement learning with reward machines. To the

best of our knowledge, this is the first presentation of such

differentiable automata along with the conditions to con-

struct them.

2. Preliminaries

In this section, we will define some notations and provide

some background for our proposed framework.
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Definition 1 (Semiring [30]). The tuple (K,⊕,⊗, 0̃, 1̃) is a

semiring with the underlying set K if
(

K,⊕, 0̃
)

is a com-

mutative monoid with identity 0̃;
(

K,⊗, 1̃
)

is a monoid

with identity element 1̃; ⊗ distributes over ⊕; and 0̃ is an

annihilator for ⊗ (for all k ∈ K, k ⊗ 0̃ = 0̃⊗ k = 0̃).

Semirings are algebraic structures that are used to define

the semantics of non-deterministic weighted automata, de-

fined later in this section. Important examples of semirings

include:

• Boolean semiring, ({0, 1} ,∨,∧, 0, 1) with or-

operation acting as addition and and-operation acting

as multiplication;

• The real numbers (R,+,×, 0, 1) with the usual addi-

tion and multiplication.

• The log-semiring with the extended re-

als (R ∪ {−∞,∞} ,⊕log ,+,−∞, 0), where

x⊕log y = logb(b
x + by), for some base b;

• The tropical max-plus semiring

(R ∪ {−∞,∞} ,max ,+,−∞, 0), which can be

derived from the limit of log-semiring as the base

b → ∞.

The log-semiring and the tropical semiring are used exten-

sively in the context of optimization, where the tropical

semiring appears in shortest-path analysis (as the min-plus

semiring, which is isomorphic to the max-plus semiring via

negation). The former is used for smooth-approximations

of min and max operations, and in problems involving

log-likelihoods.

If the multiplication operation ⊗ is commutative, we say

that the semiring is also commutative, and it is said to be

idempotent if the addition operation is such that x⊕ x = x

for all x ∈ K. All of the above described semirings are

commutative, while only the Boolean and tropical semirings

are idempotent. In the following definitions, we will use K

to denote semirings.

Definition 2 (Weighted Automaton [1]). A weighted au-

tomaton is a tuple A = (Σ, Q,Q0, QF ,∆λ, α, beta),
where

• Σ is an input alphabet;

• Q is a set of locations in the automaton, with Q0 and

QF denoting the initial and final (or accepting) loca-

tions respectively;

• ∆ : Q × Σ → 2Q is a transition function, where 2Q

denotes the powerset of Q;

q0start q1 q2 q3

q4

x 6∈ Rred ∪Rblue

x ∈ Rred

x 6∈ Rgreen ∪Rblue

x ∈ Rgreen

x 6∈ Rorange ∪Rblue

x ∈ Rorange

x 6∈ Rblue

x ∈ Rblue

x ∈ R
blue

x
∈
R

blue

x
∈
R

blue

>

Figure 1. Example of an automaton with inputs x ∈ X ⊂ R
n.

Here, for various regions Rred, Rgreen, Rorange, Rblue contained in

X , the automaton specifies a task: “move to region Rred, then

region Rgreen, and then to region Rorange in order while always

avoiding the region Rblue.”

• λ : Q × Σ × Q → K is a transition weight function,

α : Q0 → K is the initial weights function and β :
QF → K is the final weights function.

As is convention, we use Σ∗ to refer to the set of all finite

length sequence of elements x ∈ Σ. Given an input se-

quence, ξ = (x0, x1, . . . , xl) ∈ Σ∗, a run in the symbolic

automaton A is a sequence of locations (q0, q1, . . . , ql+1)
such that qi+1 ∈ ∆(qi, xi) for all i ∈ 0, . . . , l. We use

qi
xi−→ qi+1 to denote a valid transition in the automaton,

and runA(ξ) to denote the set of runs induced in A by

ξ ∈ Σ∗. We say that the automaton is non-deterministic

if a trace ξ can generate multiple runs in A, i.e., if for

some input x and location q, |∆(q, x)| > 1. A run is ac-

cepting in the automaton if ql ∈ QF for any induced run

(q0, q1, . . . , ql) ∈ runA(ξ), and we denote this by ξ |= A.

The weight of an input trace ξ = (x0, . . . , xl) ∈ Σ∗ on a

weighted automaton A is

wA(ξ) =
⊕

runA(ξ)

α(q0)⊗

(

l
⊗

i=0

λ(qi, xi, qi+1)

)

⊗ β(ql+1).

(1)

Example. Consider a 2D workspace X ⊂ R
2 with four

regions Rred, Rgreen, Rorange, Rblue contained in X . Let

us have a robot in the workspace that is required to visit

the regions in the strict order Rred,Rgreen,Rorange, while

never entering the region Rblue. In Figure 1, we see the

(unweighted) automaton describing such a task: the input

alphabet Σ = X and the expressions on the transitions

(or guards) represent the condition when the transition is

feasible, i.e., when the condition is true for a transition

qi
x
−→ qi+1 then qi+1 ∈ ∆(qi, x). Moreover, the location q4

(with a tautology self-loop) is a rejecting sink location in the

automaton. In Figure 2, we see an example of a trajectory

that satisfies the requirement.

Definition 3 (Matrix Semirings [31]). If m is a positive

integer and K is a semiring, then the set of m ×m matri-

ces with entries in K, denoted Km×m, is also a semiring.
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Figure 2. An example trajectory in a 2D workspace that satisfies

the specification in Figure 1 described in Example 2. Here, the

state x is a vector in X ⊂ R
2, and the trajectory starts at a point

(−1,−1) and completes the specified task.

Specifically, for matrices A,B,C ∈ Km×m, we can define

the semiring operation as follows:

• Addition A⊕B = C is defined as element-wise addi-

tion Cij = Aij ⊕Bij ;

• The additive identity matrix is, intuitively, the m×m

matrix with all entries 0̃;

• Multiplication AB = C is defined similar to matrix

multiplication as Cij =
⊕m−1

k=0 Aik ⊗Bkj ; and

• The multiplicative identity matrix (or simply, identity

matrix) is similar to the usual: an m×m matrix with

all diagonal entries equal to 1̃, and the rest are 0̃.

From the above definition of matrix semiring, one can derive

the vector-dot product (x3 = x1 · x2 = x1x2), and vector-

matrix multiplication (x2 = xT
1 A).1 We refer readers to

[31] to see various other linear algebra equivalences under

the algebraic framework.

3. Differentiable Automata Operators

In this section, we will look at an alternative construction

of weighted automata as matrix operators by leveraging

extensive literature on automata theory has studied the field

— especially weighted and quantitative automata — from

the perspective of linear algebra [31]–[33].

Remark. Throughout the rest of the paper, we restrict our-

selves to Σ ⊆ R
n in an effort to keep our framework relevant

to compute pipelines that rely on floating point operations.

In practice, any input alphabet can be encoded into some

vector embedding, similar to what is done in image pro-

cessing, natural language processing, and with graph neural

1We will use the standard notation for matrix operations but
defined over semirings unless otherwise specified.

networks. Moreover, we can use arbitrarily large numbers

for semirings with ∞ to ease practical use.

Let the locations in Q an automaton A be indexed q0
through q|Q|−1. Then, we use 1Q0

and 1QF
be the Boolean

indicator vectors in {0, 1}
|Q|

with entries such that

(1Q0
)
i
=

{

0, if qi 6∈ Q0

1, if qi ∈ Q0

(1QF
)
i
=

{

0, if qi 6∈ QF

1, if qi ∈ QF .

Similarly, we define the initial weights α ∈ K |Q| and final

weights β ∈ K |Q| as

(α)i =

{

0̃, if qi 6∈ Q0

α(qi), if qi ∈ Q0

(β)i =

{

0̃, if qi 6∈ QF

β(qi), if qi ∈ QF .

Specifically, for a given weighted automaton A over a semir-

ing K, we define alternative matrix operators A∆ : Σ →

{0, 1}
|Q|×|Q|

and Aλ : Σ → K |Q|×|Q|, corresponding to ∆
and λ respectively.

Definition 4 (Transition Matrix Operator). For an au-

tomaton A, the corresponding transition matrix operator

A∆ : Σ → {0, 1}
|Q|×|Q|

is defined such that A∆(x) is

an element of the |Q| × |Q| Boolean matrix semiring, the

entries of which are:

(A∆(x))ij =

{

0, if qj 6∈ ∆(qi, x)

1, if qj ∈ ∆(qi, x),
(2)

where qi and qj are locations in Q indexed from 0 to |Q|−1.

Definition 5 (Weight Matrix Operator). For an automaton

A, the corresponding weight matrix operator Aλ : Σ →
K |Q|×|Q| is defined such that Aλ(x) is an element of the

|Q| × |Q| K-matrix semiring, the entries of which are:

(Aλ(x))ij = λ(qi, x, qj), (3)

where qi and qj are locations in Q indexed from 0 to |Q|−1.

From the above and prior definitions, we can derive the

following results:

Lemma 1. Given an input ξ = (x0, x1, . . . , xl) ∈ Σ∗ and

the function:

AccA(ξ) = 1
T
Q0

A∆(x0)A∆(x1) . . .A∆(xl)1QF
, (4)

then ξ |= A if and only if AccA(ξ) = 1. Moreover, the

weight wA(ξ) is given by

wA(ξ) = αT
Aλ(x0)Aλ(x1) . . .Aλ(xl)β (5)
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Proposition 1 (Conditions for Differentiability). Given an

automaton A and a semiring K ⊆ R, the gradient of the

weight with respect to input sequences ξ ∈ Σ∗,
∂wA(ξ)

∂ξ
, is

well-defined if and only if:

• a1 ⊕ a2 and a1 ⊗ a2 are differentiable at all points in

Σ, for a1, a2 ∈ K;

• λ(q, x, q′) is differentiable at all x ∈ Σ for all feasible

q
x
−→ q′ transitions in A.

Example. In the example in Figure 1, by using the log-

semiring with the weighting function λ(q, x, q′) as the Eu-

clidean distance of x from the regions that enable each

transition in the automaton in Figure 1, we can obtain a dif-

ferentiable wA. Moreover, since both, ⊕log and Euclidean

distance are smooth functions, we can see that optimizing

wA — a smooth function — gives an approximation of the

shortest path in the system that satisfies the specification.

4. Experimental Results

To demonstrate the use of differentiable weighted automata

as specifications for trajectory optimization, we look at the

example of two different environments. For both these envi-

ronments, we use JAX [34] and Brax [35] to simulate the dy-

namics of the agent in the environment, and the log-semiring

to compute the weights of the trajectories. Moreover, since

we look at the log-semiring, our goal is to maximize the

weights of the trajectory, as results in [36] establish that a

non-negative weight for the log-semiring is equivalent to

finding a satisfying input sequence. The results of our ex-

periments are detailed in Table 1, where we see the number

of gradient update epochs required to find a satisfying tra-

jectory in the environment with the corresponding learning

rate.2 We set the control inputs over the entire discrete-

time trajectory in both environments as the optimization

parameters.

Unicycle We perform control of a second-order unicycle

model on a 2-dimensional workspace, where the state vector

of the agent consists of the position, heading, velocity, and

angular velocity; we control the linear and angular accelera-

tion of the unicycle; and the task at hand is the sequential

reach-avoid automaton in Figure 1. For each transition

guard on the automaton, the distance function λ computes

the distance from the current position of the unicycle to the

condition regions. The system is sampled at 0.1 second rate

for a trajectory of length 80 time steps (or 8 seconds).

Pusher The Pusher environment in Brax [35] is a 23-

dimensional system where we control a multi-jointed ar-

2As these environments don’t have highly non-convex objec-
tives, simple gradient ascent is sufficient, but, in general, one must
choose an appropriate optimizer and set of hyperparameters.

q0start q1 q2

¬holdObj

holdObj

holdObj

¬holdObj

reachGoal

>

Figure 3. The automaton for the Pusher environment, where an

articulated arm is used to push an object from one position to a

goal location. Here, the predicate holdObj specifies that the arm

must reach/hold the object, and reachGoal specifies that the object

must reach the goal location.

Table 1. Results for Gradient-based Trajectory Optimization

Environment Epochs to satisfac-

tion

Learning Rate

Unicycle 425 0.05

Pusher 1562 0.05

ticulated arm to push an object from its initial location

to a goal location within 1000 time steps (at a period of

0.05 seconds). The automaton in Figure 3 describes this

specification, where the predicates holdObj and reachGoal

correspond to the task for the arm reaching and holding the

object, and then subsequently for the object to reach the

goal. To make the task of “reaching” a location feasible, we

describe them as follows:

holdObj ⇐⇒ ∥parm − pobj∥ ≤ 0.005m

reachGoal ⇐⇒ ∥pobj − pgoal∥ ≤ 0.005m,

where parm, pobj , and pgoal are the 3D coordinates of the

end of the arm, the object, and the goal position, respectively.

Moreover, for each transition guard in the automaton, we

pick the weight function λ to be as follows:

holdObj :λ(·, x, ·) = −max(0, ∥parm − pobj∥ − 0.005)
¬holdObj :λ(·, x, ·) = −max(0, 0.005− ∥parm − pobj∥)
reachGoal :λ(·, x, ·) = −max(0, ∥pobj − pgoal∥ − 0.005)

> :λ(·, x, ·) = 0̃ = −∞

5. Conclusion

In this paper, we present a framework for designing differ-

entiable weighted automata. To the best of our knowledge,

this is the first such paper to propose a set of necessary con-

ditions for differentiability of a weighted automaton output

with respect to the input sequence. We present an initial

set of experiments to demonstrate the use of our framework

in a gradient-based trajectory optimization problem, both

examples being non-linear systems with sequential tasks.
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