
Differentiable Local Intrinsic Dimension Estimation with Diffusion Models

Hamidreza Kamkari 1 Brendan Leigh Ross 1 Rasa Hosseinzadeh 1 Jesse C. Cresswell 1 Gabriel Loaiza-Ganem 1

Abstract

High-dimensional data commonly lies on low-

dimensional submanifolds, and estimating the lo-

cal intrinsic dimension (LID) of a datum is a long-

standing problem. LID can be understood as the

number of local factors of variation: the more

factors of variation a datum has, the more com-

plex it tends to be. Estimating this quantity has

proven useful in contexts ranging from general-

ization in neural networks to detection of out-

of-distribution data, adversarial examples, and

AI-generated text. While many model-free and

several model-based estimation techniques exist,

none are differentiable by design. In this work, we

show that the Fokker-Planck equation associated

with a diffusion model can provide the first LID

estimator that is differentiable and scales to high

dimensional data while outperforming existing

baselines on LID estimation benchmarks.

1. Introduction

The manifold hypothesis (Bengio et al., 2013) states that

high-dimensional data in R
D often lies on low-dimensional

submanifolds. For a given datum x ∈ R
D, this hypothesis

motivates using its local intrinsic dimension (LID), denoted

LID(x), as a natural measure of its complexity. LID(x) can

be intuitively understood as the minimal number of variables

needed to describe x, as illustrated in Figure 1.

LID has been used to detect outliers (Houle et al., 2018;

Kamkari et al., 2024b), AI-generated text (Tulchinskii et al.,

2023), and adversarial examples (Ma et al., 2018), among

other applications. Traditional model-free estimators of

intrinsic dimension (Fukunaga & Olsen, 1971; Levina &

Bickel, 2004; Johnsson et al., 2014) typically rely on pair-

wise distances and nearest neighbours, rendering them ex-

pensive and non-differentiable in practice. Recent work

uses deep generative models that implicitly learn the data
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Figure 1. An illustration showing that LID is a natural measure of

relative complexity. We depict two manifolds of MNIST digits,

corresponding to 1s and 8s, as 1d and 2d submanifolds of R
3,

respectively. The relatively simpler manifold of 1s exhibits a

single factor of variation (“tilt”), whereas 8s have an additional

factor of variation (“disproportionality”).

submanifolds, suggesting they can be used to construct LID

estimators. However, existing model-based estimators suffer

from drawbacks including being inaccurate and computa-

tionally expensive (Stanczuk et al., 2022), not leveraging

the best existing generative models (Zheng et al., 2022),

requiring training several models (Tempczyk et al., 2022)

or altering the training procedure rather than relying on a

pre-trained model (Horvat & Pfister, 2024). In all these

cases the LID estimators are non-differentiable in practice.

We address all these issues by showing how to estimate LID

efficiently using only a single pre-trained diffusion model

(DM). We leverage the Fokker-Planck equation to propose

FLIPD1, the first LID estimator to scale to high-resolution

images (∼ 106 dimensions), and the first that is tractably

differentiable. While differentiating through local intrinsic

dimension estimation is not a common sub-task today, this

may simply be because no existing methods enable it. We

present these ideas with the hope that future work will find

even more applications given these new capabilities.

1Pronounced as “flipped”, the acronym is a rearrangement of
“FP” from Fokker-Planck and “LID”.
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2. Background and Related Work

Diffusion Models Score-based diffusion models (Song

et al., 2021b) convert data to noise through the forward (Itô)

stochastic differential equation (SDE),

dXt = f(Xt, t)dt+ g(t)dWt, X0 ∼ p(·, 0), (1)

where Wt denotes a D-dimensional Brownian motion. We

write the distribution of Xt as p(·, t). The backward process

Yt := X1−t obeys a backward SDE involving the score

function s(x, t) := ∇ log p(x, t) which is modeled by a

neural network ŝ(x, t) via denoising score matching (Vin-

cent, 2011). DMs admit density evaluation, placing them in

the same category as other deep generative models, such as

normalizing flows. As we will see, generative models with

this capability can be utilized to produce LID estimates.

LID The local intrinsic dimension of a point x is the

dimension of the manifold it belongs to, hence, LID is not

an intrinsic property of the point x, but rather a property of

x with respect to the manifold that contains it. Tempczyk

et al. (2022) proposed LIDL, a method for LID estimation

relying on normalizing flows. LIDL works thanks to a

surprising result linking Gaussian convolutions and LID

(Loaiza-Ganem et al., 2022; Tempczyk et al., 2022; Zheng

et al., 2022). We will denote the convolution of p(·, 0) and

Gaussian noise with log standard deviation δ as ϱ(·, δ), i.e.

ϱ(x, δ) :=

∫
p(x0, 0)N (x− x0; 0, e

2δID)dx0. (2)

The aforementioned result suggests that, for negative

enough values of δ (i.e. small enough standard deviations):

log ϱ(x, δ) ≈ δ(LID(x)−D) + c (3)

for some constant c. If we could evaluate log ϱ(x, δ) for var-

ious values of δ, this would provide an avenue for estimating

LID(x): set some values δ1, . . . , δm, fit a linear regression

using {(δi, log ϱ(x, δi))}mi=1 (with δ as the covariate and

log ϱ(x, δ) as the response), and let β̂x be the corresponding

slope. It follows that β̂x estimates LID(x) − D, so that

LID(x) ≈ D + β̂x is a sensible estimator of LID.

Since ϱ(x, δ) is unknown, LIDL requires trainingm normal-

izing flows. More specifically, for each δi, a normalizing

flow is trained on data to which N (0, e2δiID) noise is added.

In LIDL, the log densities of the trained models are then

used instead of the unknown true log densities log ϱ(x, δi)
when fitting the regression as described above.

3. Method

Although Tempczyk et al. (2022) used normalizing flows in

LIDL, they did point out that these models could be swapped

for any other generative model admitting density evaluation.

Indeed, one could trivially train m DMs and replace the

flows with them. As opposed to the normalizing flows used

in LIDL which are individually trained on datasets with dif-

ferent levels of noise added, a single diffusion model already

works by convolving data with various noise levels and al-

lows density evaluation of the resulting noisy distributions

(Song et al., 2021b). Hence, we show that LIDL can be

used with a single DM. Throughout this section, we assume

access to a pre-trained DM such that f(x, t) = b(t)x. This

choice implies that the transition kernel pt|0 associated with

Equation 1 is Gaussian (Särkkä & Solin, 2019):

pt|0(xt | x0) = N (xt;ψ(t)x0, σ
2(t)ID). (4)

We assume that b and g are such that ψ and σ are differen-

tiable and λ(t) := σ(t)/ψ(t) is injective. This encompasses

all DMs commonly used in practice, including variance-

exploding, variance-preserving (of which DDPM (Ho et al.,

2020) is a discretized instance), and sub-variance-preserving

(Song et al., 2021b). In Appendix A we include explicit

formulas for ψ(t), σ2(t), and λ(t) for these particular DMs.

3.1. FLIPD: A Fokker-Planck-Based LID Estimator

LIDL is based on Equation 3, which justifies using

a regression. Differentiating this equation yields that

∂ log ϱ(x, δ0)/∂δ ≈ LID(x) − D for negative enough δ0.

By leveraging the Fokker-Planck equation associated with

Equation 1, we show in Appendix C that, for DMs with

transition kernel as in Equation 4,

∂

∂δ
log ϱ(x, δ)=σ2

(
t(δ)

) (
tr
(
∇s
(
ψ(t(δ))x, t(δ)

))
(5)

+
∥∥s
(
ψ(t(δ))x, t(δ)

)∥∥2
2

)
=: ν

(
t(δ); s, x

)
.

Equation 5 directly provides the rate of change that the

regression in LIDL aims to estimate, from which we get:

LID(x) ≈ D + ν
(
t(δ0); ŝ, x

)
=: FLIPD(x, t0), (6)

where t(δ) := λ−1(eδ) and t0 := t(δ0). Computing FLIPD

requires only a single hyperparameter, whereas regression-

based estimators require m. Since ν(t(δ); ŝ, x) depends on

δ only through t(δ), we can directly set t0 as the hyperpa-

rameter rather than δ0, which avoids the potentially cumber-

some computation of t(δ0) = λ−1(eδ0): instead of setting

a suitably negative δ0, we set t0 > 0 sufficiently close to 0.

Moreover, the expression for ν
(
t(δ0); ŝ, x

)
in Equation 5

contains only standard operations which are amenable to au-

tomatic differentiation. In Appendix A we include explicit

formulas for FLIPD(x, t0) for common DMs.

4. Experiments

Throughout our experiments, we use variance-preserving

DMs, the most popular variant of DMs, and compatible with

DDPMs; see Appendix D.1 for hyperparameters.
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Table 1. MAE (lower is better) | concordance indices (higher is better with 1.0 being the gold standard). Rows show synthetic manifolds

and columns represent LID estimation methods. Columns are grouped based on whether they use a generative model, with the best results

for each metric within each group being bolded. Model-based Model-free

Synthetic Manifold FLIPD NB LIDL ESS LPCA

String within doughnut ⊆ R
3

0.06 1.00 1.48 0.48 1.10 0.99 0.02 1.00 0.00 1.00

L5 ⊆ R
10 0.17 - 1.00 - 0.10 - 0.07 - 0.00 -

N90 ⊆ R
100 0.49 - 0.18 - 0.33 - 1.67 - 21.9 -

U10 + U30 + U90 ⊆ R
100

1.30 1.00 61.6 0.34 8.46 0.74 21.9 0.74 20.1 0.86

N10 + N25 + N50 ⊆ R
100

1.81 1.00 74.2 0.34 8.87 0.74 7.71 0.88 5.72 0.91

F10 + F25 + F50 ⊆ R
100

3.93 1.00 74.2 0.34 18.6 0.70 9.20 0.90 6.77 1.00

U10 + U80 + U200 ⊆ R
800

14.3 1.00 715 0.34 120 0.70 2.35 1.00 33.7 1.00

U900 ⊆ R
1000

12.8 - 100 - 24.9 - 75.2 - 801 -

Figure 2. FLIPD curves with knees at the true LID.

The effect of t0 FLIPD requires setting t0 close to 0. It

is important to note that DMs fitted to low-dimensional

manifolds are known to exhibit numerically unstable scores

s(·, t0) as t0 ↘ 0 (Vahdat et al., 2021; Lu et al., 2023;

Loaiza-Ganem et al., 2024). Our first set of experiments

examines the effect of t0 on FLIPD(x, t0) by varying t0
within the range (0, 1).

In Figure 2, we train a DM on a mixture of three isotropic

Gaussians with dimensions 2, 4, and 8, embedded in R
10

(each embedding is carried out by multiplication against a

random matrix with orthonormal columns plus a random

translation). While FLIPD(x, t0) is inaccurate at t0 = 0
due to the aforementioned instabilities, it quickly stabilizes

around the true LID for all datapoints. We refer to this

pattern as a knee in the FLIPD curve. We persistently see

knees in FLIPD curves (in Appendix D.2, we show similar

curves for more complex data manifolds). Not only is this

in line with the observations of LIDL on normalizing flows

(see Figure 5 of Tempczyk et al. (2022)), but it also gives

us a fully automated approach to setting t0. We leverage

kneedle (Satopaa et al., 2011), a knee detection algorithm

which aims to find points of maximum curvature. Rather

than fixing t0, we evaluate Equation 6 for 50 values of t0
and pass the results to kneedle to automatically detect the

t0 where a knee occurs.

Synthetic experiments We create a benchmark for LID

evaluation on complex unions of manifolds where true LID

is known. We sample from simple distributions on low-

dimensional spaces, and then embed the samples into R
D.

We denote uniform, Gaussian, and Laplace distributions

as U ,N , and L, respectively, with sub-indices indicating

LID, and a plus sign denoting mixtures. To embed samples

into higher dimensions, we apply a random matrix with

orthonormal columns and then apply a random translation.

For example, N10+L20 ⊆ R
100 indicates a 10-dimensional

Gaussian and a 20-dimensional Laplace, each of which un-

dergoes a random affine transformation mapping to R
100

(one transformation per component). We also generate non-

linear manifolds, denoted with F , by applying a randomly

initialized D-dimensional neural spline flow (Durkan et al.,

2019) after the affine transformation (when using flows, the

input noise is always uniform); since the flow is a diffeo-

morphism, it preserves LID.

Here, we summarize our synthetic experiments in Table 1

using two metrics of performance: the mean absolute error

(MAE) between the predicted and true LID for individ-

ual datapoints; and (when the dataset has variability in its

ground truth LIDs) the concordance index, which measures

similarity in the rankings between then true LIDs and the

estimated ones. We compare against the LIDL estimator

described in Section 2, as well another DM-based method

(NB, (Stanczuk et al., 2022)) and two of the most performant

model-free baselines (LPCA, (Fukunaga & Olsen, 1971);

ESS (Johnsson et al., 2014)). For the NB baseline, we use

the exact same DM backbone as for FLIPD, and for LIDL

we use 8 neural spline flows. In terms of MAE, FLIPD tends

to be the best model-based estimator particularly as dimen-

sion increases. Although model-free baselines perform well

in simplistic scenarios, they produce unreliable results as

LID increases or more non-linearity is introduced in the data

manifold. In terms of concordance index, FLIPD achieves

perfect scores in all scenarios, meaning that even when its

estimates are off, it always provides correct LID rankings.

In Appendix D we include ablations for FLIPD and com-

parisons on more high-dimensional datasets, and with other

model-free baselines.

Image experiments We first focus on the simple image

datasets MNIST and FMNIST. We flatten the images and use
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Figure 3. Top: Images with small and large FLIPD estimates from

FMNIST, MNIST, SVHN, and CIFAR10. Bottom: LAION im-

ages with small and large FLIPD estimates using Stable Diffusion

(top, t0 = 0.5) and PNG compression sizes (bottom).

the same MLP architecture as in our synthetic experiments.

Despite using an MLP, our DMs can generate reasonable

samples (Appendix E.1). The average LID estimates are

130 and 170, respectively. Although our LID estimates are

higher than given in prior work (Pope et al., 2021; Brown

et al., 2023), our high-dimensional experiments (Table 7 of

Appendix D.4) and findings by Tempczyk et al. (2022) and

Stanczuk et al. (2022) show that model-free baselines under-

estimate LID of high-dimensional data, especially images.

On more complex image datasets like SVHN and CIFAR10,

the simplistic MLP score network backbone fails to generate

high-quality samples. Therefore, we replaced it with state-

of-the-art UNets (Ronneberger et al., 2015; von Platen et al.,

2022) (see Appendix E.2). We took a random subset of 4096
images from FMNIST, MNIST, SVHN, and CIFAR10, and

sorted them according to their FLIPD estimates. We show

the top and bottom 5 images for each dataset in Figure 3, and

include more samples in Appendix E.3. Our visualization

shows that higher FLIPD estimates indeed correspond to

images with more detail and texture, while lower estimates

correspond to less complex ones. FLIPD not only visually

corresponds to image complexity, but also required only 50
Jacobian-vector-products, resulting in a significant speedup

over all prior work.

Further, we quantitatively assess our estimates by computing

Spearman’s rank correlation coefficient between different

LID estimators and PNG compression size, used as a proxy

for complexity in the absence of ground truth. As shown in

Table 2, FLIPD has a high correlation with PNG, whereas

model-free estimators do not. We find that the NB estimator

correlates slightly more with PNG on MNIST and CIFAR10,

but significantly less in FMNIST and SVHN.

Table 2. Spearman’s correlation between LID estimates and PNG

compression size.

Method MNIST FMNIST CIFAR10 SVHN

FLIPD 0.837 0.883 0.819 0.876
NB 0.864 0.480 0.894 0.573
ESS 0.444 0.063 0.326 0.019
LPCA 0.413 0.01 0.302 −0.008

Finally, we consider high-resolution images from LAION-

Aesthetics (Schuhmann et al., 2022) and, for the first time,

estimate LID for extremely high-dimensional images with

D = 3×512×512 = 786,432. To achieve this, we use Sta-

ble Diffusion (Rombach et al., 2022), a latent DM pretrained

on LAION-5B (Schuhmann et al., 2022). This includes an

encoder and a decoder trained to preserve relevant charac-

teristics of the data manifold in latent representations. Since

the encoder and decoder are continuous and effectively in-

vert each other, we argue that the Stable Diffusion encoder

can, for practical purposes, be considered a topological em-

bedding of the LAION-5B dataset into its latent space of

dimension 4× 64× 64 = 16,384. Therefore, the dimension

of the LAION-5B submanifold in latent space should be

unchanged. This approximation allows us to estimate image

LIDs by carrying out FLIPD in the latent space of Stable

Diffusion. Here, we set the Hutchinson sample count to 1,

meaning we only require a single Jacobian-vector-product.

When we order a random subset of 1600 samples according

to their FLIPD at t0 = 0.3, the more complex images are

clustered at the end, while the least complex are clustered at

the beginning: see Figure 3 for the lowest- and highest-LID

images from this ordering, and Figure 24 in Appendix E.6

to view the entire subset and other values of t0. In com-

parison to orderings according to PNG compression size

(Figure 3), FLIPD estimates prioritize semantic complexity

over low-level details like colouration.

5. Conclusions, Limitations, and Future Work

In this work, we have shown that the Fokker-Planck equa-

tion can be utilized for efficient LID estimation with any

pre-trained DM. We have provided strong theoretical foun-

dations and extensive benchmarks showing that FLIPD esti-

mates accurately reflect data complexity. Although FLIPD

produces excellent LID estimates on synthetic benchmarks,

the lack of knees in FLIPD curves on image data when us-

ing state-of-the-art architectures is surprising, and results in

unstable LID estimates which strongly depend on t0. We

see this behaviour as a limitation, even if FLIPD provides

a meaningful measure of complexity in these cases. Given

that FLIPD is tractable, differentiable, and compatible with

any DM, we hope that it will find uses in applications where

LID estimates have already proven helpful, including OOD

detection, AI-generated data analysis, and adversarial exam-

ple detection.
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A. Explicit Formulas

A.1. Variance-Exploding Diffusion Models

Variance-exploding DMs are such that f(x, t) = 0 with g being non-zero. In this case (Song et al., 2021b):

ψ(t) = 1, and σ2(t) =

∫ t

0

g2(u)du. (7)

Since g is non-zero, g2 is positive, so that σ2 is increasing, and thus injective. It follows that σ is also injective, so that

λ = σ/ψ = σ is injective. Equation 6 then implies that

FLIPD(x, t0) = D + σ2(t0)
[
tr
(
∇s(x, t0)

)
+ ∥s(x, t0)∥22

]
. (8)

A.2. Variance-Preserving Diffusion Models (DDPMs)

Variance-preserving DMs are such that

f(x, t) = −1

2
β(t)x, and g(t) =

√
β(t), (9)

where β is a positive scalar function. In this case (Song et al., 2021b):

ψ(t) = e−
1
2B(t), and σ2(t) = 1− e−B(t), where B(t) :=

∫ t

0

β(u)du. (10)

We then have that

λ(t) =

√
σ2(t)

ψ2(t)
=
√
eB(t) − 1. (11)

Since β is positive, B is increasing and thus injective, from which it follows that λ is injective as well. Plugging everything

into Equation 6, we obtain:

FLIPD(x, t0) = D +
(
1− e−B(t0)

)(
tr
(
∇s
(
e−

1
2B(t0)x, t0

))
+
∥∥s
(
e−

1
2B(t0)x, t0

)∥∥2
2

)
. (12)

A.3. Sub-Variance-Preserving Diffusion Models

Sub-variance-preserving DMs are such that

f(x, t) = −1

2
β(t)x, and g(t) =

√
β(t)

(
1− e−2B(t)

)
, where B(t) :=

∫ t

0

β(u)du, (13)

and where β is a positive scalar function. In this case (Song et al., 2021b):

ψ(t) = e−
1
2B(t), and σ2(t) =

(
1− e−B(t)

)2
. (14)

We then have that

λ(t) =
σ(t)

ψ(t)
= e

1
2B(t) − e−

1
2B(t) = 2 sinh

(
1

2
B(t)

)
. (15)

Since β is positive, B is increasing and thus injective, from which it follows that λ is injective as well due to the injectivity

of sinh. Plugging everything into Equation 6, we obtain:

FLIPD(x, t0) = D +
(
1− e−B(t0)

)2(
tr
(
∇s
(
e−

1
2B(t0)x, t0

))
+
∥∥s
(
e−

1
2B(t0)x, t0

)∥∥2
2

)
. (16)
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Table 3. Comparing the discretized DDPM notation with score-based DM side-by-side.

Term DDPM (Ho et al., 2020) Score-based DM (Song et al., 2021b)

Timestep t ∈ {0, 1, . . . , T} t/T = t ∈ [0, 1]
(Noised out) datapoint xt xt/T = xt
Diffusion process hyperparameter βt β(t/T ) = β(t)
Mean of transition kernel

√
ᾱt ψ(t/T ) = ψ(t)

Std of transition kernel
√
1− ᾱt σ(t/T ) = σ(t)

Network parameterization −ϵ(x, t)/√1− ᾱt ŝ(x, t/T ) = ŝ(x, t)

B. Adapting FLIPD for DDPMs

Here, we adapt FLIPD for state-of-the-art DDPM architectures and follow the discretized notation from Ho et al. (2020)

where instead of using a continuous time index t from 0 to 1, a timestep t belongs instead to the sequence {0, . . . , T} with

T being the largest timescale. We use the colour gold to indicate the notation used by Ho et al. (2020). We highlight that the

content of this section is a summary of the equivalence between DDPMs and the score-based formulation established by

Song et al. (2021b).

As a reminder, DDPMs can be viewed as discretizations of the forward SDE process of a DM, where the process turns into a

Markov noising process:

p(xt | xt−1) := N (xt;
√
1− βt · xt−1, βtID). (17)

We also use sub-indices t instead of functions evaluated at t to keep consistent with Ho et al. (2020)’s notation. This in turn

implies the following transition kernel:

p(xt |x0) = N (xt;
√
ᾱtx0, (1− ᾱt)ID) (18)

where αt := 1− βt and ᾱt :=
∏t

s=1 αt.

DDPMs model the backward diffusion process (or denoising process) by modelling a network ϵ : RD × {1, . . . , T} → R
D

that takes in a noised-out point and outputs a residual that can be used to denoise. In particular, for every t:

xt + ϵ(xt, t) ∼ p(xt−1|xt). (19)

Song et al. (2021b) show that one can draw an equivalence between the network ϵ(·, t) and the score network (see their

Appendix B). Here, we rephrase the connections in a more explicit manner where we note that:

−ϵ(x, t)/
√
1− ᾱt = s(x, t/T ). (20)

Consequently, plugging into Equation 12, we get the following formula adapted for DDPMs:

FLIPD(x, t0) = D −
√
1− ᾱt0 tr

(
∇ϵ(

√
ᾱt0x, t0)

)
+ ∥ϵ(

√
ᾱt0x, t0)∥22, (21)

where t0 = t0 × T (best viewed in colour). We include Table 3, which summarizes all of the equivalent notation when

moving from DDPMs to score-based DMs and vice-versa.

C. Derivations

C.1. Diffusion Model Densities are Convolutions

In this section we give a concrete relation between the density of a DM and the convolution of data with Gaussian noise

defined in Equation 2. We show that for any arbitrary DM with transition kernel as in Equation 4, it holds that

log ϱ(x, δ) = D log γ(δ) + log p
(
γ(δ)x, t(δ)

)
, (22)
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where t(δ) := λ−1(eδ) and γ(δ) := ψ(t(δ)). We have that:

p
(
γ(δ)x, t(δ)

)
=

∫
pt(δ)|0

(
γ(δ)x | x0

)
p(x0, 0)dx0 (23)

=

∫
N
(
γ(δ)x;ψ

(
t(δ)

)
x0, σ

2
(
t(δ)

)
ID

)
p(x0, 0)dx0 (24)

=

∫
N
(
γ(δ)x; γ(δ)x0, σ

2
(
t(δ)

)
ID

)
p(x0, 0)dx0 (25)

=
1

γD(δ)

∫
N
(
x;x0,

σ2
(
t(δ)

)

ψ2
(
t(δ)

)ID
)
p(x0, 0)dx0 (26)

=
1

γD(δ)

∫
N
(
x;x0, λ

2
(
t(δ)

)
ID

)
p(x0, 0)dx0 (27)

=
1

γD(δ)

∫
N
(
x;x0, e

2δID
)
p(x0, 0)dx0 =

1

γD(δ)
ϱ(x, δ), (28)

where we used that N (ax; ax0, σ
2ID) = 1

aD N (x;x0, (σ
2/a2)ID). Taking logarithms yields Equation 22.

C.2. Derivation of Equation 5

First, we recall the Fokker-Planck equation associated with the SDE in Equation 1, which states that:

∂

∂t
p(x, t) = −p(x, t) [∇ · f(x, t)]− ⟨f(x, t),∇p(x, t)⟩+ 1

2
g2(t) tr

(
∇2p(x, t)

)
. (29)

We begin by using this equation to derive ∂/∂t log p(x, t). Noting that ∇p(x, t) = p(x, t)s(x, t), we have that:

tr
(
∇2p(x, t)

)
= tr (∇ [p(x, t)s(x, t)]) = p(x, t) tr (∇s(x, t)) + tr

(
s(x, t)∇p(x, t)⊤

)
(30)

= p(x, t)
[
tr (∇s(x, t)) + ∥s(x, t)∥22

]
. (31)

Because

∂

∂t
p(x, t) = p(x, t)

∂

∂t
log p(x, t), (32)

it then follows that

∂

∂t
log p(x, t) = − [∇ · f(x, t)]− ⟨f(x, t), s(x, t)⟩+ 1

2
g2(t)

[
tr (∇s(x, t)) + ∥s(x, t)∥22

]
. (33)

Then, from Equation 22 and the chain rule, we get:

∂

∂δ
log ϱ(x, δ) =

d

dδ

[
D logψ

(
t(δ)

)
+ log p

(
ψ
(
t(δ)

)
x, t(δ)

)]
(34)

=D

[
d

dδ
logψ

(
t(δ)

)]
+




∇ log p
(
ψ
(
t(δ)

)
x, t(δ)

)

∂

∂t
log p

(
ψ
(
t(δ)

)
x, t(δ)

)



⊤(
∂

∂t
ψ
(
t(δ)

)
x

1

)
∂

∂δ
t(δ) (35)

=

[
∂

∂δ
t(δ)

] [
D

∂

∂t
ψ
(
t(δ)

)

γ(δ)
+

(
s
(
γ(δ)x, t(δ)

)
∂

∂t
log p

(
γ(δ)x, t(δ)

)
)⊤( ∂

∂t
ψ
(
t(δ)

)
x

1

)]
(36)

=

[
∂

∂δ
t(δ)

] [(
∂

∂t
ψ
(
t(δ)

))( D

γ(δ)
+
〈
x, s
(
γ(δ)x, t(δ)

)〉)
+
∂

∂t
log p

(
γ(δ)x, t(δ)

)
]
. (37)

9
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Substituting Equation 33 into Equation 37 yields:

∂

∂δ
log ϱ(x, δ) =

[
∂

∂δ
t(δ)

] [(
∂

∂t
ψ
(
t(δ)

))( D

γ(δ)
+
〈
x, s
(
γ(δ)x, t(δ)

)〉)

−
[
∇ · f

(
γ(δ)x, t(δ)

)]
−
〈
f
(
γ(δ)x, t(δ)

)
, s
(
γ(δ)x, t(δ)

)〉

+
1

2
g2
(
t(δ)

) (
tr
(
∇s
(
γ(δ)x, t(δ)

))
+
∥∥s
(
γ(δ)x, t(δ)

)∥∥2
2

)]
. (38)

From now on, to simplify notation, when dealing with a scalar function h, we will denote its derivative as h′. Since

t(δ) = λ−1(eδ), the chain rule gives:

∂

∂δ
t(δ) =

eδ

λ′
(
λ−1(eδ)

) =
λ
(
t(δ)

)

λ′
(
t(δ)

) . (39)

So far, we have not used that f(x, t) = b(t)x, which implies that ∇ · f(x, t) = Db(t) and that ⟨f(x, t), s(x, t)⟩ =
b(t)⟨x, s(x, t)⟩. Using these observations and Equation 39, Equation 38 becomes:

∂

∂δ
ϱ(x, δ) =

λ
(
t(δ)

)

λ′
(
t(δ)

)
[(

ψ′
(
t(δ)

)

ψ
(
t(δ)

) − b
(
t(δ)

)
)
D

+
〈(
ψ′
(
t(δ)

)
− b
(
t(δ)

)
ψ
(
t(δ)

))
x, s
(
γ(δ)x, t(δ)

)〉

+
1

2
g2
(
t(δ)

) (
tr
(
∇s
(
γ(δ)x, t(δ)

))
+
∥∥s
(
γ(δ)x, t(δ)

)∥∥2
2

)]
. (40)

If we showed that

ψ′(t)− b(t)ψ(t) = 0, and that
λ(t)

2λ′(t)
g2(t) = σ2(t), (41)

then Equation 40 would simplify to Equation 5. From equation 5.50 in (Särkkä & Solin, 2019), we have that

ψ′(t) = b(t)ψ(t), (42)

which shows that indeed ψ′(t)− b(t)ψ(t) = 0. Then, from equation 5.51 in (Särkkä & Solin, 2019), we also have that

(
σ2
)′
(t) = 2b(t)σ2(t) + g2(t), (43)

and from the chain rule this gives that

σ′(t) =
2b(t)σ2(t) + g2(t)

2σ(t)
. (44)

We now finish verifying Equation 41. Since λ(t) = σ(t)/ψ(t), the chain rule implies that

λ(t)

2λ′(t)
g2(t) =

σ(t)

ψ(t)

σ′(t)ψ(t)− σ(t)ψ′(t)

ψ2(t)

g2(t)

2
=

σ(t)ψ(t)

σ′(t)ψ(t)− σ(t)b(t)ψ(t)

g2(t)

2
(45)

=
σ(t)

σ′(t)− b(t)σ(t)

g2(t)

2
=

σ(t)

2b(t)σ2(t) + g2(t)

2σ(t)
− b(t)σ(t)

g2(t)

2
(46)

=
2σ2(t)

2b(t)σ2(t) + g2(t)− 2b(t)σ2(t)

g2(t)

2
= σ2(t), (47)

which, as previously mentioned, shows that Equation 40 simplifies to Equation 5.
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Table 4. Essential hyperparameter settings for the Diffusion models with MLP backbone.

Property Model Configuration

Learning rate 10−4

Optimizer AdamW

Scheduler Cosine scheduling with 500 warmup steps (von Platen et al., 2022)

Epochs 200, 400, 800, or 1000 based on the ambient dimension

Score-matching loss Likelihood weighting (Song et al., 2021a)

SDE drift f(x, t) := − 1
2β(t)x

SDE diffusion g(t) :=
√
β(t)

β(t) Linear interpolation: β(t) := 0.1 + 20t

Score network MLP

MLP hidden sizes ⟨4096, 2048, 2× 1024, 3× 512, 2× 1024, 2048, 4096⟩
Time embedding size 128

D. Experimental Details

Throughout all our experiments, we used an NVIDIA A100 GPU with 40GB of memory.

D.1. DM Hyperparameter Setup

Throughout our experiments, we use an MLP architecture with a bottleneck as our score network: 2×L+1 fully connected

layers with dimensions ⟨h1, h2, . . . , hL, . . . h2L+1⟩ forming a bottleneck, i.e., hL has the smallest size. Notably, for

1 ≤ i ≤ L, the ith transform connects layer i− 1 (or the input) to layer i with a linear transform of dimensions “hi−1 × hi”,

and the (L+ i)th layer (or the output) not only contains input from the (L+ i−1)th layer but also, contains skip connections

from layer (L − i) (or the input), thus forming a linear transform of dimension “(hL+i−1 + hL−i) × hL+i”. For image

experiments, we scale and shift the pixel intensities to be zero-centered with a standard deviation of 1. In addition, we

embed times t ∈ (0, 1) using the scheme in (von Platen et al., 2022) and concatenate with the input before passing to the

score network. All hyperparameters are summarized in Table 4.

D.2. FLIPD Estimates and Curves for Synthetic Distributions

Figure 4. The FLIPD estimates on a Lollipop dataset

from (Tempczyk et al., 2022).

Figure 4 shows pointwise LID estimates for a lollipop distribution

taken from (Tempczyk et al., 2022). It is a uniform distribution over

three submanifolds: (i) a 2d candy, (ii) a 1d stick, and (iii) an isolated

point of zero dimensions. Note that the FLIPD estimates at t0 = 0.05
for all three submanifolds are coherent.

Figure 5 shows the FLIPD curve as training progresses on the lollipop

example and the Gaussian mixture that was already discussed in

Section 4. We see that gradually, knee patterns emerge at the correct

LID, indicating that the DM is learning the data manifold. Notably,

data with higher LID values get assigned higher estimates even after

a few epochs, demonstrating that FLIPD effectively ranks data based

on LID, even when the DM is underfitted.

Finally, Figure 6 presents a summary of complex manifolds obtained

from neural spline flows and high-dimensional mixtures, showing

knees around the true LID.

D.3. A Simple Multiscale Experiment

Tempczyk et al. (2022) argue that when setting δ, all the directions of data variation that have a log standard deviation below

δ are ignored. Here, we make this connection more explicit.
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(a) After 10 epochs. (b) After 20 epochs. (c) After 100 epochs.

(d) After 10 epochs. (e) After 20 epochs. (f) After 100 epochs.

Figure 5. Evolution of the FLIPD curve while training the DM to fit a Lollipop (top) and a manifold mixture N2 + N4 + N8 ⊆ R
10

(bottom).

(a) F400 ⊆ R
800. (b) U900 ⊆ R

1000. (c) N10 + N25 + N50 ⊆ R
100.

Figure 6. The FLIPD curve for complex and high-dimensional manifolds.

Figure 7. FLIPD curve for a multivariate

Gaussian with controlled covariance eigen-

spectrum.

We define a multivariate Gaussian distribution with a prespecified eigenspec-

trum for its covariance matrix: having three eigenvalues of 10−4, three eigen-

values of 1, and four eigenvalues of 103. This ensures that the distribution

is numerically 7d and that the directions and amount of data variation are

controlled using the eigenvectors and eigenvalues of the covariance matrix.

For this multivariate Gaussian, the score function in Equation 5 can be written

in closed form; thus, we evaluate FLIPD both with and without training a DM.

We see in Figure 7 the estimates obtained in both scenarios match closely, with

some deviations due to imperfect model fit, which we found matches perfectly

when training for longer.

Apart from the initial knee at 7, which is expected, we find another at t0 = 0.6
(corresponding to eδ ≈ 6.178 with our hyperparameter setup in Table 4) where

the value of FLIPD is 4. This indeed confirms that the estimator focuses solely

on the 4d space characterized by the eigenvectors having eigenvalues of 103, and by ignoring the eigenvalues 10−4 and 1
which are both smaller than 6.178.
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D.4. In-depth Analysis of the Synthetic Benchmark

Generating Manifold Mixtures To create synthetic data, we generate each component of our manifold mixture separately

and then join them to form a distribution. All mixture components are sampled with equal probability in the final distribution.

For a component with the intrinsic dimension of d, we first sample from a base distribution in d dimensions. This base

distribution is isotropic Gaussian and Laplace for Nd and Ld and uniform for the case of Ud and Fd. We then zero-pad these

samples to match the ambient dimension D and perform a random D ×D rotation on R
D (each component has one such

transformation). For Fd, we have an additional step to make the submanifold complex. We first initialize a neural spline

flow (using the nflows library (Durkan et al., 2020)) with 5 coupling transforms, 32 hidden layers, 32 hidden blocks, and

tail bounds of 10. The data is then passed through the flow, resulting in a complex manifold embedded in R
D with an LID

of d. Finally, we standardize each mixture component individually and set their modes such that the pairwise Euclidean

distance between them is at least 20. We then translate each component so its barycenter matches the corresponding mode,

ensuring that data from different components rarely mixes, thus maintaining distinct LIDs.

LIDL Baseline Following the hyperparameter setup in (Tempczyk et al., 2022), we train 8 models with different

noised-out versions of the dataset with standard deviations eδi ∈ {0.01, 0.014, 0.019, 0.027, 0.037, 0.052, 0.072, 0.1}. The

normalizing flow backbone is taken from (Durkan et al., 2020), using 10 piecewise rational quadratic transforms with 32

hidden dimensions, 32 blocks, and a tail bound of 10. While (Tempczyk et al., 2022) uses an autoregressive architecture, we

use coupling transforms for increased training efficiency and to match the training time of a single DM.

Setup We use model-free estimators from the skdim library (Bac et al., 2021) and across our experiments, we sample

106 points from the synthetic distributions for either fitting generative models or fitting the model-free estimators. We then

evaluate LID estimates on a uniformly subsampled set of 212 points from the original set of 106 points. Some methods are

relatively slow, and this allows us to have a fair, yet feasible comparison. We do not see a significant difference even when

we double the size of the subsampled set. We focus on four different model-free baselines for our evaluation: ESS (Johnsson

et al., 2014), LPCA (Fukunaga & Olsen, 1971; Cangelosi & Goriely, 2007), MLE (Levina & Bickel, 2004; MacKay &

Ghahramani, 2005), and FIS (Albergante et al., 2019), all with default settings. Note that FIS does not scale beyond 100
dimensions. Computing pairwise distances on high dimensions (D ≥ 800) on all 106 samples takes over 24 hours even with

40 CPU cores. Therefore, for D ≥ 800, we use the same 212 subsamples we use for evaluation.

Evaluation We have three tables to summarize our analysis: (i) Table 6 shows the MAE of the LID estimates, comparing

each datapoint’s estimate to the ground truth at a fine-grained level; (ii) Table 7 shows the average LID estimate for synthetic

manifolds with only one component, this average is typically used to estimate global intrinsic dimensionality in baselines;

finally, (iii) looks at the concordance index (Harrell Jr et al., 1996) of estimates for cases with multiple submanifolds of

different dimensionalities. Concordance indices for a sequence of LID estimates {L̂ID}Nn=1 are formally defined as follows:

C
(
{LIDn}Nn=1, {L̂IDn}Nn=1

)
=

∑

1≤n1 ̸=n2≤N

LIDn1
≤LIDn2

I(L̂IDn1
≤ L̂IDn2

)/

(
N

2

)
(48)

where I is the indicator function; a perfect estimator will have a C of 1. Instead of emphasizing the actual values of the LID

estimates, this metric assesses how well the ranks of an estimator align with those of ground truth (Steck et al., 2007; Mayr

& Petras, 2008; Teles, 2012; Kamkari et al., 2024a), thus evaluating LID as a “relative” measure of complexity.

Model-free Analysis Among model-free methods, LPCA and ESS show good performance in low dimensions (with

LPCA being exceptionally good) but falter as dimensions increase. As we see in Table 6, while model-free methods

outperform other estimators when D < 100, as D increases the paradigm shifts with model-based estimators outperforming

the model-free ones. In addition, as shown in Table 7, all model-free baselines underestimate intrinsic dimensionality to

some degree, with LPCA and MLE being particularly drastic for D ≥ 800. We note that ESS performs relatively well, even

beating model-based methods in some 800-dimensional scenarios. However, we note that the C values in Table 8 suggest it

cannot rank data by LID as effectively as even the least performant MLE estimator.

Model-based Analysis Moving to model-based methods, we see in Table 8 that all perform poorly in ranking data based

on LID except our FLIPD estimator. Remarkably, FLIPD achieves perfect C values among all datasets; further justifying it

as a relative measure of complexity. We also note that while LIDL and NB provide better global estimates in Table 7 for
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Table 5. MAE (lower is better). Rows show synthetic manifolds and columns represent different variations of our Fokker-Planck-based

estimators.

Synthetic Manifold FLIPD FLIPD FPRegress FPRegress

t0= .05 kneedle kneedle δ1=−1

Lollipop in R
2

0.142 0.419 0.572 0.162
String within doughnut R3

0.052 0.055 0.398 0.377
Swiss Roll in R

3
0.053 0.055 0.087 0.161

L5 ⊆ R
10

0.100 0.169 1.168 0.455
N90 ⊆ R

100 0.501 0.492 3.142 0.998
U10 + U30 + U90 ⊆ R

100 3.140 1.298 5.608 10.617
F10 + F25 + F50 ⊆ R

100 14.37 3.925 16.32 21.01
U10 + U80 + U200 ⊆ R

800 39.54 14.30 30.06 29.99

high dimensions, they have worse MAE performance in Table 6. This once again suggests that at a local level, our estimator

is superior compared to others, beating all baselines in 2 out of 3 groups of synthetic manifolds with D ≥ 100 in Table 6.

Finally, we see a curious flipped behaviour with NB estimators where they perform better when increasing dimensionality.

D.5. Ablations

We begin by evaluating the impact of using kneedle. Our findings, summarized in Table 5, indicate that while setting a

small fixed t0 is effective in low dimensions, the advantage of kneedle becomes particularly evident as the number of

dimensions increases.

We introduce “FPRegress” which uses a single DM to perform the regression required by LIDL. To obtain LIDL estimates,

one must solve an ODE m times for a set of log standard deviations δ1 < . . . < δm. For a given origin δ1, we set δi = i× δ1
and use Euler’s method with m− 1 steps to get log ϱ̂(x, δi) for 1 ≤ i ≤ 8. Finally, a regression similar to LIDL is used to

extract the LID estimate. This estimator is not only slower than FLIPD, but as we see in Table 5, it has worse MAEs.

We also tried combining it with kneedle by sweeping over the origin δ1 and arguing that the estimates obtained from this

method also exhibit knees. Despite some improvement in high-dimensional settings, Table 5 shows that even coupling it

with kneedle does not help.

D.6. Improving the NB Estimators with kneedle

We recall that the NB estimator requires computing rankS(x), where S(x) is a K × D matrix formed by stacking the

scores ŝ(·, t0). We set t0 = 0.01 as it provides the most reasonable estimates. To compute rankS(x) numerically, Stanczuk

et al. (2022) perform a singular value decomposition on S(x) and use a cutoff threshold τ below which singular values are

considered zero. Finding the best τ is challenging, so Stanczuk et al. (2022) propose finding the two consecutive singular

values with the maximum gap. Furthermore, we see that sometimes the top few singular values are disproportionately higher

than the rest, resulting in severe overestimations of the LID. Thus, we introduce an alternative algorithm to determine the

optimal τ . For each τ , we estimate LID by thresholding the singular values. Sweeping 100 different τ values from 0 to

1000 at a geometric scale (to further emphasize smaller thresholds) produces estimates ranging from D (keeping all singular

values) to 0 (ignoring all). As τ varies, we see that the estimates plateau over a certain range of τ . We use kneedle to

detect this plateau because the starting point of a plateau is indeed a knee in the curve. This significantly improves the

baseline, especially in high dimensions: see the third column of Tables 6, 7, and 8 compared to the second column.
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Table 6. MAE (lower is better). Each row represents a synthetic dataset and each column represents an LID estimation method. Rows are

split into groups based on the ambient dimension: the first group of rows shows toy examples; the second shows low-dimensional data

with D = 10; the third shows moderate-dimensional data with D = 100; and the last two show high-dimensional data with D = 800 and

D = 1000, respectively.

Synthetic Manifold FLIPD
kneedle

NB Vanilla NB
kneedle

LIDL ESS LPCA MLE FIS

Lollipop in R
2 0.419 0.577 0.855 0.052 0.009 0.000 0.142 0.094

Swiss Roll in R
3 0.055 0.998 0.016 0.532 0.017 0.000 0.165 0.018

Doughnut Mixture in R
3 0.055 1.475 0.414 1.104 0.017 0.000 0.128 0.041

Summary (Toy Manifolds) 0.176 1.017 0.428 0.563 0.014 0.000 0.145 0.051

N5 ⊆ R
10 0.084 5.000 0.005 0.071 0.061 0.000 0.441 0.206

L5 ⊆ R
10 0.169 1.000 0.146 0.101 0.068 0.000 0.462 0.203

U5 ⊆ R
10 0.324 4.994 0.933 0.123 0.153 0.000 0.451 0.186

F5 ⊆ R
10 0.666 1.216 0.765 0.487 0.168 0.000 0.497 0.176

N2 +N4 +N8 ⊆ R
10 0.287 5.706 1.078 0.308 0.156 0.000 0.406 0.206

L2 + L4 + L8 ⊆ R
10 0.253 5.708 0.772 0.515 0.193 0.001 0.437 0.018

U2 + U4 + U8 ⊆ R
10 0.586 5.677 3.685 0.363 0.331 0.115 0.540 0.222

F2 + F4 + F8 ⊆ R
10 0.622 5.709 2.187 1.013 0.428 0.115 0.642 0.269

Summary (10-dimensional) 0.066 0.381 0.161 0.211 0.005 0.000 0.054 0.019

U10 ⊆ R
100 0.910 30.115 0.000 1.370 0.644 0.000 1.263 −

U30 ⊆ R
100 0.505 50.521 0.000 0.542 1.465 0.002 7.622 −

U90 ⊆ R
100 0.640 1.157 1.327 0.332 2.034 21.90 39.65 −

N30 ⊆ R
100 0.887 52.43 0.000 0.892 0.534 0.000 5.703 −

N90 ⊆ R
100 0.492 0.184 2.693 0.329 1.673 21.88 39.45 −

F80 ⊆ R
100

1.869 20.00 3.441 1.871 3.660 16.78 34.41 −
U10 + U25 + U50 ⊆ R

100
0.868 57.96 0.890 5.869 4.988 6.749 16.12 −

U10 + U30 + U90 ⊆ R
100

1.298 61.58 1.482 8.460 21.89 20.06 41.05 −
N10 +N25 +N50 ⊆ R

100 1.813 74.20 0.555 8.873 7.712 5.716 14.37 −
F10 + F25 + F50 ⊆ R

100
3.925 74.20 6.205 18.61 9.200 6.769 16.78 −

Summary (100-dimensional) 1.321 42.24 1.659 4.715 5.380 9.986 21.64 −
U200 ⊆ R

800 11.54 600.0 7.205 55.98 5.116 104.7 139.5 −
F400 ⊆ R

800 20.46 400.0 10.15 207.2 26.18 301.0 312.5 −
U10 + U80 + U200 ⊆ R

800 14.30 715.3 18.82 120.7 2.349 33.69 57.19 −
Summary (800-dimensional) 15.43 571.8 12.06 128.0 11.22 146.5 169.7 -

N900 ⊆ R
1000

3.913 100.0 24.38 10.45 76.40 801.0 774.4 −
U100 ⊆ R

1000 12.81 900.0 62.68 12.65 2.055 28.09 59.62 −
U900 ⊆ R

1000 12.81 100.0 0.104 24.90 75.17 801.0 762.2 −
F500 ⊆ R

1000
21.77 500.0 52.19 341.3 38.63 401.0 401.6 −

Summary (1000-dimensional) 12.83 400.0 34.84 97.33 48.06 507.8 499.5 −
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Table 7. Average LID for manifolds with a single global intrinsic dimension. Rows represent uni-dimensional datasets and each column

represents an LID estimation method.

Synthetic Manifold FLIPD
kneedle

NB Vanilla NB
kneedle

LIDL ESS LPCA MLE FIS

Swiss Roll in R
3 2.012 2.998 1.984 2.527 2.008 2.000 2.013 2.003

N5 ⊆ R
10 5.017 10.00 4.995 5.067 5.004 5.000 5.108 5.187

L5 ⊆ R
10 4.968 6.000 4.854 5.089 4.985 5.000 5.123 5.182

U5 ⊆ R
10 4.796 9.994 4.067 5.107 4.880 5.000 4.833 5.152

F5 ⊆ R
10 4.722 6.216 4.461 5.482 4.890 5.000 4.829 5.131

U10 ⊆ R
100 11.68 40.12 10.00 11.29 9.361 10.00 8.905 −

U30 ⊆ R
100 31.01 80.52 30.00 30.08 28.54 29.99 22.38 −

U90 ⊆ R
100 89.54 91.16 91.32 90.24 88.27 68.10 50.35 −

N30 ⊆ R
100 30.79 82.43 30.00 30.85 29.67 30.00 24.38 −

N90 ⊆ R
100 89.88 90.18 92.62 90.21 88.89 68.12 50.55 −

F80 ⊆ R
100 77.97 100.0 83.23 81.46 76.35 63.22 45.59 −

U200 ⊆ R
800 211.5 800.0 207.2 256.0 195.3 95.30 60.51 −

F400 ⊆ R
800 454.7 800.0 410.1 607.2 373.8 99.00 87.53 −

N900 ⊆ R
1000

890.3 1000. 924.4 924.4 823.6 99.00 125.6 −
U100 ⊆ R

1000 135.76 1000. 162.7 112.6 98.41 71.91 40.38 −
U900 ⊆ R

1000 864.9 1000. 900.1 911.85 824.8 99.00 137.8 −
F500 ⊆ R

1000 582.7 1000. 552.2 841.3 461.4 99.00 98.38 −

Table 8. Concordance index (higher is better with 1.000 being the gold standard). Each row represents a mixture of multi-dimensional

manifolds, and each column represents an LID estimation method. This table evaluates how accurately different estimators rank datapoints

based on their LID.

Synthetic Manifold FLIPD
kneedle

NB Vanilla NB
kneedle

LIDL ESS LPCA MLE FIS

Lollipop in R
2

1.000 0.426 0.394 0.999 1.000 1.000 1.000 1.000

Doughnut Mixture in R
3

1.000 0.483 0.486 0.565 1.000 1.000 1.000 1.000

N2 +N4 +N8 ⊆ R
10

1.000 0.341 0.725 0.943 1.000 1.000 1.000 1.000

L2 + L4 + L8 ⊆ R
10

1.000 0.342 0.752 0.884 1.000 1.000 1.000 1.000

U2 + U4 + U8 ⊆ R
10

1.000 0.334 0.462 0.903 1.000 1.000 1.000 1.000

F2 + F4 + F8 ⊆ R
10

1.000 0.342 0.578 0.867 1.000 1.000 0.999 1.000

U10 + U25 + U50 ⊆ R
100

1.000 0.467 0.879 0.759 0.855 0.897 1.000 −
U10 + U30 + U90 ⊆ R

100
1.000 0.342 0.826 0.742 0.742 0.855 1.000 −

N10 +N25 +N50 ⊆ R
100

1.000 0.342 0.866 0.736 0.878 0.917 1.000 −
F10 + F25 + F50 ⊆ R

100
1.000 0.342 0.731 0.695 0.847 0.897 1.000 −

U10 + U80 + U200 ⊆ R
800

1.000 0.342 0.841 0.697 1.000 1.000 1.000 −
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E. Image Experiments

E.1. FLIPD Curves and DM Samples

Figures 8 and 9 show DM-generated samples and the associated LID curves for 4096 samples from the datasets. In Figure 9,

the FLIPD curves with MLPs, which have clearly discernible knees as predicted by the theory, are more reasonable than

those generated with UNets. The fact that FLIPD estimates are worse for UNets is surprising given that MLPs produce

worse-looking samples, as shown in Figure 8. However, comparing the first and second rows of Figure 8, it also becomes

clear that MLP-generated images still match some characteristics of the true dataset, suggesting that they may still be

capturing the image manifold in useful ways. To explain the surprisingly poor FLIPD estimates of UNets, we hypothesize

that the convolutional layers in the UNet provide some inductive biases which, while helpful to produce visually pleasing

images, might also encourage the network to over-fixate on high-frequency features which are not visually perceptible.

For example, Kirichenko et al. (2020) showed how normalizing flows over-fixate on these features, and how this can

cause them to assign large likelihoods to out-of-distribution data, even when the model produces visually convincing

samples. We hypothesize that a similar underlying phenomenon might be at play here, and that DMs with UNets might be

over-emphasizing “high-frequency” directions of variation in their LID estimates, even if they learn the semantic ones and

thus produce pleasing images. However, an exploration of this hypothesis is outside the scope of our work, and we highlight

once again that FLIPD remains a useful measure of complexity when using UNets.

E.2. UNet Architecture

We utilize UNet architectures from the diffusers library (von Platen et al., 2022). The DM setup mirrors that in Table 4

except for the score backbone. For greyscale images, we employ a convolutional block followed by two attention-based

downsampling blocks. The channel sizes are 128, 256, and 256, respectively. For colour images, we use two convolutional

downsampling blocks (each with 128 channels), followed by two attention downsampling blocks (each with 256 channels).

In both cases, these blocks are inverted using their mirrored upsampling counterparts.

E.3. Images Sorted by FLIPD

Figures 10, 11, 12, and 13 show 4096 samples of CIFAR10, SVHN, MNIST, and FMNIST sorted according to their

FLIPD estimate, showing a gradient transition from the least complex datapoints (e.g., the digit 1 in MNIST) to the most

complex ones (e.g., the digit 8 in MNIST). We use MLPs for greyscales and UNets for colour images but see similar trends

when switching between backbones.

E.4. How Many Hutchinson Samples are Needed?

Figure 14 compares the Spearman’s rank correlation coefficient between FLIPD estimates while we use k ∈ {1, 50}
Hutchinson samples vs. computing the trace deterministically with D Jacobian-vector-products. We see that: (i) Hutchinson

sampling is particularly well-suited for UNet backbones, having generally higher correlations compared to their MLP

counterparts; (ii) as t0 increases, the correlation becomes smaller, suggesting that the Hutchinson sample complexity

increases at larger timescales; (iii) for small t0, even one Hutchinson sample is enough to estimate LID; (iv) for the UNet

backbone, 50 Hutchinson samples are enough and have a high correlation (larger than 0.8) even for t0 as large as 0.5.

E.5. Multiscale Analysis on Images

Figure 15 shows the correlation of FLIPD estimates with PNG compression for t0 ∈ (0, 1), indicating a consistently high

correlation at small t0, and a general decrease while increasing t0. In addition, we see that UNet backbones correlate better

with PNG.

Figures 16, 18, 20, and 22 show images with smallest and largest FLIPD estimates at different values of t0 for the UNet

backbone and Figures 17, 19, 21, and 23 show the same for the MLP backbone: (i) we see a clear difference in the

complexity of top and bottom FLIPD estimates, especially for smaller t0; this difference becomes less distinct as t0
increases; (ii) interestingly, even for larger t0 values with smaller PNG correlations, we qualitatively observe a clustering of

the most complex datapoints at the end; however, the characteristic of this clustering changes. For example, see Figure 16

at t0 = 0.3 or Figure 21 and Figure 23 at t0 = 0.8, suggesting that FLIPD focuses on more coarse-grained measures of

complexity at these scales; and finally (iii) while MLP backbones underperform in sample generation, their orderings are

more meaningful, even showing coherent visual clustering up to t = 0.8 in all Figures 17, 19, 21, and 23.
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E.6. Stable Diffusion

To test FLIPD with Stable Diffusion v1.5 (Rombach et al., 2022), which is known to have been finetuned on a subset of

LAION-Aesthetics, we sampled 1600 images from LAION-Aesthetics-650k and computed FLIPD scores for each.

We ran FLIPD with t0 ∈ {0.01, 0.1, 0.3, 0.8} and a single Hutchinson trace sample. In all cases, FLIPD ranking clearly

corresponded to complexity, though we decided upon t0 = 0.3 as best capturing the "semantic complexity" of image

contents. All 1600 images for t = 0.3 are depicted in Figure 24. For all timesteps, we show previews of the 8 lowest- and

highest-LID images in Figure 25. Note that LAION is essentially a collection of URLs, and some are outdated. For the

comparisons in Figure 25, we remove placeholder icons or blank images, which likely correspond to images that, at the time

of writing this paper, have been removed from their respective URLs and which are generally given among the lowest LIDs.

(a) CIFAR10 with UNet backbone. (b) SVHN with UNet backbone. (c) MNIST with UNet backbone. (d) FMNIST with UNet backbone.

(e) CIFAR10 with MLP backbone. (f) SVHN with MLP backbone. (g) MNIST with MLP backbone. (h) FMNIST with MLP backbone.

Figure 8. Samples from DMs with different score network backbones, using the same seed for control. Despite the variation in backbones,

images of the same cell in the grid (comparing top and bottom rows) show rough similarities, especially on CIFAR10 and SVHN.

(a) CIFAR10 with UNet backbone. (b) SVHN with UNet backbone. (c) MNIST with UNet backbone. (d) FMNIST with UNet backbone.

(e) CIFAR10 with MLP backbone. (f) SVHN with MLP backbone. (g) MNIST with MLP backbone. (h) FMNIST with MLP backbone.

Figure 9. FLIPD curves from all the different DMs with different score network backbones.

18



Differentiable Local Intrinsic Dimension Estimation with Diffusion Models

Figure 10. CIFAR10 sorted (left to right and top to bottom) by FLIPD estimate (UNet) at t0 = 0.01.
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Figure 11. SVHN sorted (left to right and top to bottom) by FLIPD estimate (UNet) at t0 = 0.01.
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Figure 12. MNIST sorted (left to right and top to bottom) by FLIPD estimate (MLP) at t0 = 0.1.
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Figure 13. FMNIST sorted (left to right and top to bottom) by FLIPD estimate (MLP) at t0 = 0.1.
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(a) Multiscale Spearman’s correlation on CIFAR10. (b) Multiscale Spearman’s correlation on SVHN.

(c) Multiscale Spearman’s correlation on MNIST. (d) Multiscale Spearman’s correlation on FMNIST.

Figure 14. Spearman’s correlation of FLIPD estimates while using different numbers of Hutchinson samples compared to computing

the trace term of FLIPD deterministically with D Jacobian vector product calls. These estimates are evaluated at different values of

t0 ∈ (0, 1) on four datasets using the UNet and MLP backbones.

(a) Multiscale correlation with PNG on CIFAR10. (b) Multiscale correlation with PNG on SVHN.

(c) Multiscale correlation with PNG on MNIST. (d) Multiscale correlation with PNG on FMNIST.

Figure 15. Spearman’s correlation of FLIPD estimates with PNG for t0 ∈ (0, 1) on different backbones and different image datasets.
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(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 16. The 204 smallest (top) and 204 largest (bottom) CIFAR10 FLIPD estimates with UNet evaluated at different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 17. The 204 smallest (top) and 204 largest (bottom) CIFAR10 FLIPD estimates with MLP evaluated at different t0.
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(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 18. The 204 smallest (top) and 204 largest (bottom) SVHN FLIPD with UNet estimates evaluated at different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 19. The 204 smallest (top) and 204 largest (bottom) SVHN FLIPD with MLP estimates evaluated at different t0.
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(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 20. The 204 smallest (top) and 204 largest (bottom) MNIST FLIPD with UNet estimates evaluated at different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 21. The 204 smallest (top) and 204 largest (bottom) MNIST FLIPD with MLP estimates evaluated at different t0.
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(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 22. The 204 smallest (top) and 204 largest (bottom) FMNIST FLIPD estimates with UNet evaluated at different t0.

(a) t0 = 0.01. (b) t0 = 0.1. (c) t0 = 0.3. (d) t0 = 0.8.

Figure 23. The 204 smallest (top) and 204 largest (bottom) FMNIST FLIPD estimates with MLP evaluated at different t0.
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Figure 24. 1600 images from LAION-Aesthetics-625K, sorted by FLIPD estimates with t0 = 0.3.
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(a) t0 = 0.01.

(b) t0 = 0.1.

(c) t0 = 0.8.

Figure 25. The 8 lowest- and highest-FLIPD values out of 1600 from LAION-Aesthetics-625k evaluated at different values of t0.

Placeholder icons or blank images have been excluded from this comparison.
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