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Abstract

Substitution matrices, which are crafted to quan-

tify the functional impact of substitutions or dele-

tions in biomolecules, are central component of

remote homology detection, functional element

discovery, and structure prediction algorithms.

However, they are often limited to sequence data

and the conditioning on external priors can only

be given implicitly through the curation of the

ground-truth alignments they are crafted on. Here

we propose an algorithmic framework, based

on regularized optimal transport, for learning

graph-based substitution matrices from data, con-

ditioned on any functional knowledge. In particu-

lar, our graph-neural-network-based model learns

to produce substitution matrices and graph match-

ings such that the resulting metric correlates with

the function at hand. Our method shows promis-

ing performance in functional similarity classi-

fication and shows potential for interpreting the

functional importance of molecular substructures.

1. Introduction

Alignment algorithms, a crucial tool in bioinformatics, use

substitution matrices to measure the impact of changes in

the sequence and structure of biomolecules, with alignment

quality depending on the choice of these matrices [1].

Substitution matrices, like BLOSUM62 and PAM for amino

acids [2], [3], BLASTN for DNA [4], and specific matri-

ces for RNA and chemicals [5], [6], are based on the fre-

quency of modifications in homologous molecules [7]. Low-

frequency changes indicate functional significance, while

high-frequency changes suggest neutrality.

Conservation of structural data led to structural alphabets
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for alignments, such as Blast3D and Foldseek’s 3Di [8],

[9]. These matrices focus on structural fragments and target

specific protein families [10], organisms [11], and phylo-

genetic knowledge [12]. Alignment-free methods predict

the function of biomolecules using neural networks, as seen

in DeepFRI, RNAmigos, and ChemBERT [13]–[16], but

they lack interpretability compared to substitution matri-

ces. Ideally, substitution matrices would use prior knowl-

edge without needing pre-curated alignments. The DEDAL

model learns, in a data-driven fashion, substitution costs

using Pfam annotations, but relies on sequence data [17].

The graph edit distance [18], [19] models the similarity

between graphs based on an optimal matching between

their nodes, generalizing sequence alignment. The problem

is NP-hard, so several attempts have been made towards

developing heuristics, including machine-learning-based

approaches [20]–[25].

In a recent paper [26], the problem of automatically obtain-

ing task-specific substitution matrices for biological struc-

tures has been tackled taking inspiration from the graph edit

distance literature. The substitution matrices are learnt in a

metric learning framework based on a functional prior, and

they provide an interpretable explanation of which biochem-

ical substructure drive the function at hand.

The optimal transport problem [27], [28], which we use

in this paper, is in general concerned with finding the

minimum-cost transport plan between two distributions, and

it has been used in tasks like domain adaptation [29], graph

kernels [30], and generative adversarial networks [31].

1.1. Contributions

This work extends our recent paper: Structure- and

Function-Aware Substitution Matrices via Learnable Graph

Matching. In: RECOMB 2024 [26]. In particular, we:

1. generalize the GMSM (Graph Matching Substitution

Matrices) model to work with entropy-regularized op-

timal transport. This allows the model to have lower

time complexity and to be fully differentiable.

2. provide experimental evidence that the entropy regu-

larization helps in finding better substitution matrices.
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Figure 1. Architecture of GMSM. (a) Biochemical structures are transformed into graphs. (b) For each graph, its nodes are represented as

a structure-aware embeddings using the same GNN. (c) The model computes the substitution matrix from node embeddings and obtains

the graph alignment with respect to the learned substitution matrix.

2. Preliminaries

In what follows, we denote as a graph a tuple G = (V,E),
with V the set of nodes and E ⊆

(

V
2

)

the set of undirected

edges. Both nodes and edges can have discrete labels.

2.1. Graph Neural Networks

Message passing graph neural networks (GNNs), given

a graph G, iteratively produce for each node v ∈ VG,

at each level k = 1, . . . ,K, the embeddings hkv ∈ R
dk

as hkv = fupd
(

hk−1
v , fagg

(

{hk−1
u : u ∈ N (v)}

))

, where

fagg and fupd are the aggregate and the update operations,

respectively. The first layer of the GNN is fed with the initial

node embeddings h0v, e.g. one-hot encodings of the node

labels. Finally, one can get a graph-level readout hG by

aggregating the last-level embeddings via a function fout.

2.2. Graph Edit Distance

The graph edit distance [18], [19] is a distance that assesses

the similarity between two graphs. In particular, it is com-

puted as the minimum cumulative cost of the edit operations

required to transform one graph into another via node and

edge insertion, deletion, and substitution, each with an as-

sociated cost. When the edit costs form a metric [32], the

graph edit distance can be equivalently defined as a graph

matching problem:

Definition 2.1 (Graph Edit Distance [33]). Let G1 =
(V1, E1) and G2 = (V2, E2) be the source and the target

graphs respectively. Let V +
1 = V1 ∪ {ε1, . . . , ε|V2|} be the

vertex set of G1 enriched with |V2| dummy nodes ε to allow

for insertion and deletions. Let the same hold for V +
2 , with

|V1| dummy nodes. The graph edit distance (GED) between

G1 and G2 is defined by

GED(G1, G2) = min
π∈Π

∑

vi∈V
+

1

cv(vi, π(vi))+

∑

vi,vj∈V1

ce(vi, vj , π(vi), π(vj)),

where Π denotes the set of bijections from V +
1 to V +

2 , and

cv denotes the cost for node edits and ce for edge edits.

The graph edit distance, which is closely related to the

Fused Gromov-Wasserstein distance [34], is known to be

NP-hard [18]. The bipartite graph matching heuristic [32]

to the graph edit distance is a heuristic technique to get

approximate GEDs in polynomial time. The main idea is

to transform the problem into a linear assignment prob-

lem, which is well-known to be polynomial-time solv-

able (e.g. with the Hungarian algorithm), by disregard-

ing edge edit operations. Let n = |V1| + |V2|. Let Π
be the set of matrices π ∈ R

n×n
+ such that π1n = 1n,

πT1n = 1n. Then, the linear assignment problem to be

solved is dC(G1, G2) := minπ∈Π⟨C, π⟩ with ⟨·, ·⟩ being

the Frobenius inner product, and with node-edit cost matrix

C. Many approximation algorithms to the GED modify

the node assignment costs in order to account for edge edit

operations [35]. The common technique is to represent

nodes as rooted substructures, such as neighborhoods [36]

or subgraphs [37], and to compute the assignment costs ac-

cordingly. In fact, in this work we generalize this approach

by adding an entropic regularization to the linear assignment

problem in order to make it differentiable.

3. Methods

3.1. GMSM Architecture

We describe the architecture of the method GMSM, which

is designed to learn expressive and interpretable substitution

matrices for biological structures and, at the same time,

when given two such graph-represented structures, to output

an interpretable alignment of the two graphs based on such

substitution matrices.

Taking inspiration from the bipartite graph matching heuris-

tic for graph edit distance, we represent our graphs as bag of

learnable node features, and compute the edit distance be-

tween graphs by computing the optimal assignment between

such features. More formally, given a graph G we repre-
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sent each node v ∈ V as a parametric function ψθ(v,G),
which is implemented by a graph neural network (GNN)

parametrized by θ. For a pair of graphs G1, G2, the set

of node features is computed using the same parametric

function, a siamese network [38], as shown in Figure 1.

Then, the cost of substituting v with u is given by cu,v =
∥ψθ(v,G1)− ψθ(u,G2)∥2. Node insertion and deletion

costs are obtained by computing the distance to a learnable

embedding for a dummy isolated node ε. In particular, given

two graphs G1, G2, the model computes the corresponding

edit cost matrix CG1,G2
(ψθ) = (cu,v)u∈V +

1
,v∈V +

2

, which is

a submatrix of a global matrix C(ψθ).

Finally, the matching between the node features is com-

puted by solving an optimal transport problem [27], [28],

regularized with the entropic term Ω(π) =
∑

ij πij log πij :

π∗ = argminπ∈Π⟨CG1,G2
(ψθ), π⟩+ εΩ(π),

dψθ,ε(G1, G2) := ⟨CG1,G2
(ψθ), π

∗⟩.

As shown in [26], the function dψθ,0(·, ·) is symmetric and

satisfies the triangle inequality.

Unlike the original version of the model, which was lim-

ited to ε = 0 and had O
(

max(n1, n2)
3
)

time com-

plexity, the regularized version of GMSM can run in

O
(

max(n1, n2)
2
)

time [28], allowing for faster training.

Note that the function dψθ,ε depends on the size of the

graphs that are being compared. To avoid biasing the model

into considering smaller graphs as more similar, we nor-

malize the distance by the sum of the number of nodes

of the two graphs [22] and use the graph dissimilarity

d̂(G1, G2) = (|V1| + |V2|)
−1dψθ,ε(G1, G2) as the output

of the GMSM model, rather than the unnormalized distance.

3.2. Training GMSM

Informally, we want that the graph dissimilarity induced by

the learned substitution matrix C(ψθ) correlates with the

functional labels at hand. In particular, we would like for

graphs belonging to the same class to have low distance,

and for graphs belonging to different classes to have higher

distance, as common in the metric learning setting [39]. In

particular, we use the margin loss proposed in [40].

Crucially, since one wants the cost matrixC := CG1,G2
(ψθ)

to be learnt based on the data at hand, the graph dissimi-

larity should have a well-defined gradient with respect to

C, to allow for the optimization of the loss function. The

original model GMSM, which sets ε = 0, relied on the

fact that when the solution to the optimal transport problem

is unique, the dissimilarity is differentiable with respect to

C by Danskin’s theorem. In fact, by adding a non-zero

entropic regularization, the assignment problem becomes

convex and everywhere differentiable [28], [41].

Proposition 3.1. Let π∗ = argminπ∈Π⟨C, π⟩+ εΩ(π) and

d(C) = ⟨C, π∗⟩. Then d(C) is differentiable with gradient

∇Cd(C) = argminπ∈Π⟨C, π⟩+ εΩ(π).

When ε = 0, we define π∗
A(C) the solution returned by the

assignment algorithm A (e.g. Hungarian algorithm). We

define ∇̃Cd(C) = π∗
A(C) and apply gradient descent to

GMSM with this re-defined gradient. When ε > 0, we

instead use the true gradient.

4. Experimental Evaluation

In this section, we provide experimental evidence that the

substitution matrices learned by our method indeed distill

useful information about the conditioning priors on which it

was trained, and in particular that the entropic regularization

can help the learning task. The code is publicly available1.

4.1. Experimental setup

We tackle the similarity-based classification task. Given two

graphs, the task is to predict whether or not they belong to

the same class, solely as a function of their learned distance.

In particular, we evaluate the triplet accuracy and the pair

AUROC, smilarly to [23]. The goal of this task is to evaluate

whether the learned dissimilarity between graphs correlates,

at both the short range and long range scale, with the con-

ditioning priors on which it was trained on. We focus here

on datasets of small molecules (see Section C.2), but the

method can be applied also to, e.g., proteins and RNA [26].

We ask how the substitution matrices learned by GMSM

compare to alternative architectures, isolating the effects

of graph-matching, structure-awareness and prior informa-

tion. To this end, we report the result of three baseline

architectures: WL kernel, which is an approach that only

captures structural information, Siamese-GNN, which has

the same GNN architecture, but replaces the graph matching

step by computing a graph-level pooled embedding for each

graph and by using the distance between such embeddings,

and GMSM with fixed uniform costs between all nodes.

Moreover, we report the results for GMSM both with and

without entropic regularization during training. Since the

goal is to obtain interpretable cost matrices between simple

substructures, we fix the number of message passing layers

in GMSM to 2. For the sake of a fair comparison, we do the

same for the baselines. In order to allow the model to output

one-to-one graph matchings, we set ε = 0 at inference time.

Note that this experiment is meant to isolate the effect of

different algorithmic components on the task rather than to

maximize molecule property prediction performance.

1github.com/BorgwardtLab/GraphMatchingSubstitutionMatrices
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Table 1. Similarity-based classification on small molecules

Method
Mutagenicity NCI1 AIDS

Trip. acc. AUROC Trip. acc. AUROC Trip. acc. AUROC

WL kernel 0.535 ±0.004 0.531 ±0.003 0.519 ±0.005 0.516 ±0.004 0.411 ±0.008 0.427 ±0.005

Siamese-GNN 0.720 ±0.005 0.729 ±0.005 0.693 ±0.005 0.708 ±0.004 0.981 ±0.001 0.993 ±0.000

GMSM (uniform costs) 0.518 ±0.004 0.520 ±0.004 0.550 ±0.004 0.543 ±0.004 0.944 ±0.003 0.933 ±0.002

GMSM (ε = 0) 0.655 ±0.005 0.652 ±0.005 0.677 ±0.003 0.675 ±0.004 0.980 ±0.001 0.988 ±0.000

GMSM (ε ≥ 0) 0.663 ±0.005 0.659 ±0.005 0.689 ±0.003 0.686 ±0.004 0.981 ±0.002 0.986 ±0.000

4.2. Similarity-based classification

We see in Table 1 that GMSM without entropic regular-

ization (ε = 0.0) outperforms the simple WL kernel and

uniform-cost baselines, showing that training on class labels

yields indeed task-specific edit costs, as expected. Moreover,

the Siamese-GNN baseline, which is not forced to assign

similarities based on a graph matching, is more expressive

and yields better results, at the expense of not providing the

interpretable edit costs, which are the focus of this work.

Allowing for entropic regularization during training pro-

vides a performance boost, suggesting that the smoothness

of the objective leads to better convergence.

4.3. Regularization at inference time

If one is willing to sacrifice getting one-to-one graph match-

ings in output, the model can be run with entropic regular-

ization also at inference time. As shown in Section D.1, this

can yield better classification performance.

4.4. Retrieval

We also investigate, in Section D.2, the retrieval task, where

the model returns the graphs in a database that are most

similar to a query graph, testing the quality of the learned

graph dissimilarity at short scales. Results show that en-

tropic regularization can yield better results, although the

improvement is not as marked as in the classification task.

5. Analysis of the edit cost matrices

Figure 2 shows an example of two chemicals from the Mu-

tagenicity dataset that have a very different graph topology,

and therefore would be classified as dissimilar by method

such as the WL kernel, but that have the same label. In this

case, they are both known to be mutagenic. In particular,

GMSM (trained with ε = 1.0) learns to assign a low graph

dissimilarity between the two chemicals.

This example showcases the explainability of GMSM. In-

deed, we can observe that the substructures containing halo-

gens (Br and Cl) have very low edit costs. We hypothesize

Figure 2. Two sample chemicals from the Mutagenicity dataset,

shown on the left, and the edit cost matrix calculated by GMSM.

this is due to the known mutagenic effect of halogens [42]

and thus substituting halogens would not be likely to affect

the class label.

In general, these interpretable edit cost matrices offer in-

sights into the substructures driving the function at hand,

showcasing the potential of GMSM as tool for hypothesis

generation in biochemistry.

At the same time, we notice that these matrices reflect only

the way the particular instance of the model classifies pairs

of graphs, and is therefore subject to change depending

on the model architecture, the training data, and the initial

parameters of the model.

6. Conclusion

In this paper, we have extended the GMSM model, which

allows to obtain task-specific substitution matrices for bio-

chemical structures, to use entropy-regularized optimal

transport in its graph-matching module. We show that this

modification allows to lower the time complexity of the

model and at the same time to make its output differentiable

with respect to the model parameters. This in turn allows

the model to converge more easily to good solutions.
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[28] G. Peyré and M. Cuturi, Computational optimal transport,
2020. arXiv: 1803.00567 [stat.ML].

[29] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy,
“Optimal transport for domain adaptation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 9, pp. 1853–1865, 2017.

[30] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K.
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A. Additional background

A.1. Optimal transport

In the discrete version of optimal transport, we consider two finite sets of with associated weights. Let {ai}
m
i=1 and {bj}

n
j=1

be two such sets with corresponding weight vectors, or probability distributions, u ∈ R
m and v ∈ R

n such that u⊤1n = 1
and v⊤1m = 1. Here, 1n and 1m are vectors of ones of appropriate dimensions. The goal is to find a transportation plan

π ∈ R
m×n
+ that transfers the mass from {ai} to {bj} while minimizing the total transportation cost. This can be formulated

as the linear program:

dC(u,v) = min
π∈R

m×n
+

⟨π,C⟩,

subject to the constraints π1n = u and π⊤
1m = v, where cij represents the cost of transporting mass from ai to bj and

C = (cij)i=1,...,m;j=1,...,n. In [27] it was proposed an entropy-regularized version of the optimal transport problem, which

allows the resulting distance to be differentiable with respect to C and to solve the problem in quadratic time using the

Sinkhorn algorithm.

A closely related problem is the linear assignment problem, where the sets have the same size, i.e. n = m, and the weight

vectors are defined as u = v = 1n. Then, the feasible assignments are the set Π of matrices π ∈ R
n×n
+ such that π1n = 1n,

πT1n = 1n. The task is then to find minπ∈Π⟨π,C⟩. The problem can be solved in cubic time, e.g., with the Hungarian

algorithm.

A.2. Graph neural networks

Message passing graph neural networks (GNNs), given a graph G, iteratively produce for each node v ∈ VG, at each level

k = 1, . . . ,K, the embeddings hkv ∈ R
dk as hkv = fupd

(

hk−1
v , fagg

(

{hk−1
u : u ∈ N (v)}

))

, where fagg and fupd are the

aggregate and the update operations, respectively. The first layer of the GNN is fed with the initial node embeddings h0v , e.g.

one-hot encodings of the node labels.

In [43] it was shown that there exist injective functions fagg, fupd yielding GNNs that are provably as expressive as color

refinement.

An example of such functions that leads to models that are provably as expressive as color refinement [44], denoting ∥ as

concatenation, is

hkv = mlp
(

hk−1
v

∥

∥

∥

∑

u∈N (v)

hk−1
u

)

∈ R
dk .

In fact, provided that different node labels are encoded to linearly independent h0v’s, even the following simpler architecture,

denoting with σ a nonlinear function such as ReLU, is as expressive as color refinement [44]:

hkv = σ
(

W k
1 h

k−1
v +W k

2

∑

u∈N (v)

hk−1
u

)

∈ R
dk . (1)

We then let the final node embedding be a function of the per-layer node embeddings as ψ(v,G) = f({hkv : k =
0, . . . ,K}). We denote (v,G1) =ψ (u,G2) if ψ(v,G1) = ψ(u,G2), and denote by Vψθ the set of equivalence classes

induced by =ψ. Moreover, we will denote, with abuse of notation, G1 =ψ G2 if {{ψ(v,G1 = (V1, E1)) : v ∈ V1}} =
{{ψ(v,G2 = (V2, E2)) : v ∈ V2}}, and denote for brevity with Gψ the set G\ =ψ of equivalence classes induced by =ψ on

graphs.

A.3. Heuristics for the graph edit distance

The bipartite graph matching heuristic [32] to the graph edit distance is an heuristic technique to get approximate GEDs in

polynomial time. The main idea is to transform the problem into a linear assignment problem, which is well-known to be

polynomial-time solvable (e.g. with the Hungarian algorithm), by disregarding edge edit operations and only considering

node edit ones.
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Then, the linear assignment problem to be solved is

dC(G1, G2) := min
π∈Π

⟨C, π⟩ = min
π∈Π

∑

vi∈V
+

1

cvi,π(vi),

with ⟨·, ·⟩ being the Frobenius inner product, and with cost matrix C defined as

C =

















c1,1 · · · c1,n2
c1,ε · · · ∞

...
. . .

...
...

. . .
...

cn1,1 · · · cn1,n2
∞ · · · cn1,ε

cε,1 · · · ∞ 0 · · · 0

...
. . .

...
...

. . .
...

∞ · · · cε,n2
0 · · · 0

















where ci,j denotes the cost of a node substitution vi → vj , ci,ε denotes the cost of a node deletion ui → ε, and cε,j denotes

the costs of a node insertion ε → vj with vi ∈ V1 and vj ∈ V2; and where Π is the set of permutation matrices of size

|V1|+ |V2|, representing bijections from V +
1 to V +

2 .

If one chooses ci,j = cv(vi, vj), i.e. setting the cost of assigning node vi to node vj as the node edit cost in the original

problem, then dC(G1, G2) lower bounds GED(G1, G2).

Many approximation algorithms to the GED modify the node assignment costs in order to account for edge edit operations

[35]. The common technique is to represent the nodes as some local substructure around them, such as neighborhoods [36]

or subgraphs [37], and to compute the assignment costs accordingly. In many practical applications, representing the graph

as such a bag of local structures is enough to compute a good approximation to the true edit distance [35].

In fact, in this work we generalize this approach by representing nodes as their GNN embeddings and by adding an entropic

regularization to the linear assignment problem in order to make it differentiable.

A.4. Metric learning

Common losses for metric learning are the contrastive loss [39] and the triplet loss [45], which act on pairs and triplets of

graphs, respectively. We use the margin loss proposed in [40], which reportedly yields better results than the contrastive one.

Moreover, it can work with randomly sampled pairs, while the triplet loss usually requires hard or semi-hard sample mining

to work properly [40].

In particular, for a pair of graphs G1, G2, the loss is defined as

ℓmargin(G1, G2) = max
(

0, α+ y(d̂C(G1, G2)− β)
)

,

with y = 1 for positive pairs, i.e. both graphs belonging to the same class, and y = −1 for negative pairs. This loss strives

to push the graph dissimilarities of graphs belonging to the same class to be less than β − α and the dissimilarities of graphs

belonging to different classes to be more than β + α. In our experiments, we set β = 0.5 and α = 0.1.

B. Architecture of GMSM

Our model, GMSM, is implemented as follows. The GNN message passing layers are realized by Equation 1, with the

nonlinearity realized by a ReLU. We fix the number of layers to K = 2. The final node embeddings ψ(v,G) are obtained

by concatenating the embeddings for each layer and by normalizing them, i.e. hv =
∥

∥

∥

K

k=0
hkv and ψ(v,G) = hv/∥hv∥2.

Then, the cost of substituting the structure rooted at v with the one rooted at u is given by cu,v = ∥ψθ(v,G1)− ψθ(u,G2)∥2.

Node insertion and deletion costs are obtained by computing the distance to a learnable embedding for a dummy isolated

node ε, that is cv,ε = cε,v = ∥ψθ(v,G1)− ψθ(ε)∥2. Note that the normalization of the embeddings makes it so that the edit

costs are bounded in [0, 2].

This yields a global learnable substitution matrix C(ψθ) = (cu,v)u,v∈Vψθ
of costs between elements of Vψθ ∪ {ε}, which

correspond to nodes and their rooted subgraph explored by the GNN. In particular, given two graphs G1, G2, the model

computes the corresponding edit cost matrix CG1,G2
(ψθ) = (cu,v)u∈V +

1
,v∈V +

2

, which is a submatrix of C(ψθ).
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Finally, the matching between the node features is computed by solving an optimal transport problem [27], [28], regularized

with the entropic term Ω(π) =
∑

ij πij log πij :

π∗ = argminπ∈Π⟨CG1,G2
(ψθ), π⟩+ εΩ(π),

dψθ,ε(G1, G2) := ⟨CG1,G2
(ψθ), π

∗⟩.

Finally, the model outputs the graph dissimilarity d̂(G1, G2) = (|V1|+ |V2|)
−1dψθ,ε(G1, G2), as well as the edit cost matrix

and the transport plan.

With respect ot the original work [26], we substituted the GNN layers from GAT layers [46] to layers given by Equation 1

[44] and we concatenate the embedding of all the layers. This yields a provably more expressive model [44].

C. Experimental setup

The model is trained taking the same number of random positive and negative pairs from the training set. In particular,

for each anchor graph we sample positive pairs by selecting 10 random graphs with the same label, and for each each of

such positive pairs we sample negative pairs by selecting 10 random graphs with different label. The model parameters are

optimized with respect to the margin loss, using β = 0.5 and α = 0.1, with the Adam optimizer. We set the learning rate to

0.001. The best model is selected using the validation set pair AUROC metric on the classification task, using early stopping.

For the GMSM with regularization, we choose ε ∈ {0.1, 1.0} based on the validation set pair AUROC metric. In particular,

for the Mutagenicity and NCI1 datsets, the highest validation AUROC is obtained for ε = 1.0, while for the AIDS

datset it is obtained for ε = 0.1. These models are then used at inference time on both the similarity-based classification

task and the retrieval task. The models are tested using the same sampling strategy for random positive and negative pairs

from the validation and test set.

C.1. Tasks

The first task we tackle is the similarity-based classification task. Given two graphs, the task is to predict whether or not they

belong to the same class, solely as a function of their learned distance. In particular, we evaluate two metrics. The first

one is the triplet accuracy. Namely, given an anchor graph, one graph from the same class of the anchor (positive pair) and

one graph from another class (negative pair), the triplet of graphs is considered a successful prediction if the distance of

the positive pair is lower than the one of the negative pair. The second is pair AUROC, the area under the ROC curve for

classifying pairs of graphs as similar or not based on a distance threshold. The goal of this task is to evaluate whether the

learned dissimilarity between graphs correlates, at both the short range and long range scale, with the conditioning priors on

which it was trained on. We report the means and standard deviations over 5 different random samples from the training set.

The second task we evaluate is the retrieval task. In particular, given a query graph, the task is to return a set of graphs that

are the most similar to the query one. The goal of this task is to evaluate the quality of the learned graph similarity at very

short scales. Indeed, for the retrieval task it does not matter if some positive pairs are at a high distance as long as there are

enough positive pairs at a very short distance, which will be returned as hits by the retrieval procedure. In particular, we take

as queries the graphs of the test set, and search for the hits in the training set, which serves then as the searchable database.

We report the precision@k (P@k), for k ∈ {10, 50}. In particular, we report the mean and the standard deviation over all

queries.

C.2. Datasets

In our experimental evaluation we three small molecule datasets. All datasets are split into training, validation and test sets

at random and with ratios {0.8, 0.1, 0.1}.

The datasets are obtained from the TUDataset [47] and contain small molecules annotated with a label on mutagen activity

(Mutagenicity [48], [49]), on activity against non-small cell lung cancer (NCI1 [50]) and on evidence of anti-HIV

activity (AIDS [49]).
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D. Additional experimental results

D.1. Sensitivity to entropic regularization

Table 2 report the test set metrics for GMSM models that are trained and run at inference time with different levels of

entropic regularization.

As shown by the results, adding an entropic regularization at inference time can boost the classification performance. In

particular, for models trained with high regularization (ε = 1.0), using regularization also at inference time provides a

significant increase in the metrics. This could be due to the fact that when one removes the regularization at inference time,

there is shift in the distributions of the predicted graph dissimilarities. Maintaining the regularization, this shift is removed.

For models trained with smaller or no regularization, this clear behavior does not appear. Adding regularization at inference

time can nonetheless prove to be an effective hyperparameter to select with a validation set.

Table 2. Effect of entropic regularization at inference time

Training Inference
Mutagenicity NCI1 AIDS

Trip. acc. AUROC Trip. acc. AUROC Trip. acc. AUROC

GMSM (ε = 0.0)

ε = 0.0 0.655 ±0.005 0.652 ±0.005 0.677 ±0.003 0.675 ±0.004 0.980 ±0.001 0.988 ±0.000

ε = 0.1 0.663 ±0.003 0.661 ±0.004 0.664 ±0.004 0.661 ±0.004 0.977 ±0.001 0.985 ±0.000

ε = 1.0 0.651 ±0.004 0.648 ±0.005 0.660 ±0.004 0.658 ±0.005 0.984 ±0.001 0.988 ±0.000

GMSM (ε = 0.1)

ε = 0.0 0.651 ±0.005 0.648 ±0.005 0.679 ±0.003 0.676 ±0.004 0.981 ±0.002 0.986 ±0.000

ε = 0.1 0.660 ±0.003 0.659 ±0.004 0.676 ±0.002 0.674 ±0.004 0.979 ±0.001 0.985 ±0.000

ε = 1.0 0.646 ±0.005 0.643 ±0.005 0.662 ±0.003 0.659 ±0.005 0.984 ±0.002 0.987 ±0.000

GMSM (ε = 1.0)

ε = 0.0 0.663 ±0.005 0.659 ±0.005 0.689 ±0.003 0.686 ±0.004 0.973 ±0.001 0.980 ±0.000

ε = 0.1 0.677 ±0.004 0.673 ±0.004 0.652 ±0.003 0.643 ±0.004 0.972 ±0.001 0.980 ±0.000

ε = 1.0 0.680 ±0.004 0.682 ±0.005 0.690 ±0.003 0.692 ±0.004 0.980 ±0.001 0.984 ±0.000

D.2. Retrieval

In the retrieval task, we observe as in the classification task, that GMSM models are in general more expressive that the

WL kernel and the baseline with uniform costs, although the latter performs surprisingly well on AIDS. Moreover, the

Siamese-GNN model in general outperforms GMSM. Interestingly, the GMSM model trained with entropic regularization

and selected based on the validation performance on the classification task, as described in Section C, preform very similarly

to GMSM trained with no entropic regularization.

Table 3. Retrieval performance on small molecules

Method
Mutagenicity NCI1 AIDS

P@10 P@50 P@10 P@50 P@10 P@50

WL kernel 0.700 ±0.276 0.643 ±0.248 0.701 ±0.256 0.627 ±0.203 0.892 ±0.180 0.802 ±0.193

Siamese-GNN 0.785 ±0.297 0.779 ±0.293 0.777 ±0.338 0.771 ±0.332 0.988 ±0.105 0.985 ±0.116

GMSM (uniform costs) 0.646 ±0.262 0.613 ±0.215 0.597 ±0.229 0.575 ±0.179 0.998 ±0.021 0.991 ±0.073

GMSM (ε = 0) 0.773 ±0.294 0.751 ±0.271 0.773 ±0.292 0.744 ±0.278 0.991 ±0.076 0.988 ±0.090

GMSM (ε ≥ 0) 0.774 ±0.284 0.757 ±0.268 0.772 ±0.289 0.747 ±0.268 0.988 ±0.094 0.985 ±0.111

D.3. Stability of the learnt substitution matrices

The learnt substitution matrices depend on the model parameters that are learnt from the training data at hand, and therefore

correspond in local minima in the loss function landscape. Because of this, they can depend on several factors, including the

specific model architecture, the training data and the initialization of the parameters. For example, we observe that switching

from the GAT-based architecture in the original GMSM paper [26] to the more expressive architecture we use here leads to

different edit costs, e.g., for the graphs of Figure 2.
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