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Abstract

Out-of-distribution (OOD) detection is critical
when deploying machine learning models in the
real world. Outlier exposure (OE) methods, which
incorporate auxiliary outlier data (AUX) in the
training process, can drastically improve OOD
detection performance. We introduce Hopfield
Boosting, a boosting approach, which leverages
modern Hopfield energy to sharpen the decision
boundary between the in-distribution (ID) and
OOD data. Hopfield Boosting encourages the
model to focus on hard-to-distinguish auxiliary
outlier examples that lie close to the decision
boundary between ID and AUX data. Our method
achieves a new state-of-the-art in OOD detection
with OE, improving the FPR95 from 2.28 to 0.92
on CIFAR-10, from 11.24 to 7.94 on CIFAR-100,
and from 50.74 to 36.60 on ImageNet-1K.

1. Introduction

Out-of-distribution (OOD) detection is crucial when using
machine learning systems in the real world (Ruff et al.,
2021). Deployed models will — sooner or later — en-
counter inputs that deviate from the training distribution.
For example, a system trained to recognize music genres
might also hear a sound clip of construction site noise. In the
best case, a naive deployment can then result in overly confi-
dent predictions. In the worst case, we will get erratic model
behavior and completely wrong predictions (Hendrycks &
Gimpel, 2017). The purpose of OOD detection is to clas-
sify these inputs as OOD, such that the system can then,
for instance, notify users that no prediction is possible. In
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summary, our contributions are as follows:

1. We propose Hopfield Boosting, an OOD detection ap-
proach that samples weak learners by using the modern
Hopfield energy (MHE; Ramsauer et al., 2021).

2. Hopfield Boosting achieves a new state-of-the-art in
OOD detection. It improves the average false positive
rate at 95% true positives (FPR95) from 2.28 to 0.92
on CIFAR-10, from 11.24 to 7.94 on CIFAR-100, and
from 50.74 to 36.60 on ImageNet-1K.

2. Related Work

Post-hoc OOD detection. A common OOD detection
approach is to use a post-hoc strategy, where one employs
statistics obtained from a classifier. The perhaps most well-
known approach in this class is the Maximum Softmax
Probability (MSP; Hendrycks & Gimpel, 2017), where one
utilizes maxy p( y | x ) to estimate whether a sample is
OOD. Despite good empirical performance, this view is
intrinsically limited, since OOD detection should focus on
p(x). A wide range of post-hoc OOD detection approaches
have been proposed to address the shortcomings of MSP
(e.g., Liu et al., 2020; Sun et al., 2021; Djurisic et al., 2023).
Most related to Hopfield Boosting is the work of Zhang et al.
(2023a) – to our knowledge, they are the first to apply MHE
to do OOD detection.

Auxiliary outlier data and outlier exposure. A second
group of OOD detection approaches are outlier exposure
(OE) methods. Like Hopfield Boosting, they incorporate
AUX data in the training process to improve the detection of
OOD samples (e.g., Hendrycks et al., 2019b; Liu et al., 2020;
Ming et al., 2022). We provide more detailed discussions
on a range of OE methods in Appendix C.1. As far as
we know, all OE approaches optimize an objective (LOOD),
which aims at improving the model’s discriminative power
between in-distribution (ID) and OOD data using the AUX
data set as a stand-in for the OOD case. In general, OE
methods conceptualize the AUX data set as a large and
diverse data set (e.g., ImageNet for vision tasks). Recent
approaches therefore actively try to find informative samples
close to the decision boundary between ID and AUX data
for the training. The aim is to refine the decision boundary,
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Figure 1: The Hopfield Boosting concept. The first step (weight) creates weak learners by firstly choosing in-distribution
samples (ID, orange), and by secondly choosing auxiliary outlier samples (AUX, blue) according to their assigned
probabilities; the second step (evaluate) computes the losses for the resulting predictions (Section 3); and the third step
(update) assigns new probabilities to the AUX samples according to their position on the hypersphere (see Figure 2).

ensuring the ID data is more tightly encapsulated (e.g., Ming
et al., 2022). Hopfield Boosting also makes use of samples
close to the boundary by giving them higher weights for the
boosting step.

Continuous modern Hopfield networks. MHNs are
energy-based associative memory networks. They advance
conventional Hopfield networks (Hopfield, 1984) by intro-
ducing continuous queries and states with the MHE as a new
energy function. MHE leads to exponential storage capacity,
while retrieval is possible with a one-step update (Ramsauer
et al., 2021). Section 3.2 gives an introduction to MHE for
OOD detection. For further details on MHNs, we refer to
Appendix A.

3. Method

This section presents Hopfield Boosting: First, we formalize
the OOD detection task. Second, we give an overview of
the MHE. Finally, we introduce the boosting framework.
Figure 1 shows a summary of Hopfield Boosting.

3.1. Classification and OOD Detection

Consider a multi-class classification task denoted as
(XD,Y D,Y), where XD ∈ R

D×N represents a set of N
D-dimensional feature vectors (xD

1 ,x
D
2 , . . . ,x

D
N ), which

are i.i.d. samples xD
i ∼ pID. Y D ∈ YN denotes the labels

associated with these feature vectors, and Y is a set contain-
ing possible classes . We consider an observation ξD ∈ R

D

that deviates considerably from the data generation pID(ξ
D)

that defines the “normality” of our data as OOD. Following

Ruff et al. (2021), an observation is OOD if it is in the set

O = {ξD ∈ R
D | pID(ξ

D) < ϵ} where ϵ > 0. (1)

Since the probability density pID is in general not known,
one needs to estimate pID(ξ

D). In practice, it is common
to define an outlier score s(ξ) that uses a threshold γ and
an encoder ϕ, where ξ = ϕ(ξD). The outlier score should
— in the best case — preserve the density ranking. Given
s(ξ) and ϕ, OOD detection can be formulated as a binary
classification task with the classes ID and OOD:

B̂(ξD, γ) =

{

ID if s(ϕ(ξD)) ≥ γ

OOD if s(ϕ(ξD)) < γ
. (2)

3.2. Modern Hopfield Energy

The log-sum-exponential (lse) function is defined as

lse(β, z) = β−1 log

(
N∑

i=1

exp(βzi)

)

, (3)

where β is the inverse temperature and z ∈ R
N is a vector.

The lse can be seen as a soft approximation to the maximum
function: As β → ∞, the lse approaches maxi zi.

Given a set of N d-dimensional stored patterns
(x1,x2, . . . ,xN ) arranged in a data matrix X , and a d-
dimensional query ξ, the MHE is defined as

E(ξ;X) = − lse(β,XT ξ) +
1

2
ξT ξ + C, (4)

where C = β−1 logN + 1
2M

2 and M is the largest norm
of a pattern: M = maxi ||xi||. X is also called the memory
of the MHN.
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To use the MHE for OOD detection, Hopfield Boosting ac-
quires the memory patterns X by feeding raw data instances
(xD

1 ,x
D
2 , . . . ,x

D
N ) of the ID data set arranged in the data

matrix XD ∈ R
D×N to an encoder ϕ : RD → R

d (e.g.,
ResNet): xi = ϕ(xD

i ). We denote the component-wise
application of ϕ to the patterns in XD as X = ϕ(XD).
Similarly, a raw query ξD ∈ R

D is fed through the encoder
to obtain the query pattern: ξ = ϕ(ξD). One can now use
E(ξ;X) to estimate whether ξ is ID or OOD: A low energy
indicates ξ is ID, and a high energy signifies that ξ is OOD.
The MHE can be viewed as a soft, continuously differen-
tiable approximation to the nearest neighbor similarity: As
β → ∞, the lse term in the MHE returns the dot-product
similarity of ξ to its nearest neighbor in X .

3.3. Boosting Framework

Sampling of informative outlier data. Similar to Ming
et al. (2022), Hopfield Boosting selects informative outliers
close to the ID-OOD decision boundary. For this selection,
Hopfield Boosting constructs a distribution over the AUX
data similar to AdaBoost (Freund & Schapire, 1995) by sam-
pling data instances close to the decision boundary more
frequently. We refer to samples close to the decision bound-
ary as weak learners — their nearest neighbors consist of
samples from their own class as well as from the foreign
class. The Hopfield Boosting mechanism thus results in
the special setup where a (projected) data point becomes a
weak learner itself. That is, it is possible to use this data
point to construct a classifier that barely performs better
than random guessing (see Appendix E.5). Vice versa, a
strong hypothesis can be created by forming an ensemble
of a set of weak learners (Figure 2).

We denote the matrix with the raw AUX data instances
(oD

1 , . . . ,o
D
N ) as OD ∈ R

D×M , and the memory containing
the encoded AUX patterns as O = ϕ(OD). The boosting
proceeds as follows: There exists a weight (w1, . . . , wM )
for each data point in OD. The individual weights are
aggregated into the weight vector wt. Hopfield Boosting
uses these weights to draw mini-batches OD

s from OD for
training, where weak learners receive higher weights.

We introduce an MHE-based energy function which Hop-
field Boosting uses to determine how weak a specific learner
ξ is (with higher energy indicating a weaker learner).

Eb(ξ;X,O) = − 2 lse(β, (X ∥O)T ξ)

+ lse(β,XT ξ) + lse(β,OT ξ),
(5)

where (X ∥O) ∈ R
d×(N+M) denotes the concatenated data

matrix containing the patterns from both X and O. Before
computing Eb, we normalize the feature vectors in X , O,
and ξ to unit length. Figure 3 displays the energy landscape
of Eb(ξ;X,O) using exemplary data on a 3-dimensional
sphere. Eb is maximal at the decision boundary between

ID and AUX data and decreases with increasing distance
from the decision boundary in both directions. We provide
a theoretical background on Eb in Appendix F.

To calculate the weights wt+1, we use a collection of AUX
patterns as a query matrix Ξ and compute the respective
energies Eb of those patterns. The resulting energy vec-
tor Eb(Ξ;X,O) is then normalized by a softmax. This
computation provides the updated weights:

wt+1 = softmax(βEb(Ξ;X,O)). (6)

Training the model using MHE. In this section, we intro-
duce how Hopfield Boosting uses the sampled weak learners
to improve the detection of patterns outside the training dis-
tribution. We follow the established training method for OE
(e.g., Hendrycks et al., 2019b): Train a classifier on the ID
data using cross-entropy and add an OOD loss that uses the
AUX data set to sharpen the decision boundary between the
ID and OOD regions. This yields a composite loss

L = LCE + λLOOD, (7)

Hopfield Boosting explicitly minimizes Eb. Given the
weight vector wt, and the data sets XD and OD, we obtain
a mini-batch XD

s containing Ns samples from XD by uni-
form sampling, and a mini-batch of Ns weak learners OD

s

from OD by sampling according to wt with replacement.
We then feed the respective mini-batches into the neural
network ϕ (e.g., ResNet) to create an embedding.

Hopfield Boosting computes LOOD as follows:

LOOD =
1

2Ns

∑

ξ

Eb(ξ;Xs,Os), (8)

where the memories Xs and Os contain the embeddings
of the sampled data instances: Xs = ϕ(XD

s ) and Os =
ϕ(OD

s ). The sum is taken over the observations ξ, which
are drawn from (Xs ∥ Os). Hopfield Boosting computes
LOOD for each mini-batch individually. To the best of our
knowledge, Hopfield Boosting is the first method that uses
Hopfield networks in this way to train a deep neural network.
We note that there is a relation between Hopfield Boosting
and SVMs with an RBF kernel (see Appendix G.3). How-
ever, the optimization procedure of SVMs is in general not
differentiable. In contrast, our novel energy function is
fully differentiable. This allows us to use it to train neural
networks. Rätsch et al. (2001) shows the relation between
highly weighted samples in AdaBoost and support vectors.

Inference. At inference time, the OOD score s(ξ) is

s(ξ) = lse(β,XT ξ) − lse(β,OT ξ). (9)

For computing s(ξ), Hopfield Boosting uses the 50,000 ran-
dom samples from the ID and AUX data sets, respectively.
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Figure 2: Synthetic example of the adaptive resampling
mechanism. Hopfield Boosting forms a strong hypothesis
by sampling and combining a set of weak hypotheses close
to the decision boundary. The heatmap on the background
shows exp(βEb(ξ,X,O)), where β is 60. Only the sam-
pled (i.e., highlighted) points serve as memories X and O.

4. Experiments

This section first presents a toy example to give the reader
an intuition of Hopfield Boosting, and then describes our
experiments and results on CIFAR-10. For the selection of
the hyperparameters and additional experiments, including
ablations, additional baselines, and results on CIFAR-100
and ImageNet-1K, we refer to Appendix H.

4.1. Toy Example

Figure 2 demonstrates how the weighting in Hopfield Boost-
ing allows good estimations of the decision boundary, even
if Hopfield Boosting only samples a small number of weak
learners. This is desirable because the AUX data contains
a large number of data instances that are uninformative for
the OOD detection task. For small, low dimensional data,
one can always use all the data to compute Eb (Figure 2, a).
For large problems, this strategy is difficult, and the naive
solution of uniformly sampling N data points would also not
work. This will yield many uninformative points (Figure 2,
b). When using Hopfield Boosting and sampling N weak
learners according to wt, the result better approximates the
decision boundary of the full data (Figure 2, c).

4.2. Data & Setup

CIFAR-10 We train Hopfield Boosting with ResNet-18
(He et al., 2016) on the CIFAR-10 data set (Krizhevsky,
2009). We use ImageNet-RC (Chrabaszcz et al., 2017) (a
low-resolution version of ImageNet) as the AUX data. For
testing the OOD detection performance, we use the data sets
SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014),
iSUN (Xu et al., 2015), Places 365 (López-Cifuentes et al.,
2020), and two versions of the LSUN data set (Yu et al.,
2015) — one where the images are cropped, and one where
they are resized to match the resolution of the CIFAR data
sets (32x32 pixels). We evaluate the discriminative power
of s(ξ) between CIFAR and the respective OOD data set
using the FPR95 and the AUROC.

Table 1: OOD detection performance on CIFAR-10. We
compare results from Hopfield Boosting, POEM (Ming
et al., 2022), EBO-OE (Liu et al., 2020), and MSP-OE
(Hendrycks et al., 2019b) on ResNet-18. ↓ indicates “lower
is better” and ↑ “higher is better”. All values in %. Standard
deviations are estimated across five training runs.

OOD Data Metric HB (ours) POEM EBO-OE MSP-OE

FPR95 ↓ 0.23±0.08 1.48±0.68 2.66±0.91 4.31±1.10

SVHN
AUROC ↑ 99.57±0.06 99.33±0.15 99.15±0.23 99.20±0.15

FPR95 ↓ 0.82±0.17 4.02±0.91 6.82±0.74 7.02±1.14

LSUN-C
AUROC ↑ 99.40±0.04 98.89±0.15 98.43±0.10 98.83±0.15

FPR95 ↓ 0.00±0.00
0.00±0.00

0.00±0.00
0.00±0.00

LSUN-R
AUROC ↑ 99.98±0.02 99.88±0.12 99.98±0.02 99.96±0.00

FPR95 ↓ 0.16±0.02 0.49±0.04 1.11±0.17 2.29±0.16

Textures
AUROC ↑ 99.84±0.01 99.72±0.05 99.61±0.02 99.57±0.01

FPR95 ↓ 0.00±0.00
0.00±0.00

0.00±0.00
0.00±0.00

iSUN
AUROC ↑ 99.97±0.02 99.87±0.12 99.98±0.01 99.96±0.00

FPR95 ↓ 4.28±0.23 7.70±0.68 11.77±0.68 21.42±0.88

Places 365
AUROC ↑ 98.51±0.10 97.56±0.26 96.39±0.30 95.91±0.17

FPR95 ↓ 0.92 2.28 3.73 5.84
Mean

AUROC ↑ 99.55 99.21 98.92 98.90

Training. The network trains for 100 epochs. Each epoch,
the model sees the entire ID data set and a selection of AUX
samples. We evaluate the composite loss from Equation (7)
for each mini-batch and update the model accordingly. After
an epoch, we update the sample weights, yielding wt+1.
During the sample weight update, Hopfield Boosting does
not compute gradients. The update of the sample weights
wt+1 proceeds as follows: First, we fill the memories X

and O with 50,000 samples, respectively. Second, we use
the obtained X and O to get the energy Eb(Ξ;X,O) for
500,000 AUX samples and compute wt+1 according to
Equation (6). In the following epoch, we sample the mini-
batches OD

s according to wt+1 with replacement.

4.3. Results & Discussion

Table 1 summarizes the results for CIFAR-10. Hopfield
Boosting surpasses POEM, improving the mean FPR95
metric from 2.28 to 0.92.

We also explore the influence of boosting (Table 6): The
experiment shows that sampling weak learners contributes
considerably to the performance of Hopfield Boosting. Al-
though Hopfield Boosting shows superior performance com-
pared to POEM even without boosting, outlier sampling can
beat this version on every dataset on the FPR95 metric.

5. Conclusions

We introduce Hopfield Boosting: a method for OOD de-
tection with OE. Hopfield Boosting uses an energy term to
boost a classifier between inlier and outlier data by sam-
pling weak learners that are close to the decision boundary.
We compare Hopfield Boosting to three OOD detection ap-
proaches. Overall, Hopfield Boosting shows the best results.
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A. Details on Continuous Modern Hopfield Networks

The following arguments are adopted from Fürst et al. (2022) and Ramsauer et al. (2021). Associative memory networks
have been designed to store and retrieve samples. Hopfield networks are energy-based, binary associative memories, which
were popularized as artificial neural network architectures in the 1980s (Hopfield, 1982, 1984). Their storage capacity can
be considerably increased by polynomial terms in the energy function (Chen et al., 1986; Psaltis & Park, 1986; Baldi &
Venkatesh, 1987; Gardner, 1987; Abbott & Arian, 1987; Horn & Usher, 1988; Caputo & Niemann, 2002; Krotov & Hopfield,
2016). In contrast to these binary memory networks, we use continuous associative memory networks with far higher storage
capacity. These networks are continuous and differentiable, retrieve with a single update, and have exponential storage
capacity (and are therefore scalable, i.e., able to tackle large problems; Ramsauer et al., 2021).

Formally, we denote a set of patterns {x1, . . . ,xN} ⊂ R
d that are stacked as columns to the matrix X = (x1, . . . ,xN )

and a state pattern (query) ξ ∈ R
d that represents the current state. The largest norm of a stored pattern is M = maxi ∥xi∥.

Then, the energy E of continuous Modern Hopfield Networks with state ξ is defined as (Ramsauer et al., 2021)

E = − β−1 log

(
N∑

i=1

exp(βxT
i ξ)

)

+
1

2
ξT ξ + C, (10)

where C = β−1 logN + 1
2 M2. For energy E and state ξ, Ramsauer et al. (2021) proved that the update rule

ξnew = X softmax(βXT ξ) (11)

converges globally to stationary points of the energy E and coincides with the attention mechanisms of Transformers
(Vaswani et al., 2017; Ramsauer et al., 2021).

The separation ∆i of a pattern xi is its minimal dot product difference to any of the other patterns:

∆i = min
j,j ̸=i

(
xT
i xi − xT

i xj

)
. (12)

A pattern is well-separated from the data if ∆i is above a given threshold (specified in Ramsauer et al., 2021). If the patterns
xi are well-separated, the update rule Equation 11 converges to a fixed point close to a stored pattern. If some patterns are
similar to one another and, therefore, not well-separated, the update rule converges to a fixed point close to the mean of the
similar patterns.

The update rule of a Hopfield network thus identifies sample–sample relations between stored patterns. This enables
similarity-based learning methods like nearest neighbor search (see Schäfl et al., 2022), which Hopfield Boosting leverages
to detect samples outside the distribution of the training data.

B. Notes on Langevin Sampling

Another method that is appropriate for earlier acquired models is to sample the posterior via the Stochastic Gradient Langevin
Dynamics (SGLD) (Welling & Teh, 2011). This method is efficient since it iteratively learns from small mini-batches
Welling & Teh (2011); Ahn et al. (2012). See basic work on Langevin dynamics Welling & Teh (2011); Ahn et al. (2012);
Teh et al. (2016); Xu et al. (2018). A cyclical stepsize schedule for SGLD was very promising for uncertainty quantification
Zhang et al. (2020). Larger steps discover new modes, while smaller steps characterize each mode and perform the posterior
sampling.

C. Related work

C.1. Details on further OE approaches

This section gives details about related works from the area of OE in OOD detection. With OE, we refer to the usage of
AUX for training an OOD detector in general.

MSP-OE. Hendrycks et al. (2019b) were the first to introduce the term OE in the context of OOD detection. Specifically,
they improve an MSP-based OOD detection (Hendrycks & Gimpel, 2017): They train a classifier on the ID data set and
maximize the entropy of the predictive distribution of the classifier for the AUX data. The combined loss they employ is
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L = LCE + λLOOD (13)

LOOD = E
oD∼pAUX

[H(U , pθ(o))] (14)

where H denotes the cross-entropy, U denotes the uniform distribution over K classes, and pθ is the model mapping the
features to the predictive distribution over the K classes.

EBO-OE. Liu et al. (2020) propose a post-hoc and an OE approach. Their post-hoc approach (EBO) is to use the
classifier’s energy to perform OOD detection:

E(ξD) = − β−1lse(β, fθ(ξ
D)) (15)

s(ξD) = −E(ξD, fθ) (16)

where fθ outputs the model’s logits as a vector. Their OE approach (EBO-OE) promotes a low energy on ID samples and a
high energy on AUX samples:

LOOD = E
xD∼pID

[(max(0,E(xD) − mID))
2] + E

oD∼pAUX

[(max(0,mAUX − E(oD)))2] (17)

where mID and mAUX are margin hyperparameters.

POEM. Ming et al. (2022) propose to incorporate Thompson sampling into the OE process. More specifically, they
sample a linear decision boundary in embedding space between the ID and AUX data using Bayesian linear regression and
then select those samples from the AUX data set that are closest to the sampled decision boundary. In the following epoch,
they sample the AUX data uniformly from the selected data instances without replacement and optimize the model with the
EBO-OE loss (Equation (17)).

MixOE. Zhang et al. (2023b) employ mixup (Zhang et al., 2018) between the ID and AUX samples to augment the OE
task. Formally, this results in the following:

x̃ = λxD + (1− λ)oD (18)

ỹ = λy + (1− λ)U (19)

LOOD = E
(xD,y)∼pID

oD∼pAUX

[H(ỹ, x̃)] (20)

Alternatively, they also propose to employ CutMix (Yun et al., 2019) instead of mixup (which would change the mixing
operation in Equation (18)).

DAL. Wang et al. (2023a) augment the AUX data by defining a Wasserstein-1 ball around the AUX data and performing
OE using this Wasserstein ball. DAL is motivated by the concept of distribution discrepancy: The distribution of the real
OOD data will in general be different from the distribution of the AUX data. The authors argue that their approach can make
OOD detection more reliable if the distribution discrepancy is large.

DivOE. Zhu et al. (2023) pose the question of how to utilize the given outliers from the AUX data set if the auxiliary
outliers are not informative enough to represent the unseen OOD distribution. They suggest solving this problem by
diversifying the AUX data using extrapolation, which should result in better coverage of the OOD space of the resultant
extrapolated distribution. Formally, they employ a loss using a synthesized distribution with a manipulation ∆:
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LOOD = E
oD∼pAUX

[(1 − γ)H(U , pθ(oD)) + γmax
∆

[H(U , pθ(oD +∆)) − H(U , pθ(oD))]] (21)

DOE. Wang et al. (2023b) implicitly synthesize auxiliary outlier data using a transformation of the model weights. They
argue that perturbing the model parameters has the same effect as transforming the data.

DOS. Jiang et al. (2024) apply K-means clustering to the features of the AUX data set. They then employ a balanced
sampling from the K obtained clusters by selecting the same number of samples from each cluster for training. More
specifically, they select those n samples from each cluster which are closest to the decision boundary between the ID and
OOD regions.

D. Societal Impact

This section discusses the potential positive and negative societal impacts of our work. As our work aims improves the
state-of-the-art in OOD detection, we focus on potential societal impact of OOD detection in general.

• Postive Impacts

– Improved model reliability: OOD detection aims to detect unfamiliar inputs that have little support in the model’s
training distribution. When these samples are detected, one can, for example, notify the user that no prediction is
possible, or trigger a manual intervention. This can lead to an increase in a model’s reliability.

– Abstain from doing uncertain predictions: When a model with appropriate OOD detection recognizes that a
query sample has limited support in the training distribution, it can abstain from performing a prediction. This
can, for example, increase trust in ML models, as they will rather tell the user they are uncertain than report a
confidently wrong prediction.

• Negative Impacts

– Wrong sense of safety: Having OOD detection in place could cause users to wrongly assume that all OOD inputs
will be detected. However, like most systems, also OOD detection methods can make errors. It is important to
consider that certain OOD examples could remain undetected.

– Potential for misinterpretation: As with many other ML systems, the outcomes of OOD detection methods are
prone to misinterpretation. It is important to acquaint oneself with the respective method before applying it in
practice.
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E. Toy Examples

E.1. 3D Visualizations of Eb on a hypersphere

(a) Out-of-Distribution energy function

(b) Exponentiated Out-of-Distribution energy function

Figure 3: Depiction of the energy function Eb(ξ;X,O) on a hypersphere. (a) shows Eb(ξ,X,O) with exemplary inlier
(orange) and outlier (blue) points; and (b) shows exp(βEb(ξ,X,O)). β was set to 128. Both, (a) and (b), rotate the sphere
by 0, 90, 180, and 270 degrees around the vertical axis.

This example depicts how inliers and outliers shape the energy surface (Figure 3). We generated patterns so that X clusters
around a pole and the outliers populate the remaining perimeter of the sphere. This is analogous to the idea that one has
access to a large AUX data set, where some data points are more and some less informative for OOD detection (e.g., as
conceptualized in Ming et al., 2022).

E.2. Dynamics of LOOD on Patterns in Euclidean Space

In this example, we applied our out-of-distribution loss LOOD on a simple binary classification problem. As we are working in
Euclidean space and not on a sphere, we use a modified version of MHE, which uses the negative squared Euclidean distance
instead of the dot-product-similarity. For the formal relation between Equation (22) and MHE, we refer to Appendix G.1:

E(ξ;X) = − β−1 log

(
N∑

i=1

exp(−β

2
||ξ − xi||22)

)

(22)

Figure 4a shows the initial state of the patterns and the decision boundary exp(βEb(ξ;X,O)). We store the samples of
the two classes as stored patterns in X and O, respectively, and compute LOOD for all samples. We then set the learning
rate to 0.1 and perform gradient descent with LOOD on the data points. Figure 4b shows that after 25 steps, the distance
between the data points and the decision boundary has increased, especially for samples that had previously been close
to the decision boundary. After 100 steps, as shown in Figure 4d, the variability orthogonal to the decision boundary has
almost completely vanished, while the variability parallel to the decision boundary is maintained.
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(a) After 0 steps (b) After 25 steps

(c) After 50 steps (d) After 100 steps

Figure 4: LOOD applied to exemplary data points on euclidean space. Gradient updates are applied to the data points directly.
We observe that the variance orthogonal to the decision boundary shrinks while the variance parallel to the decision boundary
does not change to this extent. β is set to 2.
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E.3. Dynamics of LOOD on Patterns on the Sphere

(a) After 0 steps

(b)
After 500 steps

(c)
After 2500 steps

Figure 5: LOOD applied to exemplary data points on a sphere. Gradients are applied to the data points directly. We observe
that the geometry of the space forces the patterns to opposing poles of the sphere.

E.4. Learning Dynamics of Hopfield Boosting on Patterns on a Sphere - Video

The example video1 demonstrates the learning dynamics of Hopfield Boosting on a 3-dimensional sphere. We randomly
generate ID patterns X clustering around one of the sphere’s poles and AUX patterns O on the remaining surface of the
sphere. We then apply Hopfield Boosting on this data set. First, we sample the weak learners close to the decision boundary
for both classes, X and O. Then, we perform 2000 steps of gradient descent with LOOD on the sampled weak learners. We
apply the gradient updates to the patterns directly and do not propagate any gradients to an encoder. Every 50 gradient steps,
we re-sample the weak learners. For this example, the initial learning rate is set to 0.02 and increased after every gradient
step by 0.1%.

1https://youtu.be/4AB3tILdrvQ
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E.5. Location of Weak Learners near the Decision Boundary

A weak learner can be constructed from a sample close to the decision boundary as follows: Given the sample, we create a
radial decision boundary centered on the sample. We now optimize one parameter (the radius of the decision boundary) to
minimize the error on the training set. Our classifier is a weak learner because no matter how the radius is selected, the
resulting hypothesis will likely only perform slightly better than random guessing.

Figure 6: A prototypical classifier (red circle) that is constructed with a sample close to the decision boundary. Classifiers
like this one will only perform slightly better than random guessing (as indicated by the radial decision boundaries) and are,
therefore, well-suited for weak learners.
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F. Notes on Eb

F.1. Probabilistic Interpretation of Eb

We model the class-conditional densities of the in-distribution data and auxiliary data as mixtures of Gaussians with the
patterns as the component means and tied, diagonal covariance matrices with β−1 in the main diagonal.

p( ξ | ID ) =
1

N

N∑

i=1

N
(
ξ;xi, β

−1I
)

(23)

p( ξ | AUX ) =
1

M

M∑

i=1

N
(
ξ;oi, β

−1I
)

(24)

Further, we assume the distribution p(ξ) as a mixture of p( ξ | ID ) and p( ξ | AUX ) with equal prior probabilities (mixture
weights):

p(ξ) = p(ID) p( ξ | ID ) + p(AUX) p( ξ | AUX ) (25)

=
1

2
p( ξ | ID ) +

1

2
p( ξ | AUX ) (26)

The probability of an unknown sample ξ being an AUX sample is given by

p( AUX | ξ ) =
p( ξ | AUX ) p(AUX)

p(ξ)
(27)

=
p( ξ | AUX )

2 p(ξ)
(28)

=
p( ξ | AUX )

p( ξ | AUX ) + p( ξ | ID )
(29)

=
1

1 + p( ξ | ID )
p( ξ | AUX )

(30)

=
1

1 + exp(log(p( ξ | ID ))− log(p( ξ | AUX )))
(31)

where in line (30) we have used that p( ξ | AUX ) > 0 for all ξ ∈ R
d. The probability of ξ being an ID sample is given by

p( ID | ξ ) =
p( ξ | ID )

2 p(ξ)
(32)

=
1

1 + exp(log(p( ξ | AUX ))− log(p( ξ | ID )))
(33)

= 1− p( AUX | ξ ) (34)

Consider the function

fb(ξ) = p( AUX | ξ) · p( ID | ξ ) (35)

=
p( ξ | AUX ) · p( ξ | ID )

4p(ξ)2
(36)
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By taking the log of Equation (36) we obtain the following. We use
C
= to denote equality up to an additive constant that

does not depend on ξ.

β−1 log (fb(ξ))
C
= − 2 β−1 log (p(ξ)) + β−1 log (p( ξ | ID )) + β−1 log (p( ξ | AUX )) (37)

Pre-multiplication by β−1 is equivalent to a change of base of the log. The term − β−1 log(p(ξ)) is equivalent to the MHE
(Ramsauer et al., 2021) (up to an additive constant) when assuming normalized patterns, i.e. ||xi||2 = 1 and ||oi||2 = 1,
and an equal number of patterns M = N in the two Gaussian mixtures p( ξ | ID ) and p( ξ | AUX ):

− β−1 log(p(ξ)) = − β−1 log

(
1

2
p( ξ | ID ) +

1

2
p( ξ | AUX )

)

(38)

C
= − β−1 log (p( ξ | ID ) + p( ξ | AUX )) (39)

= − β−1 log

(

1

N

N∑

i=1

N
(
ξ;xi, β

−1I
)
+

1

N

N∑

i=1

N
(
ξ;oi, β

−1I
)

)

(40)

C
= − β−1 log

(
N∑

i=1

N
(
ξ;xi, β

−1I
)
+

N∑

i=1

N
(
ξ;oi, β

−1I
)

)

(41)

C
= − β−1 log

(
N∑

i=1

exp(−β

2
||ξ − xi||22) +

N∑

i=1

exp(−β

2
||ξ − oi||22)

)

(42)

C
= − β−1 log

(
N∑

i=1

exp(βxT
i ξ − β

2
ξT ξ) +

N∑

i=1

exp(βoT
i ξ − β

2
ξT ξ)

)

(43)

= − β−1 log

(
N∑

i=1

exp(βxT
i ξ) +

N∑

i=1

exp(βoT
i ξ)

)

+
1

2
ξT ξ (44)

C
= − lse(β, (X ∥O)T ξ) +

1

2
ξT ξ + β−1 logN +

1

2
M2 (45)

Analogously, β−1 log(p( ξ | ID )) and β−1 log(p( ξ | AUX )) also yield MHE terms. Therefore, Eb is equivalent to
β−1 log(fb(ξ)) under the assumption that ||xi||2 = 1 and ||oi||2 = 1 and M = N . The 1

2ξ
T ξ terms that are contained in

the three MHEs cancel out.

β−1 log (fb(ξ))
C
= − 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ) = Eb(ξ;X,O) (46)

fb(ξ) can also be interpreted as the variance of a Bernoulli distribution with outcomes ID and AUX:

fb(ξ) = p( AUX | ξ ) p( ID | ξ ) = p( ID | ξ )(1− p( ID | ξ )) = p( AUX | ξ )(1− p( AUX | ξ )) (47)

In other words, minimizing Eb means to drive a Bernoulli-distributed random variable with the outcomes ID and AUX
towards minimum variance, i.e., p( ID | ξ ) is driven towards 1 if p( ID | ξ ) > 0.5 and towards 0 if p( ID | ξ ) < 0.5.
Conversely, the same is true for p( AUX | ξ ).

From Equation (31), under the assumptions that ||xi||2 = 1 and ||oi||2 = 1 and M = N , the conditional probability
p( AUX | ξ ) can be computed as follows:

p( AUX | ξ ) = σ(log(p( ξ | AUX ))− log(p( ξ | ID ))) (48)

= σ(β (lse(β,OT ξ)− lse(β,XT ξ))) (49)
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where σ denotes the logistic sigmoid function. Similarly, p( ID | ξ ) can be computed using

p( ID | ξ ) = σ(β (lse(β,XT ξ)− lse(β,OT ξ))) (50)

= 1− p( AUX | ξ ) (51)

F.2. Alternative Formulations of Eb and fb

Eb can be rewritten as follows.

Eb(ξ;X,O) = − 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ) (52)

= − 2β−1 log cosh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)

− 2β−1 log(2) (53)

To prove this, we first show the following:

− β−1 log
(
exp( β lse(β,XT ξ) ) + exp( β lse(β,OT ξ) )

)
(54)

= − β−1 log

(

exp

(

β β−1 log

(
N∑

i=1

exp(βxT
i ξ)

))

+ exp

(

β β−1 log

(
N∑

i=1

exp(βoT
i ξ)

)))

(55)

= − β−1 log

(
N∑

i=1

exp(βxT
i ξ) +

N∑

i=1

exp(βoT
i ξ)

)

(56)

= − lse(β, (X ∥O)T ξ) (57)

Let EX = −lse(β,XT ξ) and EO = −lse(β,OT ξ).

Eb(ξ;X,O) = − 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ) (58)

= − 2β−1 log ( exp( − β EX ) + exp( − β EO ) ) − EX − EO (59)

= − 2β−1 log

(

exp( − β

2
EX ) + exp( − β EO +

β

2
EX )

)

− EO (60)

= − 2β−1 log

(

exp( − β

2
EX +

β

2
EO ) + exp( − β

2
EO +

β

2
EX )

)

(61)

= − 2β−1 log cosh

(
β

2
( − EX + EO)

)

− 2β−1 log(2) (62)

= − 2β−1 log cosh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)

− 2β−1 log(2) (63)

= − 2β−1 log cosh

(
β

2
(lse(β,OT ξ) − lse(β,XT ξ))

)

− 2β−1 log(2) (64)

By exponentiation of the above result we obtain

fb(ξ) ∝ exp(βEb(ξ;X,O)) =
1

4 cosh2
(

β
2 (lse(β,XT ξ) − lse(β,OT ξ))

) (65)

The function log cosh(x) is related to the negative log-likelihood of the hyperbolic secant distribution (see e.g. Saleh &
Saleh, 2022). For values of x close to 0, log cosh can be approximated by x2

2 , and for values far from 0, the function behaves
as |x| − log(2).
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(a) Probabilities (b) Log-probabilities

Figure 7: The product of two logistic sigmoids yields fb (a); the sum of two log-sigmoids yields log(fb) = Eb (b).

F.3. Derivatives of Eb

In this section, we investigate the derivatives of the energy function Eb. The derivative of the lse is:

∇z lse(β, z) = ∇z β−1 log

(
N∑

i=1

exp(βzi)

)

= softmax(β z) (66)

Thus, the derivative of the MHE E(ξ;X) w.r.t. ξ is:

∇ξ E(ξ;X) = ∇ξ (−lse(β,XT ξ) +
1

2
ξT ξ + C) = − Xsoftmax(βXT ξ) + ξ (67)

The update rule of the MHN

ξt+1 = Xsoftmax(βXT ξt) (68)

is derived via the concave-convex procedure. It coincides with the attention mechanisms of Transformers and has been
proven to converge globally to stationary points of the energy E(ξ;X) (Ramsauer et al., 2021). It can also be shown that
the update rule emerges when performing gradient descent on E(ξ;X) with step size η = 1 Park et al. (2023):

ξt+1 = ξt − η ∇ξE(ξ
t;X) (69)

ξt+1 = Xsoftmax(βXT ξt) (70)

From Equation (67), we can see that the gradient of Eb(ξ;X,O) w.r.t. ξ is:

∇ξEb(ξ;X,O) = ∇ξ (− 2 lse(β, (X ∥O)T ξ) + lse(β,XT ξ) + lse(β,OT ξ)) (71)

= − 2 (X ∥O) softmax(β(X ∥O)T ξ) + Xsoftmax(βXT ξ) + Osoftmax(βOT ξ) (72)
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When Xsoftmax(βXT ξ), Osoftmax(βOT ξ), lse(β,XT ξ) and lse(β,OT ξ) are available, one can efficiently compute
(X ∥O) softmax(β(X ∥O)T ξ) as follows:

(X ∥O) softmax(β(X ∥O)T ξ) (73)

= ∇ξ lse(β, (X ∥O)T ξ) (74)

= ∇ξ β−1 log
(
exp(βlse(β,XT ξ)) + exp(βlse(β,OT ξ))

)
(75)

=
(
Xsoftmax(βXT ξ) Osoftmax(βOT ξ)

)
softmax

(

β

(
lse(β,XT ξ)
lse(β,OT ξ)

))

(76)

We can also compute the gradient of Eb(ξ;X,O) w.r.t. ξ via the log cosh-representation of Eb (see Equation (64)). The
derivative of the log cosh function is

d

dx
β−1 log cosh(βx) = tanh(βx) (77)

Therefore, we can compute the gradient of Eb(ξ;X,O) as

∇ξ Eb(ξ;X,O) (78)

= ∇ξ − 2β−1 log cosh

(
β

2
(lse(β,OT ξ) − lse(β,XT ξ))

)

(79)

= − tanh

(
β

2
(lse(β,OT ξ) − lse(β,XT ξ))

)
(
Osoftmax(βOT ξ)−Xsoftmax(βXT ξ)

)
(80)

= − tanh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)
(
Xsoftmax(βXT ξ)−Osoftmax(βOT ξ)

)
(81)

Next, we would like to compute the gradient of Eb(ξ;X,O) w.r.t. the memory matrices X and O. For this, let us first look
at the gradient of the MHE E(ξ;X) w.r.t. a single stored pattern xi (where X is the matrix of concatenated stored patterns
(x1,x2, . . . ,xN )):

∇xi
E(ξ;X) = − ξsoftmax(βXT ξ)i (82)

Thus, the gradient w.r.t. the full memory matrix X is

∇XE(ξ;X) = −ξsoftmax(βXT ξ)T (83)

We can now also use the log cosh formulation of Eb(ξ;X,O) to compute the gradient of Eb(ξ;X,O), w.r.t X and O:

∇XEb(ξ;X,O) = ∇X − 2β−1 log cosh

(
β

2
(lse(β,XT ξ) − lse(β,OT ξ))

)

(84)

= − tanh

(
β

2
(lse(β,XT ξ)− lse(β,OT ξ))

)

ξsoftmax(βXT ξ)T (85)

(86)
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Analogously, the gradient w.r.t O is

∇OEb(ξ;X,O) = − tanh

(
β

2
(lse(β,OT ξ)− lse(β,XT ξ))

)

ξsoftmax(βOT ξ)T (87)
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G. Notes on the Relationship between Hopfield Boosting and other methods

G.1. Relation to Radial Basis Function Networks

This section shows the relation between radial basis function networks (RBF networks; Moody & Darken, 1989) and modern
Hopfield energy (following Schäfl et al., 2022). Consider an RBF network with normalized linear weights:

φ(ξ) =

N∑

i=1

ωi exp(−
β

2
||ξ − µi||22) (88)

where β denotes the inverse tied variance β = 1
σ2 , and the ωi are normalized using the softmax function:

ωi = softmax(βa)i =
exp(βai)

∑N
j=1 exp(βaj)

(89)

An energy can be obtained by taking the negative log of φ(ξ):

E(ξ) = − β−1 log (φ(ξ)) (90)

= − β−1 log

(
N∑

i=1

ωi exp(−
β

2
||ξ − µi||22))

)

(91)

= − β−1 log

(
N∑

i=1

exp( β(−1

2
||ξ − µi||22 + β−1 log softmax(βa)i) )

)

(92)

= − β−1 log

(
N∑

i=1

exp( β(−1

2
||ξ − µi||22 + ai − lse(β,a) )

)

(93)

= − β−1 log

(
N∑

i=1

exp( β(−1

2
ξT ξ + µT

i ξ − 1

2
µT

i µi + ai) )

)

+ lse(β,a) (94)

Next, we define ai =
1
2µ

T
i µi

E(ξ) = − β−1 log

(
N∑

i=1

exp(βµT
i ξ)

)

+
1

2
ξT ξ + lse(β,a) (95)

Finally, we use the fact that lse(β,a) ≤ maxi ai + β−1 logN

E(ξ) = − β−1 log

(
N∑

i=1

exp(βµT
i ξ)

)

+
1

2
ξT ξ + β−1 logN +

1

2
M2 (96)

where M = maxi ||µi||2

G.2. Contrastive Representation Learning

A commonly used loss function in contrastive representation learning (e.g., Chen et al., 2020; He et al., 2020) is the InfoNCE
loss (Oord et al., 2018):
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LNCE = E
(x,y)∼ppos

{x−

i
}M
i=1

∼pdata

[

− log
ef(x)

T f(y)/τ

ef(x)T f(y)/τ +
∑

i e
f(x−

i
)T f(y)/τ

]

(97)

Wang & Isola (2020) show that LNCE optimizes two objectives:

LNCE = E
(x,y)∼ppos

[
−f(x)T f(y)/τ

]

︸ ︷︷ ︸

Alignment

+ E
(x,y)∼ppos

{x−

i
}M
i=1

∼pdata

[

log

(

ef(x)
T f(y)/τ +

∑

i

ef(x
−

i
)T f(x)/τ

)]

︸ ︷︷ ︸

Uniformity

(98)

Alignment enforces that features from positive pairs are similar, while uniformity encourages a uniform distribution of the
samples over the hypersphere.

In comparison, our proposed loss, LOOD, does not visibly enforce alignment between samples within the same class. Instead,
we can observe that it promotes uniformity to the instances of the foreign class. Due to the constraints that are imposed by
the geometry of the space the optimization is performed on, that is, ||f(x)|| = 1 when the samples move on a hypersphere,
the loss encourages the patterns in the ID data have maximum distance to the samples of the AUX data, i.e., they concentrate
on opposing poles of the hypersphere. A demonstration of this mechanism can be found in Appendix E.2 and E.3

G.3. Support Vector Machines

In the following, we will show the relation of Hopfield Boosting to support vector machines (SVMs; Cortes & Vapnik, 1995)
with RBF kernel. We adopt and expand the arguments of Schäfl et al. (2022).

Assume we apply an SVM with RBF kernel to model the decision boundary between ID and AUX data. We train on the
features Z = (x1, . . . ,xN ,o1, . . . ,oM ) and assume that the patterns are normalized, i.e., ||xi||2 = 1 and ||oi||2 = 1. We
define the targets (y1, . . . , y(N+M)) as 1 for ID and −1 for AUX data. The decision rule of the SVM equates to

B̂(ξ) =

{

ID if s(ξ) ≥ 0

OOD if s(ξ) < 0
(99)

where

s(ξ) =

N+M∑

i=1

αiyik(zi, ξ) (100)

k(zi, ξ) = exp

(

−β

2
||ξ − zi||22

)

(101)

We assume that there is at least one support vector for both ID and AUX data, i.e., there exists at least one index i s.t.
αiyi > 0 and at least one index j s.t. αjyj < 0. We now split the samples zi in s(ξ) according to their label:

s(ξ) =

N∑

i=1

αik(xi, ξ) −
M∑

i=1

αN+ik(oi, ξ) (102)

We define an alternative score:
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sfrac(ξ) =

∑N
i=1 αik(xi, ξ)

∑M
i=1 αN+ik(oi, ξ)

(103)

(104)

Because we assumed there is at least one support vector for both ID and AUX data and as the αi are constrained to be
non-negative and because k(·, ·) > 0, the numerator and denominator are strictly positive. We can, therefore, specify a new
decision rule B̂frac(ξ).

B̂frac(ξ) =

{

ID if sfrac(ξ) ≥ 1

OOD if sfrac(ξ) < 1
(105)

Although the functions s(ξ) and sfrac(ξ) are different, the decision rules B̂(ξ) and B̂frac(ξ) are equivalent. Another possible
pair of score and decision rule is the following:

slog(ξ) = β−1 log(sfrac(ξ)) = β−1 log

(
N∑

i=1

αik(xi, ξ)

)

− β−1 log

(
M∑

i=1

αN+ik(oi, ξ)

)

(106)

B̂log(ξ) =

{

ID if slog(ξ) ≥ 0

OOD if slog(ξ) < 0
(107)

Let us more closely examine the term β−1 log
(
∑N

i=1 αik(xi, ξ)
)

. We define ai = β−1 log(αi).

β−1 log

(
N∑

i=1

αik(xi, ξ)

)

= β−1 log

(
N∑

i=1

exp(βai) exp

(

−β

2
||ξ − xi||22

))

(108)

= β−1 log

(
N∑

i=1

exp(βai) exp

(

−β

2
ξT ξ + βxT

i ξ − β

2
xT
i xi

))

(109)

= β−1 log

(
N∑

i=1

exp

(

−β

2
ξT ξ + βxT

i ξ − β

2
xT
i xi + βai

))

(110)

= β−1 log

(
N∑

i=1

exp
(
βxT

i ξ + βai
)

)

− 1

2
ξT ξ − 1

2
(111)

We now construct a memory XH and query ξH such that we can compute (111) using the MHE (Equation (4)):

XH =

(
x1 . . . xN

a1 . . . aN

)

(112)

ξH =

(
ξ

1

)

(113)

We obtain
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E(ξH ;XH) = − lse(β,XT
HξH) +

1

2
ξTHξH + C (114)

= − β−1 log

(
N∑

i=1

exp
(
βxT

i ξ + 1βai
)

)

+
1

2
ξT ξ +

1

2
· 12 + C (115)

= − β−1 log

(
N∑

i=1

exp
(
βxT

i ξ + βai
)

)

+
1

2
ξT ξ +

1

2
+ C (116)

= − β−1 log

(
N∑

i=1

αik(xi, ξ)

)

+ C (117)

We construct OH analogously to Equation (112) and thus can compute

slog(ξ) = E(ξH ;OH) − E(ξH ;XH) = lse(β,XT
HξH) − lse(β,OT

HξH) (118)

which is exactly the score Hopfield Boosting uses for determining whether a sample is OOD (Equation (9)). In contrast to
SVMs, Hopfield Boosting uses a uniform weighting of the patterns in the memory when computing the score. However,
Hopfield Boosting can emulate a weighting of the patterns by more frequently sampling patterns with high weights into the
memory.

G.4. HE and SHE

Zhang et al. (2023a) introduce two post-hoc methods for OOD detection using MHE, which are called “Hopfield Energy”
(HE) and “Simplified Hopfield Energy” (SHE). Like Hopfield Boosting, HE and SHE both employ the MHE to determine
whether a sample is ID or OOD. However, unlike Hopfield Boosting, HE and SHE offer no possibility to include AUX data
in the training process to improve the OOD detection performance of their method. The rest of this section is structured as
follows: First, we briefly introduce the methods HE and SHE, second, we formally analyze the two methods, and third, we
relate them to Hopfield Boosting.

Hopfield Energy (HE) The method HE (Zhang et al., 2023a) computes the OOD score sHE(ξ) as follows:

sHE(ξ) = lse(β,XT
c ξ) (119)

where Xc ∈ R
d×Nc denotes the memory (xc1, . . . ,xcNc

) containing Nc encoded data instances of class c. HE uses the
prediction of the ID classification head to determine which patterns to store in the Hopfield memory:

c = argmax
y

p( y | ξD ) (120)

Simplified Hopfield Energy (SHE) The method SHE (Zhang et al., 2023a) employs a simplified score sSHE(ξ):

sSHE(ξ) = mT
c ξ (121)

where mc ∈ R
d denotes the mean of the patterns in memory Xc:

mc =
1

Nc

Nc∑

i=1

xci (122)
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Relation between HE and SHE In the following, we show a simple yet enlightening relation between the scores sHE and
sSHE. For mathematical convenience, we first slightly modify the score sHE:

sHE(ξ) = lse(β,XT
c ξ) − β−1 logNc (123)

All data sets which were employed in the experiments of Zhang et al. (2023a) (CIFAR-10 and CIFAR-100) are class-balanced.
Therefore, the additional term β−1 logNc does not change the result of the OOD detection on those data sets, as it only
amounts to the same constant offset for all classes.

The function

lse(β, z)− β−1 logN = β−1 log

(

1

N

N∑

i=1

exp(βzi)

)

(124)

converges to the mean function as β → 0:

lim
β→0

(lse(β, z)− β−1 logN) =
1

N

N∑

i=1

zi (125)

We now investigate the behavior of sHE in this limit:

lim
β→0

(lse(β,XT
c ξ) − β−1 logN) =

1

N

N∑

i=1

(xT
ciξ) (126)

=

(

1

N

N∑

i=1

xci

)T

ξ (127)

= mT
c ξ (128)

where

mc =
1

N

N∑

i=1

xci (129)

Therefore, we have shown that

lim
β→0

sHE(ξ) = sSHE(ξ) (130)

Relation of HE and SHE to Hopfield Boosting. In contrast to HE and SHE, Hopfield Boosting uses an AUX data set to
learn a decision boundary between the ID and OOD regions during the training process. To do this, our work introduces
a novel MHE-based energy function, Eb(ξ;X,O), to determine how close a sample is to the learned decision boundary.
Hopfield Boosting uses this energy function to frequently sample weak learners into the Hopfield memory and for computing
a novel Hopfield-based OOD loss LOOD. To the best our knowledge, we are the first to use MHE in this way to train a neural
network.
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The OOD detection score of Hopfield Boosting is

s(ξ) = lse(β,XT ξ) − lse(β,OT ξ). (131)

where X ∈ R
d×N contains the full encoded training set (x1, . . . ,xN ) of all classes and O ∈ R

d×M contains AUX samples.
While certainly similar to sHE, the Hopfield Boosting score s differs from sHE in three crucial aspects:

1. Hopfield Boosting uses AUX data samples in the OOD detection score in order to create a sharper decision boundary
between the ID and OOD regions.

2. Hopfield Boosting normalizes the patterns in the memories X and O and the query ξ to unit length, while HE and
SHE use unnormalized patterns to construct their memories Xc and their query pattern ξ.

3. The score of Hopfield Boosting, s(ξ), contains the full encoded training data set, while sHE only contains the patterns
of a single class. Therefore Hopfield Boosting computes the similarities of a query sample ξ to the entire ID data set.
In Appendix H.10, we show that this process only incurs a moderate overhead of 7.5% compared to the forward pass
of the ResNet-18.

The selection of the score function s(ξ) is only a small aspect of Hopfield Boosting. Hopfield Boosting additionally samples
informative AUX data close to the decision boundary, optimizes an MHE-based loss function, and thereby learns a sharp
decision boundary between ID and OOD regions. Those three aspects are novel contributions of Hopfield Boosting. In
contrast, the work of Zhang et al. (2023a) solely focuses on the selection of a suitable Hopfield-based OOD detection score
for post-hoc OOD detection.

27



Energy-based Hopfield Boosting for Out-of-Distribution Detection

Table 2: OOD detection performance on CIFAR-10. We compare results from Hopfield Boosting, DOS (Jiang et al., 2024),
DOE (Wang et al., 2023b), DivOE (Zhu et al., 2023), DAL (Wang et al., 2023a), MixOE (Zhang et al., 2023b), POEM
(Ming et al., 2022), EBO-OE (Liu et al., 2020), and MSP-OE (Hendrycks et al., 2019b) on ResNet-18. ↓ indicates “lower is
better” and ↑ “higher is better”. All values in %. Standard deviations are estimated across five training runs.

OOD Dataset Metric HB (ours) DOS DOE DivOE DAL MixOE POEM EBO-OE MSP-OE

FPR95 ↓ 0.23±0.08 3.09±0.75 1.97±0.58 6.21±0.84 1.25±0.62 27.54±2.46 1.48±0.68 2.66±0.91 4.31±1.10

SVHN
AUROC ↑ 99.57±0.06 99.15±0.22

99.60±0.13 98.53±0.08
99.61±0.15 95.37±0.44 99.33±0.15 99.15±0.23 99.20±0.15

FPR95 ↓ 0.82±0.17 3.66±0.98 3.22±0.45 1.88±0.25 4.17±0.27
0.14±0.07 4.02±0.91 6.82±0.74 7.02±1.14

LSUN-Crop
AUROC ↑ 99.40±0.04 99.04±0.20 99.30±0.12 99.50±0.02 99.13±0.02

99.61±0.11 98.89±0.15 98.43±0.10 98.83±0.15

FPR95 ↓ 0.00±0.00 0.00±0.00
0.00±0.00

0.00±0.00
0.00±0.00 0.16±0.17

0.00±0.00
0.00±0.00

0.00±0.00

LSUN-Resize
AUROC ↑ 99.98±0.02 99.99±0.01

100.00±0.00 99.89±0.05 99.92±0.05 99.89±0.06 99.88±0.12 99.98±0.02 99.96±0.00

FPR95 ↓ 0.16±0.02 1.28±0.20 2.75±0.57 1.20±0.11 0.95±0.13 4.68±0.22 0.49±0.04 1.11±0.17 2.29±0.16

Textures
AUROC ↑ 99.84±0.01 99.63±0.04 99.35±0.12 99.59±0.02 99.74±0.01 98.91±0.07 99.72±0.05 99.61±0.02 99.57±0.01

FPR95 ↓ 0.00±0.00
0.00±0.00

0.00±0.00
0.00±0.00

0.00±0.00 0.17±0.12
0.00±0.00

0.00±0.00
0.00±0.00

iSUN
AUROC ↑ 99.97±0.02 99.99±0.01

100.00±0.00 99.88±0.05 99.93±0.04 99.87±0.05 99.87±0.12 99.98±0.01 99.96±0.00

FPR95 ↓ 4.28±0.23 12.26±0.97 19.72±2.39 13.70±0.50 14.22±0.51 16.30±1.09 7.70±0.68 11.77±0.68 21.42±0.88

Places 365
AUROC ↑ 98.51±0.10 96.63±0.43 95.06±0.72 96.95±0.09 96.77±0.07 96.92±0.22 97.56±0.26 96.39±0.30 95.91±0.17

FPR95 ↓ 0.92 3.38 4.61 3.83 3.43 8.17 2.28 3.73 5.84
Mean

AUROC ↑ 99.55 99.07 98.88 99.06 99.18 98.43 99.21 98.92 98.90

H. Additional Experiments & Experimental Details

H.1. Hyperparameter Setup

Like Yang et al. (2022), we use SGD with an initial learning rate of 0.1 and a weight decay of 5 · 10−4. We decrease the
learning rate during the training process with a cosine schedule (Loshchilov & Hutter, 2016). We sample mini-batches
of size 128 per data set For a fair comparison, we apply these settings to all OOD detection methods that we test. For
training Hopfield Boosting, we use a single value for β throughout the training and evaluation process and for all OOD data
sets. We tune the value of β for each ID data set separately by selecting the value of β from the set {2, 4, 8, 16, 32} that
performs best in the validation process. We select λ — the weight for the OOD loss LOOD — from {0.1, 0.25, 0.5, 1.0}. In
our experiments, β = 4 and λ = 0.5 yields the best results for CIFAR-10 and CIFAR-100. For ImageNet-1K, we set β = 32
and λ = 0.25. To tune the hyperparameters, we use a validation process with different OOD data for model selection.
Specifically, we validate the model on MNIST (LeCun et al., 1998), and ImageNet-RC with different pre-processing than in
training (resize to 32x32 pixels instead of crop to 32x32 pixels), as well as Gaussian and uniform noise. We conducted our
experiments on various NVIDIA GPUs (e.g., Titan V, A100) on an internal cluster.

H.2. Results on CIFAR-10

Table 2 shows the results from Section 4 with five additional baselines.

H.3. Results on CIFAR-100

We conduct experiments on CIFAR-100 as ID data set. In this setting, we closely follow the experimental setup for
CIFAR-10 described in Section 4.2. Table 3 shows that Hopfield Boosting surpasses POEM (the previously best method),
improving the mean FPR95 from 11.76 to 7.95. On the SVHN data set, Hopfield Boosting improves the FPR95 metric the
most, decreasing it from 33.59 to 13.27.

H.4. Results on ImageNet-1K

Following Wang et al. (2023b), we evaluate Hopfield Boosting on the large-scale benchmark: We use ImageNet-1K
(Russakovsky et al., 2015) as ID data set and ImageNet-21K (Ridnik et al., 2021) as AUX data set. The OOD test data
sets are Textures (Cimpoi et al., 2014), SUN (Xu et al., 2015), Places 365 (López-Cifuentes et al., 2020), and iNaturalist
(Van Horn et al., 2018). In this setting, we fine-tune a pre-trained ResNet-50 using Hopfield Boosting. As we show in
Table 4, Hopfield Boosting surpasses all methods in our comparison in terms of both mean FPR95 and mean AUROC.
Compared to POEM (the previously best method) Hopfield Boosting improves the mean FPR95 from 50.74 to 36.60. This
demonstrates that Hopfield Boosting scales very favourably to large-scale settings.
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Table 3: OOD detection performance on CIFAR-100. We compare results from Hopfield Boosting, DOS (Jiang et al., 2024),
DOE (Wang et al., 2023b), DivOE (Zhu et al., 2023), DAL (Wang et al., 2023a), MixOE (Zhang et al., 2023b), POEM
(Ming et al., 2022), EBO-OE (Liu et al., 2020), and MSP-OE (Hendrycks et al., 2019b) on ResNet-18. ↓ indicates “lower is
better” and ↑ “higher is better”. All values in %. Standard deviations are estimated across five training runs.

OOD Dataset Metric HB (ours) DOS DOE DivOE DAL MixOE POEM EBO-OE MSP-OE

FPR95 ↓ 13.27±5.46
9.84±2.75 19.38±4.60 28.77±5.42 19.95±2.34 41.54±13.16 33.59±4.12 36.33±2.95 19.86±6.90

SVHN
AUROC ↑ 97.07±0.81

97.64±0.39 95.72±1.12 94.25±0.98 95.69±0.66 92.27±2.71 94.06±0.51 92.93±0.72 95.74±1.60

FPR95 ↓ 12.68±2.38 19.40±2.45 28.23±2.69 35.10±4.23 24.24±2.12 23.10±7.39 15.72±3.46 21.06±3.12 32.88±1.28

LSUN-Crop
AUROC ↑ 96.54±0.65

96.42±0.35 93.79±0.88 92.45±0.94 95.04±0.43 96.11±1.09
96.85±0.60 95.79±0.62 92.85±0.33

FPR95 ↓ 0.00±0.00 0.01±0.00 0.05±0.04 0.01±0.00
0.00±0.00 10.27±10.72

0.00±0.00
0.00±0.00 0.03±0.01

LSUN-Resize
AUROC ↑ 99.98±0.01 99.96±0.02 99.99±0.01

99.99±0.00 99.94±0.02 97.99±1.92 99.57±0.09 99.57±0.03 99.97±0.00

FPR95 ↓ 2.35±0.13 6.02±0.52 19.42±1.58 11.52±0.49 5.22±0.39 28.99±6.79 2.89±0.32 5.07±0.54 10.34±0.40

Textures
AUROC ↑ 99.22±0.02 98.33±0.11 94.93±0.48 97.02±0.08 98.50±0.16 94.24±1.21 98.97±0.08 98.15±0.16 97.42±0.08

FPR95 ↓ 0.00±0.00 0.03±0.01 0.01±0.02 0.06±0.01 0.01±0.02 14.40±13.48
0.00±0.00

0.00±0.00 0.08±0.02

iSUN
AUROC ↑ 99.98±0.01 99.95±0.02

99.99±0.00 99.97±0.00 99.93±0.02 97.23±2.59 99.59±0.09 99.57±0.03 99.96±0.01

FPR95 ↓ 19.36±1.02 32.13±1.55 58.68±4.15 44.20±0.95 33.43±1.11 47.01±6.41
18.39±0.68 26.68±2.18 45.96±0.85

Places 365
AUROC ↑ 95.85±0.37 91.73±0.39 83.47±1.55 88.28±0.26 91.10±0.29 89.20±1.86 95.03±0.71 91.35±0.70 87.77±0.15

FPR95 ↓ 7.94 11.24 20.96 19.94 13.81 27.55 11.76 14.86 18.19
Mean

AUROC ↑ 98.11 97.34 94.65 95.33 96.70 94.51 97.34 96.23 95.62

Table 4: OOD detection performance on ImageNet-1K. We compare results from Hopfield Boosting, DOS (Jiang et al.,
2024), DOE (Wang et al., 2023b), DivOE (Zhu et al., 2023), DAL (Wang et al., 2023a), MixOE (Zhang et al., 2023b),
POEM (Ming et al., 2022), EBO-OE (Liu et al., 2020), and MSP-OE (Hendrycks et al., 2019b) on ResNet-50. ↓ indicates
“lower is better” and ↑ “higher is better”. All values in %. Standard deviations are estimated across five training runs.

HB (ours) DOS DOE DivOE DAL MixOE POEM EBO-OE MSP-OE

FPR95 ↓ 44.59±1.05 40.29±0.93 83.83±7.19 42.80±0.74 43.88±0.66 41.05±4.91 31.26±0.67
29.67±1.26 48.38±0.87

Textures
AUROC ↑ 88.01±0.57 89.88±0.18 64.22±9.25 88.18±0.06 87.39±0.15 88.51±1.29

92.22±0.14
92.40±0.23 86.25±0.25

FPR95 ↓ 37.37±1.84 59.29±0.96 83.73±8.78 61.00±0.57 65.31±0.61 65.14±2.53 57.46±0.90 57.69±1.61 66.01±0.26

SUN
AUROC ↑ 91.24±0.52 84.30±0.21 72.95±7.94 83.64±0.30 81.47±0.22 82.20±0.72 85.38±0.35 85.83±0.60 81.45±0.20

FPR95 ↓ 53.31±2.05 69.72±1.01 86.30±6.69 71.09±0.60 74.46±0.75 71.34±1.49 68.87±1.05 70.03±1.83 74.58±0.44

Places 365
AUROC ↑ 87.10±0.52 81.62±0.22 70.37±7.17 80.35±0.33 78.72±0.28 80.31±0.42 81.79±0.40 81.35±0.63 78.89±0.19

FPR95 ↓ 11.11±0.66 49.55±1.41 70.82±13.89 30.51±0.42 51.92±0.74 47.28±1.55 45.37±1.79 49.02±4.40 51.73±1.35

iNaturalist
AUROC ↑ 97.65±0.20 90.49±0.38 83.82±5.75 93.81±0.10 88.33±0.21 90.19±0.35 92.01±0.33 91.44±0.79 88.51±0.30

FPR95 ↓ 36.60 54.71 81.17 51.35 58.90 56.20 50.74 51.60 60.17
Mean

AUROC ↑ 91.00 86.57 72.84 86.49 83.98 85.30 87.85 87.75 83.78

H.5. Comparison HE/SHE

Since Hopfield Boosting shares similarities with the MHE-based methods HE and SHE (Zhang et al., 2023a), we also looked
at the approach as used for their methods. We use the same ResNet-18 as a backbone network as we used in the experiments
for Hopfield Boosting, but train it on CIFAR-10 without OE. We modify the approach of Zhang et al. (2023a) to not only use
the penultimate layer, but perform a search over all layer activation combinations of the backbone for the best-performing
combination. We also do not use the classifier to separate by class. From the search, we see that the concatenated activations
of layers 3 and 5 give the best performance on average, so we use this setting. We experience a quite noticeable drop in
performance compared to their results (Table 5). Since the computation of the MHE is the same, we assume the reason for
the performance drop is the different training of the ResNet-18 backbone network, where (Zhang et al., 2023a) used strong
augmentations.

H.6. Ablations

In the first ablation we look at the impact of the boosting itself, specifically the sampling of weak learners. The comparison is
done by training the same network architecture (Resnet-18) with and without weak learner sampling. The experiment shows
that boosting has a noticeable effect on the performance: Hopfield Boosting performs better with weak learner sampling.

We investigate the impact of different encoder backbone architectures on OOD detection performance with Hopfield
Boosting. The baseline uses a ResNet-18 as the encoder architecture. For the ablation, the following architectures are
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Table 5: Comparison between HE, SHE and our version. ↓ indicates “lower is better” and ↑ indicates “higher is better”.

Ours HE SHE
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
SVHN 36.79 93.18 35.81 92.35 35.07 92.81
LSUN-Crop 13.10 97.25 17.74 95.96 18.19 96.10
LSUN-Resize 16.65 96.84 20.69 95.87 21.66 95.85
Textures 44.54 89.38 46.29 86.67 46.19 87.44
iSUN 19.20 96.08 22.52 95.08 23.25 95.06
Places 365 39.02 90.63 41.56 88.41 42.57 88.38

Mean 28.21 93.89 30.77 92.39 31.66 92.60

Table 6: OOD detection performance on CIFAR-10. We compare Hopfield Boosting trained with weighted sampling and
random sampling on ResNet-18. ↓ indicates “lower is better” and ↑ indicates “higher is better”. All values in %. Standard
deviations are estimated across five training runs.

Weighted Sampling Random Sampling
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
SVHN 0.23±0.08

99.57±0.06 0.70±0.13
99.55±0.08

LSUN-Crop 0.82±0.20
99.40±0.05 1.58±0.31 99.24±0.10

LSUN-Resize 0.00±0.00
99.98±0.02

0.00±0.00
99.98±0.01

Textures 0.16±0.02
99.85±0.01 0.26±0.06 99.81±0.02

iSUN 0.00±0.00 99.97±0.02
0.00±0.00

99.99±0.00

Places 365 4.28±0.26
98.51±0.11 6.20±0.21 97.68±0.21

Mean 0.92 99.55 1.46 99.38

used as a comparison: ResNet-34, ResNet-50, and Densenet-100. It can be observed, that the larger architectures lead to a
slight increase in OOD performance (Table 7). We also see that a change in architecture from ResNet to Densenet leads to
a different OOD behavior: The result on the Places365 data set is greatly improved, while the performance on SVHN is
noticeably worse than on the ResNet architectures. The FPR95 of Densenet on SVHN also shows a high variance, which is
due to one of the five independent training runs performing very badly at detecting SVHN samples as OOD: The worst run
scores an FPR95 5.59, while the best run achieves an FPR95 of 0.24.

H.7. Effect on Learned Representation

In order to analyze the impact of Hopfield Boosting on learned representations, we utilize the output of our model’s
embedding layer (see 4.2) as the input for a manifold learning-based visualization. Uniform Manifold Approximation
and Projection (UMAP) McInnes et al. (2018) is a non-linear dimensionality reduction technique known for its ability to
preserve both global and local structure in high-dimensional data.

First, we train two models – with and without Hopfield Boosting– and extract the embeddings of both ID and OOD data sets
from them. This results in a 512-dimensional vector representation for each data point, which we further reduce to two
dimensions with UMAP. The training data for UMAP always corresponds to the training data of the respective method.
That is, the model trained without Hopfield Boosting is solely trained on CIFAR-10 data, and the model trained with
Hopfield Boosting is presented with CIFAR-10 and AUX data during training, respectively. We then compare the learned
representations concerning ID and OOD data.

Figure 8 shows the UMAP embeddings of ID (CIFAR-10) and OOD (AUX and SVHN) data based on our model trained
without (a) and with Hopfield Boosting (b). Without Hopfield Boosting, OOD data points typically overlap with ID data
points, with just a few exceptions, making it difficult to differentiate between them. Conversely, Hopfield Boosting allows to
distinctly separate ID and OOD data in the embedding.
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Table 7: Comparison of OOD detection performance on CIFAR-10 of Hopfield Boosting on different encoders. ↓ indicates
“lower is better” and ↑ indicates “higher is better”. Standard deviations are estimated across five independent training runs.

ResNet-18 ResNet-34 ResNet-50 Densenet-100
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
SVHN 0.23±0.08 99.57±0.06 0.33±0.25 99.63±0.07

0.19±0.09
99.64±0.11 2.11±2.76 99.31±0.35

LSUN-Crop 0.82±0.20 99.40±0.05 0.65±0.14 99.54±0.07 0.69±0.15 99.47±0.09
0.40±0.23

99.52±0.09

LSUN-Resize 0.00±0.00 99.98±0.02
0.00±0.00 99.89±0.04

0.00±0.00 99.93±0.10
0.00±0.00

100.0±0.00

Textures 0.16±0.02 99.85±0.01 0.15±0.07 99.89±0.04 0.16±0.07 99.83±0.01
0.08±0.03

99.88±0.01

iSUN 0.00±0.00 99.97±0.02
0.00±0.00 99.98±0.02

0.00±0.00 99.98±0.02
0.00±0.00

99.99±0.01

Places 365 4.28±0.26 98.51±0.11 4.13±0.54 98.46±0.22 4.75±0.45 98.71±0.05
2.56±0.20

99.26±0.03

Mean 0.92 99.55 0.88 99.57 0.97 99.59 0.86 99.66

(a) without Hopfield Boosting (b) with Hopfield Boosting

Figure 8: UMAP embeddings of ID (CIFAR-10) and OOD (AUX and SVHN) data based on our model trained without (a)
and with Hopfield Boosting (b). Clearly, without Hopfield Boosting, the embedded OOD data points tend to overlap with
the ID data points, making it impossible to distinguish between ID and OOD. On the other hand, Hopfield Boosting shows a
clear separation of ID and OOD data in the embedding.

H.8. OOD Examples from the Places 365 Data Set with High Semantic Similarity to CIFAR-10

We observe that Hopfield Boosting and all competing methods struggle with correctly classifying the samples from the
Places 365 data set as OOD the most. Table 1 shows that for Hopfield Boosting, the FPR95 for the Places 365 data set with
CIFAR-10 as the ID data set is at 4.28. The second worst FPR95 for Hopfield Boosting was measured on the LSUN-Crop
data set at 0.82.

We inspect the 100 images from Places 365 that perform worst (i.e., that achieve the highest score s(ξ)) on a model trained
with Hopfield Boosting on the CIFAR-10 data set as the in-distribution data set. Figure 9 shows that within those 100
images, the Places 365 data set contains a non-negligible amount of data instances that show objects from semantic classes
contained in CIFAR-10 (e.g., horses, automobiles, dogs, trucks, and airplanes). We argue that data instances that clearly
show objects of semantic classes contained in CIFAR-10 should be considered as in-distribution, which Hopfield Boosting
correctly recognizes. Therefore, a certain amount of error can be anticipated on the Places 365 data set for all OOD detection
methods. We leave a closer evaluation of the amount of the anticipated error up to future work.

For comparison, Figure 10 shows the 100 images from Places 365 with the lowest score s(ξ), as evaluated by a model trained
with Hopfield Boosting on CIFAR-10. There are no objects visible that have clear semantic overlap with the CIFAR-10
classes.
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Figure 9: The set of top-100 images from the Places 365 data set which Hopfield Boosting recognized as in-distribution.
The image captions show s(ξ) of the respective image below the caption.
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Figure 10: The set of top-100 images from the Places 365 data set which Hopfield Boosting recognized as out-of-distribution.
The image captions show s(ξ) of the respective image below the caption.

H.9. Results on Noticeably Different Data Sets

The choice of additional data sets should not be driven by a desire to showcase good performance; rather, we suggest opting
for data that highlights weaknesses, as it holds the potential to drive investigations and uncover novel insights. Simple toy
data is preferable due to its typically clearer and more intuitive characteristics compared to complex natural image data. In
alignment with these considerations, the following data sets captivated our interest: iCartoonFace (Zheng et al., 2020), Four
Shapes (smeschke, 2018), and Retail Product Checkout (RPC) (Wei et al., 2022). In Figure 11, we show random samples
from these data sets to demonstrate the noticeable differences compared to CIFAR-10.
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Table 8: Comparison between EBO-OE (Liu et al., 2020) and our version. ↓ indicates “lower is better” and ↑ indicates
“higher is better”.

Hopfield Boosting EBO-OE
OOD Dataset FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
iCartoonFace 0.60 99.57 4.01 98.94
Four Shapes 40.81 90.53 62.55 75.34
RPC 4.07 98.65 18.51 96.10

Figure 11: Random samples from three data sets, each noticeably different from CIFAR-10. First row: iCartoonFace;
Second row: Four shapes; Third row: RPC.

In Table 8, we present some preliminary results using models trained with the respective method on CIFAR-10 as ID data set
(as in Table 1). Results for comparison are presented for EBO-OE only, as time constraints prevented experimenting with
additional baseline methods. Although one would expect near-perfect results due to the evident disparities with CIFAR-10,
Four Shapes (smeschke, 2018) and RPC (Wei et al., 2022) seem to defy that expectation. Their results indicate a weakness
in the capability to identify outliers robustly since many samples are classified as inliers. Only iCartoonFace (Zheng et al.,
2020) is correctly detected as OOD, at least to a large degree. Interestingly, the weakness uncovered by this data is present
in both methods, although more pronounced in EBO-OE. Therefore, we suspect that this specific behavior may be a general
weakness when training OOD detectors using OE, an aspect we plan to investigate further in our future work.

H.10. Runtime Considerations for Inference

When using Hopfield Boosting in inference, an additional inference step is needed to check whether a given sample is ID
or OOD. Namely, to obtain the score (Equation (9)) of a query sample ξD, Hopfield Boosting computes the dot product
similarity of the embedding obtained from ξ = ϕ(ξD) to all samples in the Hopfield memories X and O. In our
experiments, X contains the full in-distribution data set (50,000 samples) and O contains a subset of the AUX data set
of equal size. We investigate the computational overhead of computing the dot-product similarity to 100,000 samples in
relation to the computational load of the encoder. For this, we feed 100 batches of size 1024 to an encoder (1) without
using the score and (2) with using the score, measure the runtimes per batch, and compute the mean and standard deviation.
We conduct this experiment with four different encoders on an NVIDIA Titan V GPU. The results are shown in Figure 12
and Table 9. One can see that, especially for larger models, the computational overhead of determining the score is very
moderate in comparison.
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Figure 12: Mean inference runtimes for Hopfield Boosting on four different encoders on an NVIDIA Titan V GPU. We plot
the contributions to the total runtime of the encoder and the MHE-based score (Equation (9)) separately. The evaluation
shows that the score computation adds a negligible amount of computational overhead to the total runtime.

Table 9: Inference runtimes for Hopfield Boosting with four different encoders on an NVIDIA Titan V GPU. We compare
the runtime of the encoder only and the runtime of the encoder with the MHE-based score computation (Equation (9))
combined.

Encoder Time encoder (ms / batch) Time encoder + score (ms / batch) Rel. overhead (%)

ResNet-18 100.93±0.24 108.50±0.19 7.50
ResNet-34 209.80±0.40 217.33±0.51 3.59
ResNet-50 360.93±1.51 368.17±0.62 2.01
Densenet-100 251.24±1.36 258.82±0.84 3.02

H.11. Compute Ressources

Our experiments were conducted on an internal cluster equipped with a variety of different GPU types (ranging from the
NVIDIA Titan V to the NVIDIA A100-SXM-80GB). For our experiments on ImageNet-1K, we additionally used resources
of an external cluster that is equipped with NVIDIA A100-SXM-64GB GPUs.

For our experiments with Hopfield Boosting on CIFAR-10 and CIFAR-100, one run (100 epochs) of Hopfield Boosting
trained for about 8.0 hours on a single NVIDIA RTX 2080 Ti GPU and required 4.3 GB of VRAM. Fnding the hyperparam-
eters required 160h of compute for CIFAR-10 and CIFAR-100, respectively. These were divided across four RTX 2080 Ti.
Estimating the standard deviation required 40 hours of compute on a single RTX 2080 Ti for CIFAR-10 and CIFAR-100
respectively.

For ImageNet-1K, one run (4 epochs) of Hopfield Boosting trained for about 4.4 hours on a single NVIDIA A-100-
SXM64GB GPU and required 26.9 GB of VRAM. Finding the optimal hyperparameters required a total of 86h of compute,
divided across 20 NVIDIA A-100-SXM64GB GPUs. Estimating the standard deviation required 22 hours of compute,
divided across 5 NVIDIA A-100-SXM64GB GPUs.

The amount of resources reported above cover the compute for obtaining the results of Hopfield Boosting reported in the
paper. The total amount of compute resources for the project is substantially higher. Notable additional compute expenses are
preliminary training runs during the development of Hopfield Boosting, and the training runs for tuning the hyperparameters
and evaluating the results of the methods we compare Hopfield Boosting to.
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H.12. Data Sets and Licenses

We provide a list of the data sets we used in our experiments and, where applicable, specify their licenses:

• CIFAR-10 (Krizhevsky, 2009): License unknown

• CIFAR-100 (Krizhevsky, 2009): License unknown

• ImageNet-RC (Chrabaszcz et al., 2017): Custom License2

• SVHN (Netzer et al., 2011): Creative Commons (CC)

• Textures (Cimpoi et al., 2014): Custom License3

• iSUN (Xu et al., 2015): License unknown

• Places 365 (López-Cifuentes et al., 2020): License unknown

• LSUN (Yu et al., 2015): License unknown

• ImageNet-1K (Russakovsky et al., 2015): Custom License2

• ImagetNet-21K (Ridnik et al., 2021): Custom License2

• SUN (Isola et al., 2011): License unknown

• iNaturalist (Van Horn et al., 2018): Custom License4

2https://image-net.org/download.php
3https://www.robots.ox.ac.uk/~vgg/data/dtd/index.html
4https://github.com/visipedia/inat_comp/tree/master/2017
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Table 10: OOD detection performance on CIFAR-10. We compare results from Hopfield Boosting, PALM (Lu et al., 2024),
NPOS (Tao et al., 2023), SSD+ (Sehwag et al., 2021), ASH (Djurisic et al., 2023), GEN (Liu et al., 2023), EBO (Liu et al.,
2020), MaxLogit (Hendrycks et al., 2019a), and MSP (Hendrycks & Gimpel, 2017) on ResNet-18. ↓ indicates “lower is
better” and ↑ “higher is better”. All values in %. Standard deviations are estimated across five training runs.

HB (ours) PALM NPOS SSD+ ASH GEN EBO MaxLogit MSP

FPR95 ↓ 0.23±0.08 1.24±0.49 9.04±1.13 3.05±0.22 25.17±9.55 33.26±5.99 32.10±6.41 33.27±6.18 49.41±3.77

SVHN
AUROC ↑ 99.57±0.06

99.70±0.12 98.37±0.23 99.41±0.06 94.86±2.09 93.53±1.42 93.43±1.60 93.29±1.57 92.48±0.93

FPR95 ↓ 0.82±0.17 1.21±0.27 5.52±0.50 2.83±1.10 13.13±1.81 19.40±2.22 17.25±2.30 18.50±2.24 38.32±2.61

LSUN-Crop
AUROC ↑ 99.40±0.04

99.65±0.05 98.97±0.04 99.37±0.16 97.33±0.36 96.48±0.46 96.73±0.46 96.52±0.47 94.37±0.53

FPR95 ↓ 0.00±0.00 27.01±5.82 26.85±3.14 34.30±2.17 38.18±5.78 31.50±3.92 30.69±4.03 31.64±4.01 45.82±3.48

LSUN-Resize
AUROC ↑ 99.98±0.02 95.41±0.74 95.68±0.36 94.78±0.25 90.39±2.00 94.04±0.84 94.02±0.86 93.90±0.86 92.84±0.80

FPR95 ↓ 0.16±0.02 17.32±2.50 27.72±2.55 21.20±2.20 46.08±6.22 44.62±4.14 44.67±4.46 44.97±4.44 55.04±2.86

Textures
AUROC ↑ 99.84±0.01 96.82±0.71 95.36±0.35 96.46±0.35 88.32±2.08 90.12±1.32 89.61±1.50 89.56±1.48 90.10±0.92

FPR95 ↓ 0.00±0.00 25.71±4.83 26.90±3.52 35.71±2.27 42.41±6.28 35.85±4.05 34.99±4.33 36.02±4.18 49.10±3.06

iSUN
AUROC ↑ 99.97±0.02 95.60±0.65 95.74±0.38 94.49±0.25 89.06±2.26 93.05±0.84 92.99±0.90 92.88±0.90 91.99±0.74

FPR95 ↓ 4.28±0.23 22.97±2.17 32.62±0.13 24.99±1.21 48.03±2.04 45.82±1.07 44.87±1.11 45.63±1.26 57.58±0.97

Places 365
AUROC ↑ 98.51±0.10 94.95±0.53 93.76±0.12 94.93±0.22 85.65±0.77 88.68±0.28 88.53±0.30 88.42±0.29 88.06±0.25

FPR95 ↓ 0.92 15.91 21.44 20.35 35.50 35.07 34.09 35.00 49.21
Mean

AUROC ↑ 99.55 97.02 96.31 96.57 90.94 92.65 92.55 92.43 91.64

Method type OE Training Training Training Post-hoc Post-hoc Post-hoc Post-hoc Post-hoc
Augmentations Weak Strong Strong Strong Weak Weak Weak Weak Weak
Auxiliary outlier data ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

H.13. Non-OE Baselines

To confirm the prevailing notion that OE methods can improve the OOD detection capability in general, we compare
Hopfield Boosting to 3 training methods (Sehwag et al., 2021; Tao et al., 2023; Lu et al., 2024) and 5 post-hoc methods
(Hendrycks & Gimpel, 2017; Hendrycks et al., 2019b; Liu et al., 2020, 2023; Djurisic et al., 2023). For all methods, we
train a ResNet-18 on CIFAR-10. For Hopfield Boosting, we use the same training setup as described in section 4.2. For
the post-hoc methods, we do not use the auxiliary outlier data. For the training methods, we use the training procedures
described in the respective publications for 100 epochs. Notably, all training methods employ stronger augmentations than
the OE or the post-hoc methods. The OE and post-hoc methods use the following augmentations (denoted as “Weak”):

1. RandomCrop (32x32), padding 4

2. RandomHorizontalFlip

The training methods use the following augmentations (denoted as “Strong”):

1. RandomResizedCrop (32x32), scale 0.2-1

2. RandomHorizontalFlip

3. ColorJitter applied with probability 0.8

4. RandomGrayscale applied with probability 0.2

Table 10 shows the results of the comparison of Hopfield Boosting to the post-hoc and training methods. Hopfield Boosting
is better at OOD detection than all non-OE baselines on CIFAR-10 in terms of both mean AUROC and mean FPR95 by a
large margin. Further, Hopfield Boosting achieves the best OOD detection on all OOD data sets in terms of FPR95 and
AUROC, except for SVHN and LSUN-Crop, where PALM (Lu et al., 2024) shows better AUROC results. An interesting
avenue for future work is to combine one of the non-OE based training methods with the OE method Hopfield Boosting.
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I. Informativeness of Sampling with High Boundary Scores

This section adopts and expands the arguments of Ming et al. (2022) on sampling with high boundary scores.

We assume the extracted features of a trained deep neural network to approximately equal a Gaussian mixture model with
equal class priors:

p(ξ) =
1

2
N (ξ;µ, σ2I) +

1

2
N (ξ;−µ, σ2I) (132)

pID(ξ) = p(ξ|ID) = N (ξ;µ, σ2I) (133)

pAUX(ξ) = p(ξ|AUX) = N (ξ;−µ, σ2I) (134)

Using the MHE and sufficient data from those distributions, we can estimate the densities p(ξ), p(ξ|ID) and p(ξ|AUX).

Lemma I.1. (see Lemma E.1 in Ming et al. (2022)) Assume the M sampled data points oi ∼ pAUX satisfy the following

constraint on high boundary scores Eb(ξ)

−∑M
i=1 Eb(oi)

M
≤ ϵ (135)

Then they have

M∑

i=1

|2µToi| ≤ Mϵσ2 (136)

Proof. They first obtain the expression for Eb(ξ) under the Gaussian mixture model described above and can express
p(AUX|ξ) as

p(AUX|ξ) =
p(ξ|AUX)p(AUX)

p(ξ)
(137)

=
1
2p(ξ|AUX)

1
2p(ξ|ID) + 1

2p(ξ|AUX)
(138)

=
(2πσ2)−d/2 exp(− 1

2σ2 ||ξ − µ||22)
(2πσ2)−d/2 exp(− 1

2σ2 ||ξ + µ||22) + (2πβ−1)−d/2 exp(− 1
2σ2 ||ξ − µ||22)

(139)

=
1

1 + exp(− 1
2σ2 (||ξ − µ||22 − ||ξ + µ||22))

(140)

When defining fAUX(ξ) = 1
2σ2 (||ξ − µ||22 − ||ξ + µ||22) such that p(AUX|ξ) = σ(fAUX(ξ)) = 1

1 + exp(−fAUX(ξ))
, they

define Eb as follows:

Eb(ξ) = −|fAUX(ξ)| (141)

= − 1

2σ2
| ||ξ − µ||22 − ||ξ + µ||22 | (142)

= − 1

2σ2
| ξT ξ − 2µT ξ + µTµ− (ξT ξ + 2µT ξ + µTµ)| (143)

= −|2µT ξ|
σ2

(144)
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Therefore, the constraint in Equation (136) is translated to

M∑

i=1

|2µToi| ≤ Mϵσ2 (145)

As maxi∈M |µToi| ≤
∑M

i=1 |µToi| given a fixed M , the selected samples can be seen as generated from pAUX with the
constraint that all samples lie within the two hyperplanes in Equation (145).

Parameter estimation. Now they show the benefit of such constraint in controlling the sample complexity. Assume the
signal/noise ratio is large: ||µ||

σ = r ≫ 1, and ϵ ≤ 1 is some constant.

Assume the classifier is given by

θ =
1

N +M
(

M∑

i=1

xi −
N∑

i=1

oi) (146)

where oi ∼ pAUX and xi ∼ pID. One can decompose θ. Assuming M = N :

θ = µ+
1

2
η +

1

2
ω (147)

η =
1

N
(

N∑

i=1

xi)− µ (148)

ω =
1

N
(

M∑

i=1

− oi)− µ (149)

We would now like to determine the distributions of the random variables ||η||22 and µTη

||η||22 =

d∑

i=1

η2i (150)

ηi ∼ N (0,
σ2

N
) (151)

√
N

σ
ηi ∼ N (0, 1) (152)

(

√
N

σ
ηi)

2 ∼ χ2
1 (153)

Therefore, for ||η||22 we have

N

σ2
||η||22 =

d∑

i=1

(

√
N

σ
ηi)

2 ∼ χ2
d (154)

Now we would like to determine the distribution of µTη:
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µTη =

d∑

i=1

µi ηi (155)

µi ηi ∼ N (0,
σ2µ2

i

N
) (156)

d∑

i=1

µi ηi ∼ N (0,

d∑

i=1

σ2µ2
i

N
) (157)

d∑

i=1

µi ηi ∼ N (0,
σ2

N

d∑

i=1

µ2
i ) (158)

µTη

||µ|| ∼ N (0,
σ2

N
) (159)

Concentration bounds. They now develop concentration bounds for ||η||22 and µTη. First, we look at ||η||22. A
concentration bound for χ2

d is:

P(X − d ≥ 2
√
dx+ 2x) ≤ exp(−x) (160)

By assuming x = d
8σ2 we obtain

P(X − d ≥ 2

√

d
d

8σ2
+ 2

d

8σ2
) ≤ exp(− d

8σ2
) (161)

P(X ≥ d√
2σ

+
d

4σ2
+ d) ≤ exp(− d

8σ2
) (162)

P(
N

σ2
||η||22 ≥ d√

2σ
+

d

4σ2
+ d) ≤ exp(− d

8σ2
) (163)

P(||η||22 ≥ σ2

N
(

d√
2σ

+
d

4σ2
+ d)) ≤ exp(− d

8σ2
) (164)

If d ≥ 2 we have that5

d√
2σ

+
d

4σ2
>

1

σ
(165)

and thus, the above bound can be simplified when assuming d ≥ 2 as follows:

P(||η||22 ≥ σ2

N
(
1

σ
+ d)) ≤ exp(− d

8σ2
) (166)

For ||ω||22, since all oi is drawn i.i.d. from pAUX, under the constraint in Equation (145), the distribution of ω can be seen as
a truncated distribution of η. Thus, with some finite positive constant c, we have

P(||ω||22 ≥ σ2

N
(d+

1

σ
)) ≤ cP(||η||22 ≥ σ2

N
(d+

1

σ
)) ≤ c exp(− d

8σ2
) (167)

5Strictly, the bound is valid for d >
√

2
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Now, we develop a bound for µTη. A concentration bound for N (µ, σ2) is

P(X − µ ≥ t) ≤ exp(
−t2

2σ2
) (168)

By applying µTη
||µ|| ∼ N (0, σ2

N ) to the above bound we obtain

P(
µTη

||µ|| ≥ t) ≤ exp(
−t2N

2σ2
) (169)

Assuming t = (σ||µ||)1/2 we obtain

P(
µTη

||µ|| ≥ (σ||µ||)1/2) ≤ exp(
−(σ||µ||)N

2σ2
) (170)

P(
µTη

||µ|| ≥ (σ||µ||)1/2) ≤ exp(
−||µ||N

2σ
) (171)

Due to symmetry, we have

P(−µTη

||µ|| ≤ −(σ||µ||)1/2) ≤ exp(
−||µ||N

2σ
) (172)

P(−µTη

||µ|| ≤ −(σ||µ||)1/2) + P(
µTη

||µ|| ≥ (σ||µ||)1/2) ≤ 2 exp(
−||µ||N

2σ
) (173)

We can rewrite the above bound using the absolute value function.

P(
|µTη|
||µ|| ≥ (σ||µ||)1/2) ≤ 2 exp(

−||µ||N
2σ

) (174)

Benefit of high boundary scores. We will now show why sampling with high boundary scores is beneficial. Recall the
results from Equations (145) and (149):

M∑

i=1

|2µToi| ≤ Mϵσ2 (175)

ω =
1

M
(−

M∑

i=1

oi)− µ (176)

The triangle inequality is

|a+ b| ≤ |a|+ |b| (177)

|a+ (−b)| ≤ |a|+ |b| (178)
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Using the two facts above and the triangle inequality we can bound |µTω|:

1

M
|

M∑

i=1

µToi| ≤
σ2ϵ

2
(179)

1

M
| −

M∑

i=1

µToi| ≤
σ2ϵ

2
(180)

1

M
| −

M∑

i=1

µToi|+ ||µ||22 ≤ σ2ϵ

2
+ ||µ||22 (181)

1

M
| −

M∑

i=1

µToi − µTµ| ≤ σ2ϵ

2
+ ||µ||22 (182)

|µTω| ≤ ||µ||22 +
σ2ϵ

2
(183)

Developing a lower bound. Let

||η||22 ≤ σ2

N
(d+

1

σ
) (184)

||ω||22 ≤ σ2

N
(d+

1

σ
) (185)

|µTη|
||µ|| ≤ (σ||µ||)1/2 (186)

hold simultaneously. The probability of this happening can be bounded as follows: We define T and its complement T̄ :

T = {||η||22 ≤ σ2

N
(d+

1

σ
)} ∩ {||ω||22 ≤ σ2

N
(d+

1

σ
)} ∩ {|µ

Tη|
||µ|| ≤ (σ||µ||)1/2} (187)

T̄ = {||η||22 >
σ2

N
(d+

1

σ
)} ∪ {||ω||22 >

σ2

N
(d+

1

σ
)} ∪ {|µ

Tη|
||µ|| > (σ||µ||)1/2} (188)

With P(T ) + P(T̄ ) = 1. The probability P(T̄ ) can be bounded using Boole’s inequality and the results in Equations (166),
(167) and (174):

P(T̄ ) ≤ exp(−d/8σ2) + c exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (189)

P(T̄ ) ≤ (1 + c) exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (190)

Further, we can bound the probability P(T ):

P(T̄ ) ≤ (1 + c) exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (191)

1− P(T ) ≤ (1 + c) exp(−d/8σ2) + 2 exp(
−||µ||N

2σ
) (192)

P(T ) ≥ 1− (1 + c) exp(−d/8σ2)− 2 exp(
−||µ||N

2σ
) (193)

42



Energy-based Hopfield Boosting for Out-of-Distribution Detection

Therefore, the probability of the assumptions in Equations (184), (185), and (186) occuring simultneously is at least
1− (1 + c) exp(−d/8σ2)− 2 exp(−||µ||N

2σ ).

By using the triangle inequality, Equation (147) and the Assumptions (184) and (185) they can bound ||θ||22:

||θ||22 = || µ +
1

2
η +

1

2
ω||22 (194)

||θ||22 ≤ ||µ||22 + ||1
2
η||22 + ||1

2
ω||22 (195)

||θ||22 ≤ ||µ||22 +
1

4
||η||22 +

1

4
||ω||22 (196)

||θ||22 ≤ ||µ||22 +
1

2

σ2

N
(d+

1

σ
) (197)

||θ||22 ≤ ||µ||22 +
σ2

N
(d+

1

σ
) (198)

The reverse triangle inequality is defined as

|x− y| ≥
∣
∣|x| − |y|

∣
∣ (199)

|x− (−y)| ≥
∣
∣|x| − |y|

∣
∣ (200)

Using the reverse triangle inequality, Equations (147), (183) and Assumption (186) we have that

|µTθ| = |µTµ +
1

2
µTη +

1

2
µTω| (201)

|µTθ| ≥
∣
∣|µTµ| − |1

2
µTη| − |1

2
µTω|

∣
∣ (202)

|µTθ| ≥
∣
∣||µ||22 − 1

2
σ1/2||µ||3/2 − 1

2
||µ||22 − 1

2

σ2ϵ

2

∣
∣ (203)

|µTθ| ≥
∣
∣
1

2
||µ||22 − 1

2
σ1/2||µ||3/2 − 1

2

σ2ϵ

2

∣
∣ (204)

|µTθ| ≥
∣
∣
1

2
(||µ||22 − σ1/2||µ||3/2 − σ2ϵ

2
)
∣
∣ (205)

They have assumed that the signal/noise ratio is large: ||µ||
σ = r ≫ 1. Thus, we can drop the absolute value, because we

assume that the term inside the || is larger than zero:

|µTθ| ≥
∣
∣
1

2
(||µ||22 − 1

r
||µ||1/2||µ||3/2 − ||µ||22ϵ

2r2
)
∣
∣ (206)

|µTθ| ≥
∣
∣(1− 1

r
− ϵ

2r2
)
1

2
(||µ||22)

∣
∣ (207)

We have

(1− 1

r
− ϵ

2r2
) ≥ 0 (208)

if r ≥ 1.36602540378443 . . . and ϵ ≤ 1, and therefore
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|µTθ| ≥ 1

2
(||µ||22 − σ1/2||µ||3/2 − σ2ϵ

2
) (209)

Because of Equation (198) and the fact that if x ≤ y and sgn (x) = sgn (y) then x−1 ≥ y−1 we have

1

||θ|| ≥
1

√

||µ||22 + σ2

N (d+ 1
σ )

(210)

We can combine the Equations (209) and (210) to give a single bound:

|µTθ|
||θ|| ≥ ||µ||22 − σ1/2||µ||3/2 − σ2ϵ

2

2
√

||µ||22 + σ2

N (d+ 1
σ )

(211)

we define θ such that µTθ > 0 and thus

µTθ

||θ|| ≥ ||µ||22 − σ1/2||µ||3/2 − σ2ϵ
2

2
√

||µ||22 + σ2

N (d+ 1
σ )

(212)

The false negative rate FNR(θ) and false positive rate FPR(θ) are

FNR(θ) =

∫ 0

−∞

N (x;
µTθ

||θ|| , σ
2) dx (213)

FPR(θ) =

∫ ∞

0

N (x;
−µTθ

||θ|| , σ2) dx (214)

As N (x;µ, σ2) = N (−x;−µ, σ2), we have FNR(θ) = FPR(θ). From Equation (212) we can see that as ϵ decreases, the

lower bound of µT θ
||θ|| will increase. Thus, the mean of the Gaussian distribution in Equation (213) will increase and therefore,

the false negative rate will decrease, which shows the benefit of sampling with high boundary scores. This completes the
extended proof adapted from (Ming et al., 2022).
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