
Learning Set Functions with Implicit Differentiation

Gözde Özcan 1 Chengzhi Shi 1 Stratis Ioannidis 1

Abstract

Ou et al. [1] introduce the problem of learning set
functions from data generated by a so-called opti-
mal subset oracle. Their approach approximates
the underlying utility function with an energy-
based model. This approximation yields itera-
tions of fixed-point updates during mean-field
variational inference. However, as the number
of iterations increases, automatic differentiation
becomes computationally prohibitive due to the
size of the Jacobians that are stacked during back-
propagation. We address this challenge with im-
plicit differentiation and examine the convergence
conditions for the fixed-point iterations. We em-
pirically demonstrate the efficiency of our method
on subset selection applications including product
recommendation and anomaly detection tasks.

1. Introduction

Many interesting applications operate with set-valued out-
puts and/or inputs. Examples include product recommen-
dation [2], [3], compound selection [4], set matching [5],
set retrieval [6], point cloud processing [7], [8], and set
anomaly detection [9], to name a few. Motivated by this,
several recent works [10]–[12] apply neural networks to
learn set functions from input/function value pairs, assum-
ing access to a dataset generated by a function value oracle
(see App. A for a review of related literature).

Recently, Ou et al. [1] proposed an approximate maximum
likelihood estimation framework under the supervision of
a so-called optimal subset oracle. In contrast to traditional
function value oracles, a label produced by an optimal sub-
set oracle is the subset that maximizes an (implicit) utility
set function, in the face of several alternatives. The goal of
inference is to learn, in a parametric form, this utility func-
tion, under which observed oracle selections are optimal.

1Northeastern University, Department of Electrical and Com-
puter Engineering, Boston, MA 02115, USA. Correspondence to:
Gözde Özcan <gozcan@ece.neu.edu>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

As MLE is intractable in this setting, Ou et al. [1] propose
performing variational inference instead. In turn, they show
that approximating the distribution of oracle selections re-
quires solving a fixed-point equation per sample. However,
fixed-point iterations may diverge in practice. In addition,
Ou et al. implement these iterations by stacking up neu-
ral network layers; this makes backpropagation expensive,
limiting their experiments to only a handful of iterations.

In this work, we establish a condition under which the fixed-
point iterations proposed by Ou et al. [1] are guaranteed to
converge. We also propose a more effective gradient compu-
tation utilizing the recent advances in implicit differentiation
[13]–[15], instead of unrolling the fixed-point iterations via
automatic differentiation [16]. This corresponds to differen-
tiating after infinite fixed point iterations, while remaining
tractable; we experimentally show that this improves the
predictive performance of the inferred models.

2. Problem Setup

In the setting introduced by Ou et al. [1], the aim is to learn
set functions from a dataset generated by a so-called optimal

subset oracle. The dataset D consists of sample pairs of the
form (S∗, V), where V ⊆ Ω is a set of options, i.e., items
from a universe Ω, and S∗ is the optimal subset of V , as
selected by an oracle. The goal is to learn a set function
Fθ : 2Ω × 2Ω,→ R, parameterized by θ ∈ R

d, modeling
the utility of the oracle, so that

S∗ = argmax
S⊆V

Fθ(S, V), (1)

for all pairs (S∗, V) ∈ D. As a motivating example, con-
sider the case of product recommendations. Given a ground
set V of possible products to recommend, a recommender
selects an optimal subset S∗ ⊆ V and suggests these to a
user. In this setting, the function Fθ(S, V) captures, e.g., the
recommender objective, the utility of the user, etc. Having
access to a dataset of pairs, the goal is to learn Fθ, effec-
tively reverse-engineering the objective of the recommender
engine, inferring the user’s preferences, etc.

2.1. MLE with Energy-Based Modeling

Ou et al. [1] propose an approximate maximum likelihood
estimation (MLE) by modeling oracle behavior via a Boltz-

1

Learning Set Functions with Implicit Differentiation

mann energy (i.e., soft-max) model [17]–[20]. They assume
that the oracle selection is probabilistic, and the probability
that S is selected given options V is given by:

pθ(S |V) =
exp (Fθ(S, V))

∑

S′⊆V exp (Fθ(S′, V))
. (2)

This is equivalent to Eq. (1), presuming that the utility Fθ(·)
is distorted by Gumbel noise [21]. Then, given a dataset
D = {(S∗i , Vi,)}

N
i=1, MLE amounts to:

argmax
θ

∑N
i=1 [log pθ(S

∗
i |Vi)] . (3)

Notice that multiplying Fθ with a constant c > 0 makes no
difference in the behavior of the optimal subset oracle in
Eq. (1): the oracle would return the same decision under
arbitrary re-scaling. However, using c · Fθ(·) in the energy-
based model of Eq. (2) corresponds to setting a temperature
parameter c in the Boltzmann distribution [17], [21], inter-
polating between the deterministic selection (c → ∞) in
Eq. (1) and the uniform distribution (c→ 0).1

2.2. Variational Approximation of Energy-Based Models

Learning θ by MLE is challenging precisely due to the ex-
ponential number of terms in the denominator of Eq. (2). In-
stead, Ou et al. [1] construct an alternative optimization ob-
jective via mean-field variational inference as follows. First,
they introduce a mean field variational approximation of the
density pθ given by q(S, V,ψ) =

∏

i∈S ψi
∏

i∈V \S(1−ψi),
parameterized by ψ, where ψ is the probability vector rep-
resenting the probability of each element s ∈ V being in
the optimal subset S∗. Then, estimation via variational
inference amounts to:

L(ψ∗,θ) = EP(V, S)[− log q(S, V ,ψ∗)]

≈
1

N

N∑

i=1

−
∑

j∈S∗
i

logψ∗j −
∑

j∈Vi\S∗
i

log
(
1− ψ∗j

)

 ,

(4)

where ψ∗ ∈ [0, 1]|V | is the probability vector obtained by
solving:

ψ∗ = argmin
ψ

KL(q(S, V, ψ) || pθ(S | V)), (5)

where KL(·||·) is the Kullback-Leibler divergence, and
pθ(S) is the energy-based model defined in Eq. (2). In
turn, this is found through the ELBO maximization process
we discuss in the next section.

1From a Bayesian point of view, multiplying Fθ(·) with c > 0
yields the posterior predictive distribution under an uninformative
Dirichlet conjugate prior per set with parameter α = e

c [17].

2.3. ELBO Maximization

To compute ψ∗, Ou et al. [1] show that minimizing the KL
divergence in Eq. (5) via maximizing the corresponding
evidence lower bound (ELBO) reduces to solving a fixed
point equation. In particular, Eq. (5) is equivalent to the
following ELBO maximization [22], [23]:

max
ψ

F̃ (ψ,θ) +H(q(S, V,ψ)), (6)

where H(·) is the entropy and F̃ : [0, 1]|V |×R
d → R is the

so-called multilinear extension of Fθ(S, V) [24], given by:

F̃ (ψ,θ) =
∑

S⊆V
Fθ(S, V)

∏

i∈S
ψi

∏

i∈V \S
(1− ψi). (7)

Ou et al. show that a stationary point maximizing the ELBO
in Eq. (6) must satisfy:

ψ − σ(∇ψF̃ (ψ,θ)) = 0, (8)

where the function σ : R|V | → R
|V | is defined as σ(x) =

[
σ(xi)

]|V |
i=1

and σ : R → R is the sigmoid function, i.e.,
σ(x) = (1 + exp (−x))−1. The detailed derivation of this
condition can be found in App. B.1.

Observing that the stationary condition in Eq. (8) is a fixed
point equation, Ou et al. propose solving it via the following
fixed-point iterations. Given θ ∈ R

d,

ψ(k) ← σ(∇ψF̃ (ψ
(k−1),θ)), (9)

where k ∈ N, starting from ψ(0) ∈ [0, 1]|V |. Exact com-
putation of the multilinear relaxation defined in Eq. (7) re-
quires an exponential number of terms in the size of V .
However, it is possible to efficiently estimate both the mul-
tilinear relaxation and its gradient ∇ψF̃ (ψ,θ) via Monte
Carlo sampling (see App. B.2 for details).

2.4. DiffMF and Variants

Putting everything together yields the DiffMF algorithm
introduced by Ou et al. [1]. In particular, they implement
the fixed-point iterative update steps in Eq. (9) by executing
a fixed number of iterations K, given θ. In their implemen-
tation, this amounts to stacking up K layers, each involving
an estimate of the gradient of the multilinear relaxation via
sampling, and thereby multiple copies of a neural network
representing Fθ(·). Subsequently, this extended network is
entered in the loss (4), which is minimized w.r.t. θ via SGD.

They also introduce two variants of this algorithm, regress-
ingψ(0) as a function of the item features via an extra recog-
nition network, assuming the latter are independent (terming
inference in this setting as EquiVSetind) or correlated by a
Gaussian copula [25], [26] (termed EquiVSetcopula). Com-
pared to DiffMF, both translate to additional initial lay-
ers/steps per epoch.

2

Learning Set Functions with Implicit Differentiation

2.5. Challenges

The above approach by Ou et al. [1], and constituent algo-
rithm variants, have two drawbacks. First, the fixed-point
iterative updates given in Eq. (9) are not guaranteed to con-
verge to an optimal solution. We indeed observed diver-
gence experimentaly in practice. Without convergence and
uniqueness guarantees, the quality of the output, ψ(K), is
heavily dependent on the selection of the starting point,
ψ(0). Moreover, as these iterations correspond to stacking
up layers, each containing multiple copies of Fθ(·) due to
sampling, backpropagation is computationally prohibitive
both in terms of time as well as space complexity. In fact,
poor performance due to lack of convergence, as well as
computational considerations, led Ou et al. to set the num-
ber of iterations K ≤ 5 (even K = 1) in their experiments.
We address both of these challenges in the next section.

3. Our Approach

We (a) establish conditions under which iterations of Eq. (8)
converge to a unique solution, by utilizing Banach fixed-
point theorem and (b) establish a way to efficiently compute
the gradient of the loss at the fixed point by using the implicit
function theorem. Our results pave the way to utilize recent
tools developed in the context of implicit differentiation
[13], [14], [27] to the setting of Ou et al. [1].

3.1. Convergence Condition for the Fixed-Point

Fixed-points can be attracting, repelling, or neutral [28],
[29]. We characterize the condition under which the conver-
gence is guaranteed in the following assumption.

Assumption 3.1. Consider the multilinear relaxation F̃ :
[0, 1]|V | × R

d → R of Fθ(·), as defined in Eq. (7). For all
θ ∈ R

d, supψ∈[0,1] |F̃ (ψ,θ)| <
1
|V | .

As discussed in Sec. 2, scaling Fθ(S, V) by a positive scalar
amounts to setting the temperature of a Boltzmann distri-
bution. Moreover, neural networks are often Lipschitz-
regularized for bounded inputs and weights [30]–[32].
Therefore, for any such Lipschitz neural network, we can
satisfy Asm. 3.1 by appropriately setting the temperature pa-
rameter of the EBM in Eq. (2). Most importantly, satisfying
this condition guarantees convergence:

Theorem 3.2. Assume a set function Fθ : 2V → R satisfies

Asm. 3.1. Then, the fixed-point given in Eq. (8) has a unique

solution ψ∗ ∈ [0, 1]|V | where ψ∗ = σ(∇ψF̃ (ψ
∗,θ)).

Moreover, starting with an arbitrary point ψ(0) ∈ [0, 1]|V |,
ψ∗ can be found via the fixed-point iterative sequence de-

scribed in Eq. (9) where limk→∞ψ
(k) = ψ∗.

The proof can be found in App. D, and relies on the Banach
fixed-point theorem [33]. Theorem 3.2 implies that as long
as F̃ (ψ,θ) is bounded and this bound is inversely correlated

with the size of the ground set, we can find a unique solution
to Eq. (8), no matter where we start the iterations in Eq. (9).

3.2. Efficient Differentiation through Implicit Layers

Our second contribution is to disentangle gradient compu-
tation from stacking layers together, by using the implicit
function theorem [34]. This allows us to use the recent work
on deep equilibrium models (DEQs) [13], [14].

Define ψ∗(·) to be the map θ 7→ ψ∗(θ) induced by Eq. (8);
equivalently, given θ, ψ∗(θ) is the (unique by Thm. 3.2)
limit point of iterations (9). Observe that, by the chain rule:

∇θL(ψ
∗(θ),θ) = ∇ψ∗L(ψ∗(θ),θ) · ∂θψ

∗(θ). (10)

The term that is difficult to compute here via back-
propagation, that required stacking in Ou et al. [1], is the
Jacobian ∂θψ

∗(θ), as we do not have the map ψ∗(·) in a
closed form. Nevertheless, we can use the implicit function
theorem (see Thm. C.4 in App. C) to compute this quantity.

Indeed, to simplify the notation for clarity, we define a
function G : [0, 1]|V | × R

d → [0, 1]|V |, where

G(ψ(θ),θ) ≜ σ(∇ψF̃ (ψ,θ))−ψ

and rewrite Eq. (8) as G(ψ(θ),θ) = 0. Using the implicit
function theorem, given in App. C, we obtain

−∂ψG(ψ
∗(θ),θ)

︸ ︷︷ ︸

A∈R|V |×|V |

∂θψ
∗(θ)

︸ ︷︷ ︸

J∈R|V |×d

= ∂θG(ψ
∗(θ),θ)

︸ ︷︷ ︸

B∈R|V |×d

. (11)

This yields the following way of computing the Jacobian
via implicit differentiation:

Theorem 3.3. Computing ∂θψ
∗(θ) is the equivalent of solv-

ing a linear system of equations, i.e., ∂θψ
∗(θ) = A−1B,

A = I − Σ′(∇ψF̃ (ψ,θ)) · ∇2
ψF̃ (ψ,θ) , and

B = Σ′(∇ψF̃ (ψ,θ)) · ∂θ∇ψF̃ (ψ,θ) ,
(12)

where Σ′(x) = diag
([
σ′(xi)

]|V |
i=1

)

, and σ′(x) = (1 +

exp (−x))−2 · exp (−x).

The proof is in App. E. Eq. (11) shows that the Jacobian
∂θψ

∗(θ), can be expressed in terms of Jacobians of G at
the solution point. This means implicit differentiation only
needs the final fixed point value, whereas automatic differ-
entiation via the approach by Ou et al. [1] required all the
iterates (see also [14]). In practice, we use JAXopt [27] for
its out-of-the-box implicit differentiation support.

4. Experiments

We evaluate our proposed method on two real-world, two
synthetic datasets for set anomaly set detection and product

3

Learning Set Functions with Implicit Differentiation

Datasets
EquiVSetind EquiVSetcopula DiffMF iDiffMF2 iDiffMF∗

Test JC Time (s) Test JC Time (s) Test JC Time (s) Test JC Time (s) Test JC Time (s)

A
D

CelebA 53.16± 0.68 1822.33± 208.36 54.31± 1.06 1889.18± 163.30 51.98± 0.64 1837.20± 221.18 51.17± 0.74 2075.74± 225.35 51.10± 0.83 2206.81± 455.08
Gaussian 90.87± 0.16 20.76± 1.89 90.98± 0.04 27.24± 5.92 90.96± 0.05 59.63± 18.64 90.81± 0.08 37.76± 0.73 91.05± 0.02 43.22± 5.50
Moons 56.47± 0.52 17.98± 0.97 58.46± 0.20 17.70± 0.59 58.54± 0.10 44.39± 6.42 58.47± 0.17 36.12± 1.95 58.56± 0.26 35.88± 1.39

P
ro

du
ct

R
ec

om
m

en
da

ti
on

(A
m

az
on

) apparel 66.29± 1.66 37.13± 12.32 76.28± 0.61 71.23± 6.31 69.65± 0.73 106.66± 19.01 69.66± 1.62 83.55± 21.35 69.31± 1.77 75.07± 20.58
bath 68.00± 0.69 32.42± 5.22 75.82± 1.45 46.78± 7.114 71.75± 0.33 92.89± 3.37 76.59± 0.82 62.74± 9.24 76.78± 0.77 63.52± 11.36

bedding 65.36± 0.29 40.73± 4.24 75.81± 0.95 58.77± 11.75 66.32± 1.00 94.47± 12.73 75.99± 0.88 67.55± 16.24 75.99± 0.88 65.44± 14.89
carseats 20.64± 1.15 13.31± 5.43 20.30± 1.26 12.06± 5.87 20.46± 1.08 19.31± 10.48 21.25± 0.94 39.84± 12.28 21.23± 0.91 34.78± 6.55
diaper 72.23± 1.75 52.11± 17.47 82.52± 0.69 82.23± 21.69 81.10± 0.78 173.69± 31.34 82.12± 1.42 99.11± 36.21 82.11± 1.65 101.38± 56.45
feeding 71.36± 1.13 83.91± 25.05 81.75± 1.44 116.54± 41.32 77.34± 0.35 239.76± 57.10 80.30± 0.72 109.27± 24.42 80.30± 0.72 108.00± 22.30

furniture 14.60± 1.92 5.64± 1.48 15.87± 1.75 7.69± 3.62 15.78± 2.01 6.65± 1.06 21.97± 3.46 42.62± 9.42 21.97± 3.46 38.52± 9.15
gear 64.06± 1.07 42.58± 3.29 72.34± 1.36 61.06± 15.40 59.44± 1.19 95.18± 13.29 58.47± 2.39 42.61± 8.56 58.47± 2.39 41.35± 8.39

health 63.35± 1.14 34.34± 4.36 70.99± 0.93 60.25± 10.77 58.69± 0.49 73.97± 11.68 72.08± 1.22 78.65± 13.01 72.46± 0.87 82.37± 12.84
media 56.21± 1.17 46.36± 6.71 55.29± 1.78 52.13± 15.07 51.45± 1.23 55.07± 11.51 57.88± 0.74 68.61± 7.66 57.74± 0.74 64.60± 5.04
safety 14.51± 0.57 4.95± 1.04 13.94± 1.77 4.43± 0.30 13.77± 0.45 5.27± 0.76 30.36± 1.46 43.57± 3.95 30.36± 1.46 40.60± 4.20
toys 63.08± 0.68 32.32± 4.43 67.97± 0.98 48.00± 6.45 63.19± 1.42 78.08± 18.49 67.49± 1.08 73.69± 26.15 67.10± 1.00 52.22± 10.02

Table 1. Test Jaccard coefficient and training time for set anomaly detection (AD) and product recommendation tasks, across all five
algorithms. iDiffMF2 and iDiffMF∗ correspond to our algorithm with Frobenius and nuclear norm rescaling, respectively. Bold and
underline indicate the best and second best performance results, respectively.

recommendation tasks (see App. F). We closely follow the
experimental setup of Ou et al. [1]. We report the mean and
standard variation for all experiment results based on 5 runs
with different seeds.

4.1. Algorithms

DiffMF [1]: Differentiable mean field variational inference
algorithm described in Section 2.3 where, as per Ou et al.,
the number of iterations is set to K = 5 for all datasets.

EquiVSetind [1]: Equivariant variational inference algo-
rithm proposed by Ou et al. [1]. It is a variation of the
DiffMF algorithm where the parameterψ is predicted by an
additional recognition network as a function of the features.
As per Ou et al., we set K = 1 for all datasets.

EquiVSetcopula [1]: A correlation-aware version of the
EquiVSetind algorithm where the relations among the input
elements are modeled by a Gaussian copula. As per Ou et
al., we set K = 1 for all datasets.

iDiffMF: Our proposed implicit alternative to the DiffMF
algorithm where we solve the fixed-point condition in
Eq. (8) with a very low tolerance threshold, instead of run-
ning the fixed-point iterations in Eq. (9) for only a fixed
number of times. Although DNNs are bounded, the exact
computation of their Lipschitz constant is NP-hard [31]. In
our implementation, we satisfy the condition in Asm. 3.1 by
normalizing the gradient of the multilinear relaxation by its
norm and scaling it with the size of the ground set, i.e., we
multiply ∇ψF̃ (ψ,θ) with 2/(|V |∥∇ψF̃ (ψ,θ)∥). For the
L2 (∥ · ∥2) and nuclear (∥ · ∥∗) norms, we observe that this
heuristic works well in practice and propose two variations
as iDiffMF2 and iDiffMF∗, respectively.

We train all models with an Adam optimizer [35] with a
learning rate η = 10−4 and a batch size of 128.

Metrics: We measure the performance of the algorithms
by their mean Jaccard Coefficient (JC) score. The mean

JC over all optimal oracle subset pairs is 1
N

∑N
i=1

|S∗
i ∩Ŝ∗

i |
|S∗
i ∪Ŝ∗

i |
,

where Ŝ∗i is the prediction of the model.

4.2. Results

We report the performance of our proposed iDiffMF meth-
ods against the baselines on Tab. 1. For the majority
of the cases, iDiffMF∗ achieves either the best or the
second-best JC score. While the next best competitor,
EquiVSetcopula, performs the best on some of the datasets
its performance is sub-optimal on the remaining datasets.
For the Amazon furniture and safety datasets, iDiffMF vari-
ants give significantly better results than EquiVSetcopula,
even though EquiVSetcopula is faster. This is probably be-
cause EquiVSetcopula converges to a local optimum and
finishes training earlier. It is also important to highlight
that we evaluate iDiffMF using JAX+Flax [36]–[39] while
we use PyTorch to evaluate the baselines. Therefore, the
differences in running time can also be explained with the
framework differences. Finally, even though iDiffMF exe-
cutes fixed-point iterations until convergence, as opposed to
K = 1 or 5 in remaining methods [1], the average running
times are comparable across datasets.

5. Conclusion

We improve upon an existing learning set functions with
an optimal subset oracle setting by characterizing the con-
vergence condition of the fixed point iterations resulting
during MLE approximation and by using implicit differen-
tiation over automatic differentiation. Our results perform
better than or comparable to the baselines for the majority
of the cases without the need of an additional recognition
network.

6. Acknowledgements

We gratefully acknowledge support from the NSF grant
CCF-1750539.

4

Learning Set Functions with Implicit Differentiation

References

[1] Z. Ou, T. Xu, Q. Su, Y. Li, P. Zhao, and Y. Bian, “Learning
neural set functions under the optimal subset oracle,” Ad-
vances in Neural Information Processing Systems, vol. 35,
pp. 35 021–35 034, 2022.

[2] H. Bonab, M. Aliannejadi, A. Vardasbi, E. Kanoulas, and
J. Allan, “Cross-market product recommendation,” in Pro-
ceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2021, pp. 110–
119.

[3] J. B. Schafer, J. Konstan, and J. Riedl, “Recommender
systems in e-commerce,” in Proceedings of the 1st ACM
conference on Electronic commerce, 1999, pp. 158–166.

[4] X. Ning, M. Walters, and G. Karypis, “Improved machine
learning models for predicting selective compounds,” in
Proceedings of the 2nd ACM Conference on Bioinformatics,
Computational Biology and Biomedicine, 2011, pp. 106–
115.

[5] Y. Saito, T. Nakamura, H. Hachiya, and K. Fukumizu, “Ex-
changeable deep neural networks for set-to-set matching
and learning,” in European Conference on Computer Vision,
Springer, 2020, pp. 626–646.

[6] Q. Feng, Y. Zhou, and R. Lan, “Pairwise linear regression
classification for image set retrieval,” in Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2016, pp. 4865–4872.

[7] H. Zhao, L. Jiang, C.-W. Fu, and J. Jia, “Pointweb: Enhanc-
ing local neighborhood features for point cloud processing,”
in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[8] A. Gionis, D. Gunopulos, and N. Koudas, “Efficient and
tumble similar set retrieval,” in Proceedings of the 2001
ACM SIGMOD international conference on Management
of data, 2001, pp. 247–258.

[9] M. Mašková, M. Zorek, T. Pevnỳ, and V. Šmídl, “Deep
anomaly detection on set data: Survey and comparison,”
Pattern Recognition, p. 110 381, 2024.

[10] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R.
Salakhutdinov, and A. J. Smola, “Deep sets,” Advances in
neural information processing systems, vol. 30, 2017.

[11] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W.
Teh, “Set transformer: A framework for attention-based
permutation-invariant neural networks,” in International
conference on machine learning, PMLR, 2019, pp. 3744–
3753.

[12] S. Tschiatschek, A. Sahin, and A. Krause, “Differentiable
submodular maximization,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence,
2018, pp. 2731–2738.

[13] S. Bai, J. Z. Kolter, and V. Koltun, “Deep Equilibrium Mod-
els,” Advances in neural information processing systems,
vol. 32, 2019.

[14] Z. Kolter, D. Duvenaud, and M. Johnson, “Deep Implicit
Layers - Neural ODEs, Deep Equilibirum Models, and
Beyond,” NeurIPS, 2020. [Online]. Available: https:
//implicit-layers-tutorial.org.

[15] Z. Huang, S. Bai, and J. Z. Kolter, “(Implicit)2: Implicit
layers for implicit representations,” NeurIPS, 2021.

[16] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z.
DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic differentiation in pytorch,” 2017.

[17] K. P. Murphy, Machine learning: a probabilistic perspec-
tive. MIT press, 2012.

[18] A. Mnih and G. Hinton, “Learning nonlinear constraints
with contrastive backpropagation,” in Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., IEEE, vol. 2, 2005, pp. 1302–1307.

[19] G. Hinton, S. Osindero, M. Welling, and Y.-W. Teh, “Un-
supervised discovery of nonlinear structure using con-
trastive backpropagation,” Cognitive science, vol. 30, no. 4,
pp. 725–731, 2006.

[20] Y. LeCun, S. Chopra, and R. Hadsell, “A tutorial on energy-
based learning,” 2006.

[21] A. Kirsch, S. Farquhar, P. Atighehchian, A. Jesson, F.
Branchaud-Charron, and Y. Gal, “Stochastic batch acquisi-
tion: A simple baseline for deep active learning,” Transac-
tions on Machine Learning Research, 2023.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” arXiv preprint arXiv:1312.6114, 2013.

[23] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Varia-
tional inference: A review for statisticians,” Journal of the
American statistical Association, vol. 112, no. 518, pp. 859–
877, 2017.

[24] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maxi-
mizing a monotone submodular function subject to a ma-
troid constraint,” SIAM Journal on Computing, vol. 40,
no. 6, pp. 1740–1766, 2011.

[25] A. Sklar, “Random variables, joint distribution functions,
and copulas,” Kybernetika, vol. 9, no. 6, pp. 449–460, 1973.

[26] R. B. Nelsen, An Introduction to Copulas, second. New
York, NY, USA: Springer, 2006.

[27] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer,
F. Llinares-López, F. Pedregosa, and J.-P. Vert, “Efficient
and modular implicit differentiation,” Advances in neural
information processing systems, vol. 35, pp. 5230–5242,
2022.

[28] B. Davies, Exploring chaos: Theory and experiment. CRC
Press, 2018.

[29] A. Rechnitzer, Fixed points - summary [lecture notes].
dynamical systems and chaos — 620341. 2003. [Online].
Available: https://personal.math.ubc.ca/
~andrewr/620341/pdfs/fp_sum.pdf.

[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.
Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” in 2nd International Conference on Learning
Representations, ICLR 2014, 2014.

[31] A. Virmaux and K. Scaman, “Lipschitz regularity of deep
neural networks: Analysis and efficient estimation,” Ad-
vances in Neural Information Processing Systems, vol. 31,
2018.

[32] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regular-
isation of neural networks by enforcing lipschitz continuity,”
Machine Learning, vol. 110, pp. 393–416, 2021.

[33] S. Banach, “Sur les opérations dans les ensembles abstraits
et leur application aux équations intégrales,” Fundamenta
mathematicae, vol. 3, no. 1, pp. 133–181, 1922.

[34] S. G. Krantz and H. R. Parks, The implicit function theo-
rem: history, theory, and applications. Springer Science &
Business Media, 2002.

[35] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” in ICLR, 2015.

5

https://implicit-layers-tutorial.org
https://implicit-layers-tutorial.org
https://personal.math.ubc.ca/~andrewr/620341/pdfs/fp_sum.pdf
https://personal.math.ubc.ca/~andrewr/620341/pdfs/fp_sum.pdf

Learning Set Functions with Implicit Differentiation

[36] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C.
Leary, D. Maclaurin, G. Necula, A. Paszke, J. Vander-
Plas, S. Wanderman-Milne, and Q. Zhang, JAX: Compos-
able transformations of Python+NumPy programs, ver-
sion 0.3.13, 2018. [Online]. Available: http://github.
com/google/jax.

[37] R. Frostig, M. J. Johnson, and C. Leary, “Compiling ma-
chine learning programs via high-level tracing,” Systems
for Machine Learning, vol. 4, no. 9, 2018.

[38] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre,
A. Steiner, and M. van Zee, Flax: A neural network li-
brary and ecosystem for JAX, version 0.8.5, 2023. [Online].
Available: http://github.com/google/flax.

[39] P. Lippe, UvA Deep Learning Tutorials, https : / /
uvadlc - notebooks . readthedocs . io / en /

latest/, 2024.
[40] M. Kimura, R. Shimizu, Y. Hirakawa, R. Goto, and Y. Saito,

“On permutation-invariant neural networks,” arXiv preprint
arXiv:2403.17410, 2024.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is
all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[42] L. Zhang, V. Tozzo, J. Higgins, and R. Ranganath, “Set
norm and equivariant skip connections: Putting the deep in
deep sets,” in International Conference on Machine Learn-
ing, PMLR, 2022, pp. 26 559–26 574.

[43] G. Giannone and O. Winther, “Scha-vae: Hierarchical con-
text aggregation for few-shot generation,” in International
Conference on Machine Learning, PMLR, 2022, pp. 7550–
7569.

[44] M. Michalkiewicz, J. K. Pontes, D. Jack, M. Baktash-
motlagh, and A. Eriksson, “Implicit surface representa-
tions as layers in neural networks,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

[45] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G.
Wetzstein, “Implicit neural representations with periodic
activation functions,” Advances in neural information pro-
cessing systems, vol. 33, pp. 7462–7473, 2020.

[46] Y. Strümpler, J. Postels, R. Yang, L. V. Gool, and F.
Tombari, “Implicit neural representations for image com-
pression,” in European Conference on Computer Vision,
Springer, 2022, pp. 74–91.

[47] S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher,
and W. Yin, “Jfb: Jacobian-free backpropagation for im-
plicit networks,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, 2022, pp. 6648–6656.

[48] M. Retchin, B. Amos, S. Brunton, and S. Song, “Koopman
constrained policy optimization: A koopman operator theo-
retic method for differentiable optimal control in robotics,”
in ICML 2023 Workshop on Differentiable Almost Every-
thing: Differentiable Relaxations, Algorithms, Operators,
and Simulators, 2023.

[49] E. Dupont, A. Golinski, M. Alizadeh, Y. W. Teh, and A.
Doucet, “Coin: Compression with implicit neural represen-
tations,” in Neural Compression: From Information Theory
to Applications–Workshop@ ICLR 2021, 2021.

[50] D. Grattarola and P. Vandergheynst, “Generalised implicit
neural representations,” Advances in Neural Information
Processing Systems, vol. 35, pp. 30 446–30 458, 2022.

[51] E. Winston and J. Z. Kolter, “Monotone operator equilib-
rium networks,” Advances in neural information processing
systems, vol. 33, pp. 10 718–10 728, 2020.

[52] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duve-
naud, “Neural ordinary differential equations,” Advances
in neural information processing systems, vol. 31, 2018.

[53] X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud, “Scal-
able gradients for stochastic differential equations,” in Inter-
national Conference on Artificial Intelligence and Statistics,
PMLR, 2020, pp. 3870–3882.

[54] B. Amos and J. Z. Kolter, “Optnet: Differentiable opti-
mization as a layer in neural networks,” in International
Conference on Machine Learning, PMLR, 2017, pp. 136–
145.

[55] T. Apostol, Mathematical Analysis (Addison-Wesley
series in mathematics). Addison-Wesley, 1974, ISBN:
9780201002881. [Online]. Available: https://books.
google.com/books?id=Le5QAAAAMAAJ.

[56] W. Rudin, Principles of Mathematical Analysis (Interna-
tional series in pure and applied mathematics). McGraw-
Hill, 1976, ISBN: 9780070856134. [Online]. Available:
https : / / books . google . com / books ? id =

kwqzPAAACAAJ.
[57] J. V. Burke, “Nonlinear optimization,” Lecture Notes, Math,

vol. 408, p. 80, 2014.
[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[59] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning
face attributes in the wild,” in Proceedings of International
Conference on Computer Vision (ICCV), 2015.

[60] J. A. Gillenwater, A. Kulesza, E. Fox, and B. Taskar,
“Expectation-maximization for learning determinantal point
processes,” Advances in Neural Information Processing
Systems, vol. 27, 2014.

[61] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” in North American Chapter of the Associa-
tion for Computational Linguistics, 2019. [Online]. Avail-
able: https : / / api . semanticscholar . org /
CorpusID:52967399.

6

http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/flax
https://uvadlc-notebooks.readthedocs.io/en/latest/
https://uvadlc-notebooks.readthedocs.io/en/latest/
https://uvadlc-notebooks.readthedocs.io/en/latest/
https://books.google.com/books?id=Le5QAAAAMAAJ
https://books.google.com/books?id=Le5QAAAAMAAJ
https://books.google.com/books?id=kwqzPAAACAAJ
https://books.google.com/books?id=kwqzPAAACAAJ
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399

Learning Set Functions with Implicit Differentiation

Supplementary Material

A. Related Work

Learning Set Functions. There is a line of work that tries to extend the capabilities of neural networks for functions
on discrete domains, i.e., set functions. Set functions are characterized by their permutation invariance. We refer
the reader to [40] for a detailed overview of permutation-invariant architectures. One such seminal architecture, Deep
Sets [10], characterizes a general family of functions for permutation invariant objectives. Following the effectiveness of
transformers [41], set transformers [11] process input sets with an attention-based neural network architecture. Zhang et
al. [42] improves over both of these methods by introducing a novel set normalization layer. Ou et al. [1] study the problem
of learning set functions under the supervision of optimal subset oracles with a mean-field variational approximation-based
method. We build upon their approach by using the implicit differentiation toolbox in the context of set function learning.

There are existing models that use variational auto-encoders (VAE) [22] for set outputs: SetVAE adopts the aforementioned
set transformers [11] into VAEs for point cloud generation tasks and SCHA-VAE [43] applies the same idea for few-shot
image generation. These are both generative models and not applicable to subset selection tasks.

Implicit Differentiation. Implicit representations [15], [44]–[46], layers [13]–[15], and differentiation [27], [47], [48] have
gained a lot of traction in the recent years. Implicit representations [49], [50] refer to the case when high-frequency, often
discretely measured data is modeled with a continuous function, whereas implicit layers is a term that characterizes model
architectures. Huang et al. [15] study the complementary benefits of combining implicit representations with implicit layers.
Deep equilibrium models (DEQ) [13], [51], an example of implicit layers, directly compute the fixed-point resulting from
stacking up weight-tied forward sequence models and also directly differentiate through the stacked fixed-point equations
via implicit differentiation. A recent tutorial [14] highlights the advantages of implicit differentiation by including other
examples from neural ordinary differential equations [52], [53] and differentiable optimization problems [54]. Blondel et
al. [27] provide a JAX-based, modular automatic implicit differentiation tool in order to aid practitioners with implementation.
For feed-forward networks, Fung et al. [47] eliminate the Jacobian that results from implicit differentiation. It is important
to note that they also use Banach fixed-point theorem [33] to prove the convergence of the fixed-point iterations. However,
they directly assume the mapping in focus is a contraction where we specify the condition under which the mapping in focus
is a contraction (see Asm. 3.1).

B. Derivations for Section 2

B.1. Derivation of the Fixed-Point

Rewriting the ELBO by plugging in the definition of entropy,

F̃ (ψ,θ) +H(q(S,ψ)) = F̃ (ψ,θ)−

|V |
∑

i=1

[ψi logψi + (1− ψi) log(1− ψi)] . (13)

Taking the partial derivative of this expression with respect to the ith coordinate and setting it to zero, yields

∂F̃ (ψ,θ)

∂ψi
− log

ψi
1− ψi

= 0,

exp
∂F̃ (ψ,θ)

∂ψi
=

ψi
1− ψi

,

exp
∂F̃ (ψ,θ)

∂ψi
− ψi exp

(

∂F̃ (ψ,θ)

∂ψi

)

= ψi,

exp

(

∂F̃ (ψ,θ)

∂ψi

)

= ψi

(

1 + exp

(

∂F̃ (ψ,θ)

∂ψi

))

,

ψi =
exp

(
∂F̃ (ψ,θ)
∂ψi

)

1 + exp
(
∂F̃ (ψ,θ)
∂ψi

) =
1

1 + exp
(

−∂F̃ (ψ,θ)
∂ψi

) = σ

(

∂F̃ (ψ,θ)

∂ψi

)

,

7

Learning Set Functions with Implicit Differentiation

where σ(x) = (1 + exp (−x))−1 is the sigmoid function.

B.2. Gradient Computation via Sampling

Lemma B.1. Given a set function F : 2V → R and a vector of probabilities ψ ∈ [0, 1]|V | where ψi = P[i ∈ S], the

gradient of the multilinear relaxation of the set function F (S) is

∂F̃ (ψ)

∂ψi
= ES∼ψ|ψi←0[F (S + i)− F (S)].

Proof.

∂F̃ (ψ)

∂ψi
=
∑

S⊆V
F (S)

∏

i∈S
ψi
∏

i/∈S
(1− ψi),

= ES∼ψ|ψi←1[F (S)]− ES∼ψ|ψi←0[F (S)],

=
∑

S⊆V, i∈S
F (S)

∏

j∈S\{i}
ψj
∏

j /∈S
(1− ψj)−

∑

S⊆V \{i}
F (S)

∏

j∈S
ψj

∏

j /∈S, j ̸=i
(1− ψj),

=
∑

S⊆V \{i}
[F (S + i)− F (S)]

∏

j∈S
ψj
∏

j /∈S
(1− ψj),

= ES∼ψ|ψi←0[F (S + i)− F (S)].

Corollary B.2. Knowing Lemma B.1, the gradient of the multilinear relaxation F̃ (ψ,θ), is defined as follows

∂F̃ (ψ,θ)

∂ψi
= F̃ ([ψ]+i,θ)− F̃ ([ψ]−i,θ). (14)

Eq. (14) can be computed by producing random samples of S.

C. Technical Preliminaries

Theorem C.1. (Multivariate Mean Value Theorem [55]–[57]) If f : Rn → R
m is continuously differentiable, then for

every x,y ∈ R
n, there exists a z ∈ [x,y], such that

∥f(x)− f(y)∥2 ≤ sup
z∈[x,y]

∥∂f(z)∥F ∥x− y∥2,

where ∥ · ∥2 is the L2 norm and ∥ · ∥F is the Frobenius norm.

Definition C.2. A mapping T : X → X is called a contraction on X if there exists a constant ϵ ∈ [0, 1) such that for all
x, y ∈ X ,

∥T (x)− T (y)∥2 ≤ ϵ∥x− y∥2.

Theorem C.3. (Banach’s Fixed Point Theorem [33]) Let T : X → X be a contraction on X . Then T has a unique fixed

point x∗ ∈ X where T (x∗) = x∗.

Theorem C.4. (Implicit Function Theorem [27], [34]) Given a continuously differentiable function G : Rn ×R
d → R

n, an

implicitly defined function x∗ : Rd → R
n of θ ∈ R

d, and an optimal solution x∗(θ); let

G(x∗(θ),θ) = 0. (15)

For (x0,θ0) satisfying G(x0,θ0) = 0, if the Jacobian ∂xG evaluated at (x0,θ0) is a square invertible matrix, then there

exists a function x∗(·) defined on a neighborhood of θ0 such that x∗(θ0) = x0. Furthermore, for all θ in this neighborhood,

we have that G(x∗(θ),θ) = 0 and ∂x∗(θ) exists. According to the chain rule, the Jacobian ∂x∗(θ) satisfies

∂xG(x
∗(θ),θ)∂x∗(θ) + ∂θG(x

∗(θ),θ) = 0. (16)

Therefore, computing ∂x∗(θ) becomes the equivalent of solving the following linear system of equations

−∂xG(x
∗(θ),θ)

︸ ︷︷ ︸

A∈Rn×n

∂x∗(θ)
︸ ︷︷ ︸

J∈Rn×d

= ∂θG(x
∗(θ),θ)

︸ ︷︷ ︸

B∈Rn×d

. (17)

8

Learning Set Functions with Implicit Differentiation

D. Proof of Theorem 3.2

Before stating our proof we need to state the following corollary:

Corollary D.1. Knowing Corollary B.2, we can write the Hessian of the multilinear relaxation as

∂2F̃ (ψ, θ)

∂ψi∂ψj
=
(

F̃ ([ψ]+i,+j ,θ)]− F̃ ([ψ]−i,+j ,θ)]
)

−
(

F̃ ([ψ]+i,−j ,θ)]− F̃ ([ψ]−i,−j ,θ)]
)

,

= F̃ ([ψ]+i,+j ,θ)]− F̃ ([ψ]−i,+j ,θ)− F̃ ([ψ]+i,−j ,θ) + F̃ ([ψ]−i,−j ,θ),

(18)

if i ̸= j, otherwise
∂2F̃ (ψ,θ)
∂ψi∂ψj

= 0.

We proof the following lemma using this corollary:

Lemma D.2. Elements of the Hessian given in Eq. (18) are bounded with 4 supψ∈[0,1]

∣
∣
∣F̃ (ψ,θ)

∣
∣
∣, i.e.,

supψi,ψj∈[0,1]

∣
∣
∣
∂2F̃ (ψ,θ)
∂ψi∂ψj

∣
∣
∣ ≤ 4 supψ∈[0,1]

∣
∣
∣F̃ (ψ,θ)

∣
∣
∣.

Proof. By Corollary D.1, we have

∣
∣
∣
∣
∣

∂2F̃ (ψ, θ)

∂ψi∂ψj

∣
∣
∣
∣
∣
=
∣
∣
∣

(

F̃ ([ψ]+i,+j ,θ)]− F̃ ([ψ]−i,+j ,θ)]
)

−
(

F̃ ([ψ]+i,−j ,θ)]− F̃ ([ψ]−i,−j ,θ)]
)∣
∣
∣ .

Using the triangular inequality twice, we get

∣
∣
∣
∣
∣

∂2F̃ (ψ, θ)

∂ψi∂ψj

∣
∣
∣
∣
∣
≤
∣
∣
∣F̃ ([ψ]+i,+j ,θ)]− F̃ ([ψ]−i,+j ,θ)]

∣
∣
∣+
∣
∣
∣F̃ ([ψ]+i,−j ,θ)]− F̃ ([ψ]−i,−j ,θ)]

∣
∣
∣ ,

≤
∣
∣
∣F̃ ([ψ]+i,+j ,θ)]

∣
∣
∣+
∣
∣
∣F̃ ([ψ]−i,+j ,θ)]

∣
∣
∣+
∣
∣
∣F̃ ([ψ]+i,−j ,θ)]

∣
∣
∣+
∣
∣
∣F̃ ([ψ]−i,−j ,θ)]

∣
∣
∣ ,

≤ 4 sup
ψ∈[0,1]

∣
∣
∣F̃ (ψ,θ)

∣
∣
∣ .

Equipped with this lemma, we are ready to proof Thm. 3.2:

Proof. For simplicity, define a mapping Tθ : [0, 1]|V | → [0, 1]|V | where Tθ(ψ) = σ(∇ψF̃ (ψ,θ)). Given F̃ is a
polynomial w.r.t. ψ and the sigmoid is a smooth function, Tθ is continuously differentiable w.r.t. ψ in [0, 1]|V |. By the
multivariate equivalent of the mean-value theorem (see Theorem C.1 in Appendix C), for every x,y ∈ |0, 1||V |, there exists
a ψ ∈ |0, 1||V |, such that

∥Tθ(x)− Tθ(y)∥2 ≤ sup
ψ∈[0,1]

∥∂Tθ(ψ)∥F ∥x− y∥2,

∥σ(∇ψF̃ (x,θ))− σ(∇ψF̃ (y,θ))∥2 ≤ sup
ψ∈[0,1]

∥∂ψσ(∇ψF̃ (ψ,θ))∥F ∥x− y∥2.
(19)

From Eq. (23), we know that ∂ψσ(∇ψF̃ (ψ,θ)) =
[

σ′
(
∂F̃ (ψ,θ)
∂ψi

)
∂2F̃ (ψ,θ)
∂ψi∂ψj

]

1≤i,j≤|V |
where σ′(x) = (1+exp (−x))−2 ·

exp (−x). Then,

9

Learning Set Functions with Implicit Differentiation

sup
ψ∈[0,1]

∥∂ψσ(∇ψF̃ (ψ,θ))∥F = sup
ψ∈[0,1]

√
√
√
√

|V |
∑

i

|V |
∑

j

∣
∣
∣
∣
∣
σ′

(

∂F̃ (ψ,θ)

∂ψi

)

∂2F̃ (ψ,θ)

∂ψi∂ψj

∣
∣
∣
∣
∣

2

,

≤

√
√
√
√

|V |
∑

i

|V |
∑

j

(

sup
ψi,ψj∈[0,1]

∣
∣
∣
∣
∣
σ′

(

∂F̃ (ψ,θ)

∂ψi

)

∂2F̃ (ψ,θ)

∂ψi∂ψj

∣
∣
∣
∣
∣

)2

,

= |V | sup
ψi,ψj∈[0,1]

∣
∣
∣
∣
∣
σ′
(

∂F̃ (ψ,θ)

∂ψi

)

∂2F̃ (ψ,θ)

∂ψi∂ψj

∣
∣
∣
∣
∣
,

≤ |V | sup
ψi∈[0,1]

∣
∣
∣
∣
∣
σ′
(

∂F̃ (ψ,θ)

∂ψi

)∣
∣
∣
∣
∣

sup
ψi,ψj∈[0,1]

∣
∣
∣
∣
∣

∂2F̃ (ψ,θ)

∂ψi∂ψj

∣
∣
∣
∣
∣
.

Since argmaxx∈R σ
′(x) = 0, we know that supψi∈[0,1]

∣
∣
∣σ′
(
∂F̃ (ψ,θ)
∂ψi

)∣
∣
∣ ≤ 1

4 . Moreover, Lemma D.2 gives us a bound for

the elements of the Hessian matrix where supψi,ψj∈[0,1]

∣
∣
∣
∂2F̃ (ψ,θ)
∂ψi∂ψj

∣
∣
∣ ≤ 4 supψ∈[0,1]

∣
∣
∣F̃ (ψ,θ)

∣
∣
∣. As a result,

sup
ψ∈[0,1]

∥∂ψσ(∇ψF̃ (ψ,θ))∥F ≤ |V | sup
ψ∈[0,1]

∣
∣
∣F̃ (ψ,θ)

∣
∣
∣ . (20)

According to Assumption 3.1, we know that supψ∈[0,1]

∣
∣
∣F̃ (ψ,θ)

∣
∣
∣ < 1

|V | . Therefore,

sup
ψ∈[0,1]

∥∂ψσ(∇ψF̃ (ψ,θ))∥F < 1. (21)

Plugging this in Eq. (19) above, we get

∥σ(∇ψF̃ (x,θ))− σ(∇ψF̃ (y,θ))∥2 < ∥x− y∥2. (22)

This means Eq. (8) is a contraction on [0, 1]|V | (see Definition C.2 in Appendix C). Thus, according to Banach fixed-point
theorem (see Theorem C.3 in Appendix C) the iterations given in Eq. (9) are bound to converge to a unique solution.

E. Proof of Theorem 3.3

Proof. For n = |V |,

A = I − ∂ψσ(∇ψF̃ (ψ,θ)) = I −
[
∂σ(∇ψF̃ (ψ,θ))

∂ψ1
. . .

∂σ(∇ψF̃ (ψ,θ))
∂ψn

]

,

= I −

∂σ1(∇ψF̃ (ψ,θ))
∂ψ1

. . .
∂σ1(∇ψF̃ (ψ,θ))

∂ψn
...

. . .
...

∂σn(∇ψF̃ (ψ,θ))
∂ψ1

. . .
∂σn(∇ψF̃ (ψ,θ))

∂ψn

= I −

∂σ
(

∂F̃ (ψ,θ)
∂ψ1

)

∂ψ1
. . .

∂σ
(

∂F̃ (ψ,θ)
∂ψ1

)

∂ψn
...

. . .
...

∂σ
(

∂F̃ (ψ,θ)
∂ψn

)

∂ψ1
. . .

∂σ
(

∂F̃ (ψ,θ)
∂ψn

)

∂ψn

,

= I −

σ′
(
∂F̃ (ψ,θ)
∂ψ1

)
∂F̃ (ψ,θ)
∂2ψ1

. . . σ′
(
∂F̃ (ψ,θ)
∂ψ1

)
∂F̃ (ψ,θ)
∂ψ1∂ψn

...
. . .

...

σ′
(
∂F̃ (ψ,θ)
∂ψn

)
∂F̃ (ψ,θ)
∂ψn∂ψ1

. . . σ′
(
∂F̃ (ψ,θ)
∂ψn

)
∂F̃ (ψ,θ)
∂2ψn

,

= I −

σ′
(
∂F̃ (ψ,θ)
∂ψ1

)

. . . 0

...
. . .

...

0 . . . σ′
(
∂F̃ (ψ,θ)
∂ψn

)

∂F̃ (ψ,θ)
∂2ψ1

. . . ∂F̃ (ψ,θ)
∂ψ1∂ψn

...
. . .

...
∂F̃ (ψ,θ)
∂ψn∂ψ1

. . . ∂F̃ (ψ,θ)
∂2ψn

,

= I − Σ′(∇ψF̃ (ψ,θ)) · ∇2
ψF̃ (ψ,θ) ,

(23)

10

Learning Set Functions with Implicit Differentiation

where the function Σ′ : R
n → R

n×n defined as Σ′(x) =

σ′(x1) . . . 0
...

. . .
...

0 . . . σ′(xn)

 and σ′ : R → R is σ′(x) =

(1 + exp (−x))−2 · exp (−x).

Similarly,

B = ∂θσ(∇ψF̃ (ψ,θ)) =
[
∂σ(∇ψF̃ (ψ,θ))

∂θ1
. . .

∂σ(∇ψF̃ (ψ,θ))
∂θd

]

,

=

∂σ1(∇ψF̃ (ψ,θ))
∂θ1

. . .
∂σ1(∇ψF̃ (ψ,θ))

∂θd
...

. . .
...

∂σn(∇ψF̃ (ψ,θ))
∂θ1

. . .
∂σn(∇ψF̃ (ψ,θ))

∂θd

=

∂σ
(

∂F̃ (ψ,θ)
∂ψ1

)

∂θ1
. . .

∂σ
(

∂F̃ (ψ,θ)
∂ψ1

)

∂θn
...

. . .
...

∂σ
(

∂F̃ (ψ,θ)
∂ψn

)

∂θ1
. . .

∂σ
(

∂F̃ (ψ,θ)
∂ψn

)

∂θn

,

=

σ′
(
∂F̃ (ψ,θ)
∂ψ1

)
∂F̃ (ψ,θ)
∂ψ1∂θ1

. . . σ′
(
∂F̃ (ψ,θ)
∂ψ1

)
∂F̃ (ψ,θ)
∂ψ1∂θd

...
. . .

...

σ′
(
∂F̃ (ψ,θ)
∂ψn

)
∂F̃ (ψ,θ)
∂ψn∂θ1

. . . σ′
(
∂F̃ (ψ,θ)
∂ψn

)
∂F̃ (ψ,θ)
∂ψn∂θd

,

=

σ′
(
∂F̃ (ψ,θ)
∂ψ1

)

. . . 0

...
. . .

...

0 . . . σ′
(
∂F̃ (ψ,θ)
∂ψn

)

∂F̃ (ψ,θ)
∂ψ1∂θ1

. . . ∂F̃ (ψ,θ)
∂ψ1∂θd

...
. . .

...
∂F̃ (ψ,θ)
∂ψn∂θd

. . . ∂F̃ (ψ,θ)
∂ψn∂θd

,

= Σ′(∇ψF̃ (ψ,θ)) · ∂θ∇ψF̃ (ψ,θ) .

(24)

F. Dataset Details

Dataset |Ω| |D| |V | avg(|S∗|) min(|S∗|) max(|S∗|)
CelebA 202, 599 10000 8 2.5 2 3
Gaussian 100 1000 100 10 10 10
Moons 100 1000 100 100 10 10

A
m

az
on

apparel 100 4, 675 30 4.52 3 19
bath 100 3, 195 30 3.80 3 11
bedding 100 4, 524 30 3.87 3 12
carseats 34 483 30 3.26 3 6
diaper 100 6, 108 30 4.14 3 15
feeding 100 8, 202 30 4.62 3 2
furniture 32 280 30 3.18 3 6
gear 100 4, 277 30 3.8 3 10
health 62 2, 995 30 3.69 3 9
media 58 1, 485 30 4.52 3 19
safety 36 267 30 3.16 3 5
toys 62 2, 421 30 4.09 3 14

Table 2. Dataset configurations.

Moons and Gaussian. There are two classes in the synthetic datasets, whose labels are Bernoulli sampled with p = 0.5.
Based on this label, the optimal subset and ground set pairs are constructed as follows: 1) sampling 10 points within the class
as S∗; and 2) sampling 90 points from the other class as V \S∗. This process is repeated until |Dtraining| = |Dvalidation| =
|Dtest| = 1000.Following the experimental procedure of Ou et al. [1], we use the SCIKIT-LEARN package [58] to generate
the Moons dataset, consisting of two interleaving moons with some noise with variance σ2 = 0.1. For the Gaussian dataset,

we sample data from a mixture of Gaussians 1
2N (µ0,Σ) + 1

2N (µ1,Σ), where µ0 =
[

1√
2
, 1√

2

]

, µ1 = −µ0, and Σ = 1
4I.

CelebA. The CelebFaces Attributes dataset (CelebA) [59] is a large-scale face dataset used extensively in computer vision
research, particularly for tasks such as face detection, face attribute recognition, etc. The dataset contains 202, 599 face
images of 10, 177 celebrities with various poses and backgrounds. Besides, each image is annotated with 40 binary attributes,
describing facial features and properties (e.g., having a mustache, wearing a hat or glasses, etc.). Following previous work,

11

Learning Set Functions with Implicit Differentiation

we select 2 attributes at random and construct the set V with a size of 8 and the oracle set S∗ with a size of 2 or 3, where
neither attribute is present (e.g. not wearing glasses and hats).

Amazon. The Amazon Baby Registry dataset [60] includes various subsets of baby registry products chosen by customers.
These products are then organized into 18 distinct categories. From these, 12 categories are selected. Each product in the
dataset is described by a textual description, which has been transformed into a 768-dimensional vector using a pre-trained
BERT model [61]. For each category, the (V, S∗) pairs are sampled using the following process. First, we exclude subsets
chosen by customers that contain only one item or more than 30 items. Next, we divide the remaining subsets into training,
validation, and test sets equally. For each oracle subset S∗ ∈ S, we randomly sample 30− |S∗| additional products from the
same category to ensure that V contains exactly 30 products. This method constructs a data point (V, S∗) for each customer,
simulating a real-world scenario where V represents 30 products shown to the customer, and S∗ represents the subset of
products the customer is interested in.

12

