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Abstract

Maintaining numerical stability in machine learn-

ing models is crucial for their reliability and per-

formance. One approach to maintain stability of a

network layer is to integrate the condition number

of the weight matrix as a regularizing term into

the optimization algorithm. However, due to its

discontinuous nature and lack of differentiability

the condition number is not suitable for a gradient

descent approach. This paper introduces a novel

regularizer that is provably differentiable almost

everywhere and promotes matrices with low con-

dition numbers. In particular, we derive a formula

for the gradient of this regularizer which can be

easily implemented and integrated into existing

optimization algorithms. We show the advantages

of this approach for noisy classification and de-

noising of MNIST images.

1. Introduction

Numerical stability in neural networks refers to the sensi-

tivity of model predictions and training dynamics to small

perturbations in the input data, model parameters, or other

computational operations. Good stability properties offer

significant benefits, such as consistency enhancement and

robustness in predictions, thereby improving generalization

and interpretability [1]. Instabilities can arise due to several

factors, such as the choice of activation functions, initializa-

tion, optimization hyperparameters, and quantization effects

during training and inference. Several regularization meth-

ods have been developed to intercept this, e.g. dropout,

lasso, randomness, etc. [2]–[4]. Differentiability is essential
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Figure 1. Results of MNIST denoising with autoencoders. Top:

MNIST images with added Gaussian noise. Mid: No regulariza-

tion. Bottom: Proposed regularization. While the vanilla autoen-

coder struggles significantly, the regularized one performs well.

here as it enables the incorporation of such methods into

gradient-based optimization algorithms, hence allowing to

gradually regularize the numerical stability during training.

In this paper, we focus on the numerical stability of a neu-

ral network by means of their weight matrices, and how

to maintain it through regularization. In numerical linear

algebra, a way to measure the numerical stability of a ma-

trix S is via its condition number. For invertible matrices

S it is defined as ∥S∥2
∥

∥S−1
∥

∥

2
, where ∥·∥2 is the matrix

operator norm induced by the Euclidean norm [5]. If S
is non-invertible or non-square, alternative definitions of a

condition number have been proposed. In the context of

least squares minimization a particularly common one is

κ(S) := ∥S∥2
∥

∥S†
∥

∥

2
, (1.1)

where S† is the Moore-Penrose inverse, or pseudoinverse [6].

In this sense, a matrix is considered optimally conditioned

if κ(S) = 1. Existing approaches to promote this kind

of stability are based on adaptive optimization techniques

[7], iterative projections [8], or adding κ directly to the

learning objective as a regularizing term [9]. In the latter

approach, minimizing κ via gradient-based optimization has

been shown to work well. However, it should be noted that

the function κ : Rn×m → R is discontinuous and, therefore

not differentiable.
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To address this issue, this paper introduces an alternative

quantity as regularizer that achieves an optimal condition

number, guarantees full rank, and is differentiable almost

everywhere.

This manuscript is structured as follows. After this introduc-

tion we introduce the proposed regularizer and prove that its

minimization is equivalent to minimizing the condition num-

ber κ. Subsequently, we prove that the regularizer is differ-

entiable almost everywhere and derive the (sub-)differential

of it in Section 3. Finally, in Section 4 we demonstrate the

benefits in numerical experiments.

2. Matrix Regularization

Let S ∈ R
n×m be a matrix and let ν = min{n,m}. Define

σ(S) : Rn×m → R
ν as the function that maps S to its

singular values in decreasing order. Let σmax(S) := σ1(S)
and σmin>0(S) := mini∈{1,...,ν}{σi(S) | σi(S) > 0} de-

note the largest and smallest non-zero singular values of

S, respectively. The rank of a matrix is the number of its

non-zero singular values.

We will denote the singular value decomposition of a

matrix S ∈ R
n×m as S = U(Diag(σ(S)))V T , where

U ∈ R
n×n and V ∈ R

m×m are unitary matrices and

Diag(σ(S)) ∈ R
n×m denotes a rectangular diagonal matrix

with Diag(σ(S))i,i = (σ(S))i.
Throughout this paper we will use the notion of the condition

number κ(S) of a matrix S as defined in (1.1). This quantity

determines the numerical stability of S by indicating how

much the output Sx can change in response to small changes

in the input vector x. It is known that ∥S∥2 = σmax(S) and

that
∥

∥S†
∥

∥

2
= σmin>0(S)

−1
[5]. This means minimizing

κ(S) corresponds to minimizing the ratio
σmax(S)

σmin>0(S) ≥ 1.

While this quantity is perfectly well-defined for arbitrary

non-zero matrices, it has drawbacks.

Clearly, κ(S) = 1 is equivalent to the situation where all

non-zero singular values of S are equal. However, there is

no guarantee or control over the amount of non-zero singu-

lar values. For example, matrices with only one non-zero

singular value trivially attain the minimal condition num-

ber κ. Such matrices are not very useful as one is usually

interested in full-rank solutions. Furthermore, the mapping

κ : Rn×m → R is discontinuous whenever a singular value

approaches zero (Appendix A), and therefore does not al-

low a proper definition of a gradient. To circumvent both

mentioned issues, we propose a different quantity instead:

r(S) :=
1

2
∥S∥22 −

1

2ν
∥S∥2F , (2.1)

where ∥·∥F denotes the Frobenius-norm for matrices. In

the following theorem we show that matrices that minimize

r also minimize κ and additionally have full rank, both

desirable features for numerically stable matrices.

Theorem 2.1. For any S ∈ R
n×m the regularizer r(S)

defined in Eq. 2.1 is non-negative. If S ̸= 0, then r(S) = 0
if and only if S has full rank and κ(S) = 1.

Proof. Since ∥S∥2F =
∑ν

i=1 σ
2
i (S) [5], we observe that

∥S∥22 −
1

ν
∥S∥2F = σ2

max(S)−
1

ν

ν
∑

i=1

σ2
i (S) ≥ 0, (2.2)

as σmax(S) is the largest singular value and, hence, the

difference between σ2
max(S) and the average value of the

squared singular values of S is always non-negative, thus

r(S) ≥ 0. It is straightforward to see that (2.2) attains 0 if

and only if S has ν singular values that are all equal. Since

for full rank matrices S all ν singular values are non-zero,

κ(S) = 1 is equivalent to σmax(S) ≡ σi(S) > 0 for all

i ∈ {1, ..., ν}, which concludes the result.

As noticed before, the condition number is discontinuous

and approaches +∞ if a singular value is approaching zero.

Thus, finding a tight connection between the regularizer

r and the condition number κ becomes challenging. The

following theorem provides a relationship between the reg-

ularizer and the condition number, capturing the divergent

behavior of the condition number, whenever σmin>0(S) van-

ishes. A proof can be found in Appendix C.

Theorem 2.2. For S ∈ R
n×m it holds that

κ(S) ≤ eνσmin>0(S)−2r(S).

This theorem shows that for small r(S), the condition num-

ber remains small as long as σmin>0(S) is bounded away

from zero. This is important as in practical scenarios, achiev-

ing the absolute minimum of regularizers is rarely possible.

We note the close relation to the well-known Tikhonov reg-

ularization [10], also known as L2-regularization or Ridge

regression [11], where ∥S∥2F is used as a regularizer. While

it is effective in improving stability of the problem formula-

tion [12], it does not directly address the issue of maintain-

ing a low condition number of the solution, which is crucial

for numerical stability.

3. Differential Calculus

In this chapter we derive the (sub)-differential properties

and formula of the proposed regularizer r in Eq. (2.1).

First, note that the function r : Rn×m → R is the difference

of two convex functions and therefore non-convex. We will

show that it is differentiable almost everywhere and its sub-

differential exists everywhere. For a function f : Rn → R

the subdifferential at a point x̄ ∈ R
n is simply denoted by

∂f(x̄). In this work, we use the well-known Mordukhovich

subdifferential ∂M , also known as the limiting subdifferen-

tial (Appendix B).
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Intuitively, this subdifferential generalizes the concept of

subgradients to non-convex non-smooth functions, captur-

ing the behavior at points where they are not differen-

tiable by considering limits of gradients of nearby smooth

points. The Mordukhovich subdifferential serves as a uni-

fying framework for subdifferentials, accommodating both

smooth and non-smooth, convex and non-convex functions.

For convex functions it coincides with the convex subdiffer-

ential, and for smooth functions it contains only the gradient

(Theorems B.6 and B.7). For this reason and to enhance

clarity throughout the main part of the paper, we will use

the notation ∂ for all subdifferentials at points, where the

gradient is not unique.

In the following theorems we derive the (sub-)differential

for the regularizer r, using classical results from convex

analysis and the work of A.S. Lewis on the differentiability

of univariate matrix functions [13]. The detailed definitions

and theorems used are listed in the Appendix B.

Theorem 3.1. Let S ∈ R
n×m with a singular value decom-

position given by S = U(Diag(σ(S))V T . Let ui and vi
denote the respective column vectors of U and V .

If σ1(S) > σi(S) for i > 1, then r is differentiable at S:

∇r(S) = σmax(S)u1v
T
1 −

1

ν
S.

Otherwise, the subdifferential of r at S is given by:

∂r(S) = conv{σi(S)uiv
T
i | i : σi(S) = σmax(S)} −

1

ν
S.

The following results underscores the practicality of our reg-

ularizer. It shows that applying gradient descent steps with

respect to our regularizer decreases the condition number of

the updated matrix. A proof is found in Appendix C.

Theorem 3.2. Assume that for S ∈ R
n×m the largest singu-

lar value is unique, i.e. σ1(S) > σi(S) for i ∈ {2, . . . , ν}.

Then there exists a L ∈ (0, 1], s.t. for S′ = S − λ∇r(S)
with λ ∈ (0, L] it holds

κ(S′) < κ(S).

Remark 3.1. For a weight matrix at random initialization,

r is differentiable almost surely. This follows from the fact

that the space of real symmetric matrices with at least one

repeated eigenvalue has codimension 2 in the space of all

real symmetric matrices [14]. Consequently, for a matrix S
whose entries are i.i.d. samples from a typical continuous

distribution, such as Gaussian or uniform, the matrix STS
has distinct eigenvalues with probability one. Therefore, S
almost surely has distinct singular values.

4. Numerical Experiments

We demonstrate the functionality and the benefits of the pro-

posed regularizer through a series of numerical experiments,

Figure 2. Results of least-squares minimization of (4.1) after 105

iterations for different regularization parameter λ values

which are intentionally kept basic to illustrate the core con-

cepts. A comparative analysis with Tikhonov regularization

of the results for the experiments is provided in Appendix D.

A Python implementation can be accessed via the following

link: github.com/danedane-haider/Almost-Smooth-Sailing.

4.1. Basic Functionality

Introducing regularization inevitably leads to a trade-off be-

tween the main optimization goal and achieving the desired

regularization. To illustrate the impact of our regularizer, let

us consider the matrix least-squares problem

min
W∈Rn×m

∥WX − Y ∥2F + λ · r(W ), (4.1)

where X ∈ R
m×d and Y ∈ R

n×d are fixed. The parameter

λ ≥ 0 is our regularization parameter, which controls the

trade-off between the objective and the regularization.

For the experiment we choose n = 20, m = 50 and

d = 100, and let X and Y be Gaussian random matri-

ces. We employ gradient descent with the gradient formulas

provided in Theorem 3.1 for 105 steps, compare the results

for different values of λ and denote the resulting matri-

ces by Wλ. We repeat this experiment 10 times for each

λ ∈ {0, 10, ..., 100} value.

In Figure 2 we plot the ratio of the (approximation) errors
∥WλX−Y ∥

F

∥W0X−Y ∥
F

and the condition number κ(Wλ). We observe

that increasing λ leads to an slight increase in the error

and a sharp decrease in the condition number, as expected.

For large values of λ the condition number becomes nearly

optimal, while the error increases by less than 6% compared

to the non-regularized case.

In the following experiments we integrate the regularizer

into the training of a neural network on MNIST [15], demon-

strating the benefits of a well-conditioned model in the pres-

ence of noise.
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λ κ(W1) SNR ∞ SNR 1 SNR 0.5

0 43.12 98.42 % 93.80 % 71.91 %

10−3 9.43 98.38 % 91.72 % 62.51 %

10−2 4.62 98.11 % 91.95 % 63.61 %

10−1 1.45 96.77 % 93.68 % 74.27 %

1 1.53 96.50 % 92.61 % 84.25 %

Table 1. The table presents the condition numbers of the first net-

work layer (κ(W1)) and the classification accuracy on the test set

with different SNRs: ∞ (no noise), 1, and 0.5. These results are

compared for different values of the hyperparameter λ. The more

noise is present (low SNR), the more effective the regularizer is.

4.2. Noisy MNIST Classification

For a proof-of-concept approach, we choose the classifier

model Φ to be a small neural network with two dense layers,

the first one with sigmoid activation, the second one with

soft-max. To stabilize the weight matrix of the first layer,

W1 ∈ R
2048×784, we perform empirical risk minimization

(ERM) using a regularized cross-entropy loss

L(x; Φ) = −
10
∑

i=1

y[i]− log(Φ(x)[i]) + λ · r(W1), (4.2)

where y[i] and Φ(x)[i] are i-th components of the target and

predicted label vector, respectively. Optimization is done

for 50 epochs using Adam with a learning rate of 0.0001.

Table 1 shows the performances of the same model, trained

with different values of λ, and tested on unseen data with

added Gaussian noise for different signal-to-noise ratios:

∞, 1, and 0.5. In the absence of noise (SNR ∞) one can

clearly see the influence of the regularizer on the classifica-

tion performance in terms of the mentioned trade-off. When

increasing the noise level the better conditioned models

start outperforming the others due to the induced robustness

properties. At initialization the condition number is 4.28.

Clearly, the final goal is to achieve both, best performance

for all noise levels and optimal stability. However, it needs

further research to determine if and when this is possible.

4.3. Denoising MNIST

For denoising we use a basic autoencoder architecture

with two dense layers in the encoder and decoder, respec-

tively. Let the weight matrices in order of application be

denoted by E1, E2, D2, D1. We set E1, D
⊤
1 ∈ R

256×784

and E2, D
⊤
2 ∈ R

32×256 and use ReLU activation for all

except the last layer, which uses a sigmoid activation. For

training, we perform ERM with respect to the regularized

ℓ2 loss

L(x̂; Φ) = ∥x− Φ(x̂)∥2 + λ1 · (r(E1) + r(D1))

+ λ2 · (r(E2) + r(E2)),
(4.3)

λ1 λ2 κ(E1) κ(E2) κ(D2) κ(D1)

0 0 604.43 59.58 30.76 102.82

0.1 0.005 23.39 1.08 1.07 12.35

Table 2. Condition numbers of all weight matrices of the trained

autoencoder for image denoising, with and without regularization.

It is noticeable that the weight matrices of the outer layers (E1, D1)

are absurdly high if not regularized.

where x̂ are noisy versions of x with a SNR of 1. The

optimizer is Adam with a learning rate of 0.05 for 50 epochs.

Table 2 shows the condition numbers of all weight matri-

ces of the naively trained autoencoder (λ1 = λ2 = 0) and

the regularizer one (λ1 = 0.05, λ2 = 0.01). Upon initial

observation, it becomes immediately apparent that the con-

dition numbers of the outer weight matrices are absurdly

high (≈ 600!), indicating severe numerical instabilities. Fig-

ure 1 illustrates the denoising performance, qualitatively.

It is noteworthy that the naively trained model appears to

encounter difficulties in reconstructing the images at all,

whereas the regularized model demonstrates remarkable

performance, even in the presence of substantial noise.

We are aware that there exist more optimal architectures

for both classification [16] and denoising [17], however, the

objective of this experiments is to illustrate the advantages

of the proposed regularizer in a fundamental setting.

5. Conclusion

Traditional approaches to regularization, such as Tikhonov

regularization, often fail to directly address the condition

number, which is crucial for maintaining numerical stability.

This paper introduces a novel almost everywhere differen-

tiable regularizer that enhances numerical stability in neu-

ral networks by promoting low condition numbers in their

weight matrices. Through a theoretical analysis and a series

of numerical experiments, we proved and demonstrated the

properties of this regularizer. In a noisy classification and

a denoising task using the MNIST dataset, models that are

trained with the proposed regularizer exhibit significantly

lower condition numbers of the weight matrices and show

robustness against noise successfully compared to models

that are trained without regularization.
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Appendix

A. On the Discontinuity of the Condition Number

Example A.1. This example shows that the condition number κ(S) := ∥S∥2
∥

∥S†
∥

∥

2
is not a continuous mapping [18]. Let

A =

(

1 0
0 0

)

and E =

(

0 0
0 1

)

.

For each 1 > ε > 0 we have

(A+ εE)† =

(

1 0
0 ε

)†

=

(

1 0
0 ε−1

)

.

Therefore κ(A+ εE) = ∥A+ εE∥2
∥

∥(A+ εE)†
∥

∥

2
= ε−1. Hence A+ εE → A as ε → 0, but limε→0 κ(A+ εE) does

not exist, even though κ(A) = 1.

B. Essentials from Subdifferential Calculus

In this part of the appendix, we include all definitions and results used in the paper to make the document self-contained and

the derivation of the Theorems precise and unambiguous.

B.1. Convex Subdifferential [19]

Definition B.1 (Proper function). An extended value function f : Rn → R ∪ {+∞} is called proper, if its domain

dom(f) := {x ∈ R
n : f(x) < +∞} is not empty.

Definition B.2 (Convex Subdifferential). Let f : Rn → R∪{+∞} be a proper convex function. The (convex) subdifferential

of f at x ∈ dom(f) is defined as

∂f(x) = {v ∈ R
n | f(y) ≥ f(x) + ⟨v, y − x⟩ ∀y ∈ R

n}.

The elements of ∂f(x) are called subgradients of f at x.

Remark B.3. If x /∈ dom(f), then ∂f(x) = ∅.

B.2. Mordukhovich Subdifferential [20]

Definition B.4 (Mordukhovich Subdifferential). Let f : Rn → R ∪ {+∞} be a lower semicontinuous function. The

Mordukhovich (or limiting) subdifferential of f at x ∈ dom(f) is defined as

∂Mf(x) =
{

v ∈ R
n | ∃xk → x, vk → v with vk ∈ ∂̂f(xk) and f(xk) → f(x)

}

,

where ∂̂f(x) denotes the Fréchet subdifferential of f at x, defined by

∂̂f(x) =

{

v ∈ R
n | lim inf

y→x

f(y)− f(x)− ⟨v, y − x⟩

∥y − x∥
≥ 0

}

.

Remark B.5. The Mordukhovich subdifferential generalizes the concept of subgradients to non-convex functions and is

particularly useful in variational analysis and optimization.

B.2.1. COINCIDENCE OF SUBDIFFERENTIALS [20]

Theorem B.6. Let f : Rn → R ∪ {+∞} be a proper, lower semicontinuous, and convex function. Then, for any x ∈ R
n,

∂f(x) = ∂Mf(x).

Theorem B.7. Let f : Rn → R be a differentiable function at x ∈ R
n. Then,

∂f(x) = ∂Mf(x) = {∇f(x)}.

Theorem B.8. Let f : R
n → R ∪ {+∞} be a proper, lower semicontinuous, and convex function. If the convex

subdifferential ∂f(x) at x ∈ R
n is a singleton, say ∂f(x) = {v}, then f is differentiable at x and ∇f(x) = v.
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B.2.2. MORDUKHOVICH SUBDIFFERENTIAL OF THE SUM OF FUNCTIONS [20]

Theorem B.9. Let f : Rn → R ∪ {+∞} be a proper, lower semicontinuous, and convex function, and let g : Rn → R be a

differentiable function. Then, for any x ∈ dom f(x):

∂M (f + g)(x) = ∂f(x) +∇g(x).

B.3. Rules of Differentiation [20]

Definition B.10 (Convex Hull). Let S be a subset of Rn. The convex hull of S, denoted by conv(S), is the smallest convex

set containing S. It can be defined as:

conv(S) =

{

k
∑

i=1

λixi

∣

∣

∣

∣

∣

xi ∈ S, λi ≥ 0,

k
∑

i=1

λi = 1, k ∈ N

}

.

In other words, the convex hull of S is the set of all convex combinations of points in S.

Theorem B.11. Let {fi}i∈I be a finite family of proper, lower semicontinuous, convex, and differentiable functions from

R
n → R. Define f : Rn → R by

f(x) = max
i∈I

fi(x).

Then, for any x ∈ R
n,

∂Mf(x) = conv {∇fi(x) | i ∈ Ix} ,

where Ix = {i ∈ I | fi(x) = maxi∈I fi(x)} denotes the set of indices, for which fi attains the largest value at x.

B.4. Results on unitarily invariant matrix functions [13]

Definition B.12 (Absolutely Symmetric Function). A function f : R
q → R is said to be absolutely symmetric if

f(γ) = f(γs) for any permutation s of the components of γ and for any γ ∈ R
q . Equivalently, f is absolutely symmetric if

f(Qγ) = f(γ) for all γ ∈ R
q and Q ∈ Λq,

where Λq denotes the set of generalized permutation matrices (matrices with exactly one non-zero entry in each row and

each column, that entry being ±1).

This means that the function value at x of absolutely symmetric functions is independent of the ordering of the entries of x.

Recall that σ maps a matrix onto its singular values in nonincreasing order.

Theorem B.13 (Characterization of Convexity). Suppose that the function f : Rq → (−∞,+∞] is absolutely symmetric.

Then the corresponding unitarily invariant function f ◦ σ is convex and lower semicontinuous on C
m×n if and only if f is

convex and lower semicontinuous.

Theorem B.14 (Characterization of Subgradients). Suppose that the function f : Rq → (−∞,+∞] is absolutely symmetric,

and that the m× n matrix X has σ(X) in dom(f). Then

∂(f ◦ σ)(X) =
{

U(Diag µ)V T
∣

∣ µ ∈ ∂f(σ(X)), X = U(Diag σ(X))V T
}

.

Theorem B.15 (Gradient Formula). If a function f : Rq → (−∞,+∞] is convex and absolutely symmetric then the

corresponding convex, unitarily invariant function f ◦σ is differentiable at the m×n matrix X if and only if f is differentiable

at σ(X). In this case,

∇(f ◦ σ)(X) = U(Diag ∇f(σ(X)))V T ,

for X = U(Diag σ(X))V T .

7
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C. Proofs

In this section we proof Theorems 3.1, 2.2, and 3.2 formulated in the main body of the paper.

Proof of Theorem 3.1

Proof. We define f : Rν → R and g : Rν → R as

f(x) = max
i∈1...ν

1

2
x2
i , g(x) =

1

2ν

ν
∑

i=1

x2
i .

One can see that by Definition B.12 both f and g are absolutely symmetric and r(S) = f(σ(S)) + g(σ(S)). The function f
is convex by the rule for pointwise maxima Theorem B.11 and its subdifferential is given by

∂f(x) = conv{xiei | i : x
2
i = x2

max},

where ei denotes the i− th standard unit vector and max denotes the index, for which the largest value is attained. By the

results of Theorem B.13 we deduce that f(σ(S)) is convex and by Theorem B.14

∂(f ◦ σ)(S) = conv{σi(S)uiv
T
i | i : σi(S) = σmax(S)}.

The function g is differentiable everywhere and its gradient is given by ∇g(x) = 1
ν
x. By Theorem B.15 we deduce

∇(g ◦ σ)(S) = U(Diag(∇g(σ(S)))V T

= −
1

ν
U(Diag(σ(S))V T = −

1

ν
S.

Thus, by Theorem B.9, we derive

∂r(S) = conv{σi(S)uiv
T
i | i : σi(S) = σmax(S)} −

1

ν
S.

If the largest singular value of S is unique, ∂r(S) is a singleton and by Theorem B.8 therefore differentiable with

∇r(S) = σmax(S)u1v
T
1 −

1

N
S.

Proof of Theorem 2.2

Proof. Using the Mean Value Theorem for the logarithm, we derive for c ∈ (σk(S)
2, σ1(S)

2)

2 ln (κ(S)) = ln (κ(S)2)

= ln (σ1(S)
2)− ln (σk(S)

2),

=
1

c

∣

∣σ1(S)
2 − σk(S)

2
∣

∣ ,

≤
1

σk(S)2
(σ1(S)

2 − σk(S)
2).

Furthermore estimating the regularizer yields

2r(S) = σ1(S)
2 −

1

ν

k
∑

i=1

σi(S)
2,

≥ σ1(S)
2 −

1

ν

(

(k − 1)σ1(S)
2 + σk(S)

2
)

,

≥ σ1(S)
2 −

1

ν

(

(ν − 1)σ1(S)
2 + σk(S)

2
)

,

=
1

ν
(σ1(S)

2 − σk(S)
2).

8
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Combining those two results we conclude:

ln (κ(S)) ≤
ν

σk(S)2
r(S),

κ(S) ≤ e
ν

σk(S)2
r(S)

.

Proof of Theorem 3.2

Proof. Let S = UDiag(σ(S))V T =
∑ν

i=1 σi(S)uiv
T
i be the singular value decomposition of S. Let k be the index of the

smallest non-zero singular value, i.e. k = argmini{σi(S) | σi(S) > 0 for k ∈ {1, . . . , ν}}. Then it holds that:

S′ = S − λ∇r(S)

=

(

1 +
λ

ν

)

S − λσ1(S)u1v
T
1

=

(

1 +
λ

ν
− λ

)

σ1(S)u1v
T
1 +

(

1 +
λ

ν

) ν
∑

i=2

σi(S)uiv
T
i

= UDiag(σ′)V T ,

where σ′ =
((

1 + λ
ν
− λ

)

σ1(S),
(

1 + λ
ν

)

σ2(S), . . . ,
(

1 + λ
ν

)

σν(S)
)

. Given this decomposition of S′, we notice that σ′

are the singular values of S′, but not necessarily in the right order. Therefore we are going to distinct two cases.

Since S is assumed to have a unique largest singular value, there exists an α > 1 s.t. σ1(S) = ασ2(S). Notice that

κ(S) ≥ α holds. Choose L ∈ (0, 1], s.t. for all λ ∈ (0, L] : 1− λ

1+λ

ν

≥ 1
κ(S) .

1. Case: 1
α
< 1− λ

1+λ

ν

.

By the case distinction we see:

(

1 +
λ

ν
− λ

)

σ1(S) >
1

α

(

1 +
λ

ν

)

σ1(S),

=

(

1 +
λ

ν

)

σ2(S),

and thus σ′
1 > σ′

2. Since σi(S) ≥ σj(S) for i < j, we deduce that σ′ are exactly the singular values of S′ in non-increasing

order. Furthermore the amount of non-zero singular values stays the same. Therefore

κ(S′) =
σ′
1

σ′
k

=

(

1 + λ
ν
− λ

)

(

1 + λ
ν

)

σ1(S)

σk(S)

=

(

1−
λ

1 + λ
ν

)

κ(S).

2. Case: 1
α
≥ 1− λ

1+λ

ν

≥ 1
κ(S) .

Similarly to the previous case, simple arithmetics show that in this case σ′
2 becomes the largest singular value of S′ and σ′

k

remains the smallest. Therefore:

κ(S′) =
σ′
2

σ′
k

=
σ2(S)

σk(S)
=

1

α

σ1(S)

σk(S)

=
1

α
κ(S).

In both cases we see that κ(S′) < κ(S), since λ ∈ (0, L] and α > 1.

9
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Figure 3. MNIST denoising results with (bottom) and without regularization (mid) with three different SNRs, from left to right: 10, 1, 0.5.

Already with reconstructing the images from almost no noise, the non-regularized autoencoder struggles. Due to the high condition

numbers in the network, the output is very sensitive to perturbations in the input, resulting in the network being unable to learn properly.

Figure 4. Left: Results of MNIST denoising with SNR 1 with Tikhonov regularization for two different sets of parameters. Mid:

λ1 = 0.01, λ2 = 0.0001. Bottom: λ1 = 1, λ2 = 0.01. Right: Results of least-squares minimization of (4.1) after 105 iterations with

Tikhonov Regularizer for different regularization parameter λ values

D. Discussion on Tikhonov Regularization

Tikhonov Regularization is a well-known method used to stabilize the solutions of ill-posed problems and to prevent

overfitting in machine learning models [21], [22]. This method adds a regularization term to the loss function, which

penalizes large coefficients in the solution, and helps in balancing between fitting the data and simplicity in the solution.

We include this discussion on Tikhonov regularization due to its widespread recognition and frequent application as a

common regularizer, although its direct impact on the condition number of the weight matrices remains, to the best of the

authors knowledge, ambiguous in the existing literature.

Mathematically, Tikhonov regularization adds to the standard least squares problem a penalty term proportional to the square

of the norm of the coefficients, in our case:

min
W∈Rn×m

∥WX − Y ∥2F + λ · ∥W∥2F ,

where λ is the regularization parameter controlling the trade-off between model fit and the magnitude of coefficients [10].

D.1. Impact on Condition Number

While Tikhonov regularization is effective in promoting stability in poorly behaved optimization problems and preventing

overfitting, it does not directly address the condition number of the weight matrices. In the context of neural networks, using

the Frobenius norm as a regularizer can help in reducing the overall magnitude of the weights but might not sufficiently

control the condition number, as we will see in the following simulation.

We repeat the simulations from Section 4.1 for Tikhonov Regularization, where r(W ) = ∥W∥2F in (4.1). The results are

shown in Figure 4. We observe that Tikhonov regularization slightly reduces the condition number, but not significantly,

before the (approximation) error ∥WλX − Y ∥F becomes too large compared to the non-regularized error ∥W0X − Y ∥F .

10
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λ κ(W1) SNR ∞ SNR 1 SNR 0.5

0 43.29 98.42 % 93.80 % 71.91 %

10−3 56.43 98.31 % 94.34 % 74.24 %

10−2 242.39 98.25 % 94.83 % 76.94 %

10−1 4044.34 98.15 % 95.10 % 78.67 %

1 4020.47 97.68 % 95.02 % 82.79 %

Table 3. Results when using Tikhonov regularization for MNIST

classification.

λ1 λ2 κ(E1) κ(E2) κ(D2) κ(D1)

1 0.01 12.80 1.43 2.65 6061.53

0.1 0.001 1277.21 31641.66 20358.70 5347.09

Table 4. Condition numbers of the weight matrices when using

Tikhonov regularization for denoising in two parameter settings.

D.2. Numerical Experiments with Tikhonov Regularization

We conducted numerical experiments on the same problems as in Section 4 to compare the performance of Tikhonov

regularization with the proposed method. The results are summarized below:

D.2.1. MNIST CLASSIFICATION

Table 3 shows the classification accuracy and condition numbers for different levels of noise (SNR) using Tikhonov

regularization. As λ increases, the condition numbers of the weight matrices increase dramatically, indicating potential

numerical instability. Yet, we see that it performs well at a medium noise level (SNR 1) and outperforms the baseline, as

well as our proposed regularizer in all settings of λ. For the high noise level (SNR 0.5), however, it falls back again.

D.2.2. MNIST DENOISING

Figure 4 illustrates the denoising performance with low (mid) and high (bottom) influence by means of the values λ1, λ2.

Table 4 shows the corresponding condition numbers. We see that Tikhonov regularization fails to maintain low condition

numbers consistently across all layers, which explains the worse denoising performance compared to the proposed regularizer.

D.3. Conclusion

While Tikhonov regularization offers benefits in terms of regularizing the magnitude of weights and robustness to a medium

level of noise, it does not effectively control the condition number of weight matrices, leading to potential numerical

instability. The proposed regularizer in this paper addresses this limitation by specifically targeting the condition number,

thus enhancing the robustness and stability of neural networks, especially in very noisy environments.
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