
A Differentiable Approach to Multi-scale Brain Modeling

Chaoming Wang 1 Muyang Lyu 2 3 Tianqiu Zhang 2 3 Sichao He 2 3 Si Wu 1 2 3 4 5 6

Abstract

We present a multi-scale differentiable brain mod-

eling workflow utilizing BrainPy [1], [2], a unique

differentiable brain simulator that combines ac-

curate brain simulation with powerful gradient-

based optimization. We leverage this capabil-

ity of BrainPy across different brain scales. At

the single-neuron level, we implement differen-

tiable neuron models and employ gradient meth-

ods to optimize their fit to electrophysiologi-

cal data. On the network level, we incorporate

connectomic data to construct biologically con-

strained network models. Finally, to replicate ani-

mal behavior, we train these models on cognitive

tasks using gradient-based learning rules. Exper-

iments demonstrate that our approach achieves

superior performance and speed in fitting general-

ized leaky integrate-and-fire and Hodgkin-Huxley

single neuron models. Additionally, training a

biologically-informed network of excitatory and

inhibitory spiking neurons on working memory

tasks successfully replicates observed neural ac-

tivity and synaptic weight distributions. Overall,

our differentiable multi-scale simulation approach

offers a promising tool to bridge neuroscience

data across electrophysiological, anatomical, and

behavioral scales.

1. Introduction

Modeling the entire human brain within a computer has been

a long-standing dream for humanity [3]. However, it rep-

resents an immense challenge, as the accurate construction

of whole-brain models that coherently link multiple spa-

1School of Psychological and Cognitive Sciences, 2Academy
for Advanced Interdisciplinary Studies, 3Peking-Tsinghua Center
for Life Sciences, 4IDG/McGovern Institute for Brain Research,
5Center of Quantitative Biology, 6Bejing Key Laboratory of Be-
havior and Mental Health, Peking University, Beijing, China. Cor-
respondence to: Chaoming Wang <wangchaoming@pku.edu.cn>,
Si Wu <siwu@pku.edu.cn>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

tial scales faces the obstacle of insufficient biological data

collection [4]. Despite the numerous efforts dedicated to

recording and measuring the brain, our observations remain

partial, and the information gathered from experimental

recordings falls far short of what is necessary to simulate a

realistic brain [5]. For instance, at the single neuron level,

neurons exhibit diverse firing patterns, while their underly-

ing ionic channels are difficult to discern. Automatic neuron

fitting has therefore become a valuable tool for bridging the

gap between models and recorded neuronal data, as it can

estimate the parameters of these models [6], [7]. At the

network level, we have recorded neural activities such as

magnetoencephalography (MEG), electroencephalography

(EEG), and functional magnetic resonance imaging (fMRI)

under diverse conditions. However, we still do not fully un-

derstand why the underlying neuronal circuits produce such

neural activities, despite the availability of connectome data

[8]–[10]. At the behavioral level, brain simulation network

models still struggle to replicate the behavior of how the

animal performs cognitive tasks [11]–[13].

Consequently, achieving accurate multi-scale brain mod-

eling necessitates the development of highly efficient op-

timization methods capable of seamlessly integrating and

reconciling data across multiple scales, spanning from indi-

vidual neurons to large-scale neural networks and cognitive

processes. However, conventional brain simulators, such

as NEURON [14], NEST [15], and Brian2 [16], pose sig-

nificant challenges for high-order optimization due to their

inherent black-box nature and lack of differentiability. The

absence of differentiability restricts researchers to slower

and less efficient optimization techniques, and even manual

heuristic parameter searches [13]. Moreover, the inability to

leverage powerful gradient-based optimization techniques

usually lead to longer computation times, and suboptimal

model fits, further impeding the scalability of larger and

more complex systems and exacerbating the challenges of

multi-scale brain modeling.

To overcome these limitations, there is a pressing need for

brain simulation frameworks that are natively differentiable,

enabling efficient gradient-based optimizations. Recently,

BrainPy [1], [2] has been proposed as a differentiable brain

simulator to bridge this gap. By introducing fundamental

features of a brain simulator, such as event-driven compu-

tation, sparse operators, numerical integrators, and a multi-
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scale model building interface, into the numerical comput-

ing framework JAX [17], BrainPy enables faithful brain

simulation while inheriting the automatic differentiation

(autograd) capabilities of JAX.

Leveraging BrainPy’s strengths, we propose a workflow for

differentiable multi-scale brain modeling (Figure 1). This

workflow utilizes gradient-based optimization to fit differ-

entiable models of single neurons and synapses. We then in-

corporate connectomic data from neuroscience experiments

to construct data-driven, biologically constrained spiking

neural networks (SNNs). Finally, to replicate animal behav-

ior, we train these biological-informed models on cognitive

tasks using gradient-based online learning rules. Our ex-

periments demonstrate the feasibility of our approach for

achieving accurate multi-scale brain modeling.

2. Methods

We first present designs to enable our entire workflow dif-

ferentiable.

2.1. Differentiable neuron models with surrogate

gradients

Biological neurons generate non-differentiable binary spike

events. This discontinuous nature of spiking operation, rep-

resented by the Heaviside function H(v), where v is the

membrane potential, poses a challenge in applying gradient-

based optimizations to SNN models. This is because the

derivative of spiking operation is a Dirac delta function

δ(v). In practice, surrogate gradients, which replace the

delta gradient function with a smooth surrogate function,

such as Gaussian [18], linear [19], SLayer [20], or multi-

Gaussian function [18], have demonstrated their efficacy

in training SNNs using gradient descent [21]–[23]. We ap-

ply this approach in our workflow to enable gradient-based

optimization. Moreover, we provide a suite of surrogate

gradient functions (listed in Appendix C) to facilitate the

selection of the most suitable function for a given task.

2.2. Event-driven differentiable synaptic operators

To mimic the brain’s efficient communication, traditional

brain simulators leverage custom data structures for event-

driven computations and spike communication [16], [24],

[25]. However, these approaches often clash with autograd

systems, hindering gradient-based optimization of synaptic

computations. We address this challenge by introducing

differentiable event-driven synaptic operators compatible

with autograd frameworks (details in Appendix D). We uti-

lize the compressed sparse row (CSR) format for storing

synaptic connections and implement event-driven opera-

tions based on CSR arrays (Listing S2). Notably, these op-

erators provide both forward and backward differentiation

rules for differentiable computations (Listing S3). Further-

more, BrainPy’s event-driven operators achieve significant

speedups (one to two orders of magnitude) compared to

traditional sparse and dense alternatives [1], [2]. This effi-

ciency benefit applies to both forward state computations

and backward gradient calculations.

3. Workflow for multi-scale differentiable

brain modeling

Based on the differentiable neuronal and synaptic building

blocks described earlier, we present a workflow for multi-

scale differentiable brain modeling. This approach seam-

lessly integrates microscopic neuron models, mesoscopic

neural circuit connectivity, and macroscopic computational

tasks through gradient-based optimization algorithms (see

Figure 1).

Figure 1. Multi-scale differentiable brain modeling workflow. The

entire workflow is executed using the differentiable brain simu-

lator BrainPy [1], [2]. (A) At the microscale level, the single

neuron and synapse model are fitted based on electrophysiologi-

cal recording data and gradient-based optimizations. (B) At the

mesoscopic level, connectome constraints are incorporated into

the network construction, facilitating the integration of structural

connectivity information. (C) At the macroscale behavior level,

gradient-based optimization methods are applied to train the above

data-constrained model networks to reproduce the cognitive behav-

iors as seen in humans or animals.

At the single neuron and synapse level (Figure 1A), accu-

rate modeling of individual neurons and synaptic currents

is made possible by existing knowledge and experimental

techniques in cellular biophysics [26], [27]. To facilitate

large-scale neuronal network simulation and training, we

employ point models, which capture diverse cellular be-

haviors while remaining differentiable and computationally

efficient. Furthermore, to construct large sets of neuron

models from empirical datasets conveniently and quickly,

we employ gradient-based optimization (e.g., L-BFGS-B

algorithm [28], [29]). This fitting procedure, powered by

JAX [17], is easily scalable and parallelizable through the

jax.vmap or jax.pmap semantics.
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At the network level (Figure 1B), we incorporate brain

structure and connectome information to construct realistic

brain models. Universal function approximation [30], [31]

and Kolmogorov-Arnold representation theorems [32], [33]

suggest that distinct neural networks with complete differ-

ent connectivity can perform the same computational tasks.

Therefore, utilizing brain connectome-constrained neural

models is an essential step in linking the organizational

features of neuronal networks and the spectrum of cortical

functions. Recent quantitative databases of the connectomes

of various animals (e.g., Drosophila [10], Zebrafish [34],

macaque [35], [36], mice [37], [38], and marmoset [39]),

have provided rich resources for this purpose.

At the behavioral level (Figure 1C), we utilize gradient-

based optimizations to train above brain data-constrained

networks on computational tasks. While handcrafted tuning

and manually engineered network connectivity can imple-

ment specific functions, they fall short in generating brain-

scale intelligence. Here, we optimize unknown network

parameters using deep learning techniques [40], enabling

the model to learn and perform tasks similar to an animal.

Notably, we employ the online learning method from Brain-

Scale [41], which offers an online approximation of back-

propagation with low computational complexity and high

training performance.

4. Training biologically-informed spiking

networks on cognitive tasks

To exemplify the proposed workflow, we conducted training

on a biologically-informed excitatory and inhibitory (EI)

spiking network using a working memory task. The dy-

namics of spiking neurons in our EI network are governed

by generalized integrate-and-fire (GIF) neurons [42]. The

synaptic dynamics are implemented using the Exponential

model. To accurately capture the characteristic tonic spik-

ing and adaptation [27], [43], the firing pattern of each GIF

neuron is optimized using the L-BFGS-B algorithm (Sec-

tion 4.1). The N neurons are divided into excitatory and

inhibitory neurons with a 4:1 EI ratio. The connectivity

between the N neurons in the network is established based

on principles derived from the neocortical connectome [44].

For training both the excitatory and inhibitory weights to per-

form the working memory tasks (Section 4.2), we employed

the online learning framework BrainScale [41]. Complete

details of the EI model please see Appendix F.

4.1. Neuron fitting

Our neuron fitting procedure is depicted in Figure 2. The

experimental data is obtained through current-clamp record-

ings, where the recorded currents mimic synaptic activity

observed in vivo (Figure 2A). The neuron is defined in

BrainPy as a differentiable model, and a loss function is

employed to quantify the disparity between the model’s

predictions and the experimental data. The mean square

error can be used for fitting the membrane potential, while

the gamma factor [45] can be employed for fitting spike

trains (Appendix E). These criteria are used to calculate

the gradients and subsequently update the parameter val-

ues. Through iterative gradient estimations and parameter

updates, the fitting procedure aims to identify the optimal

parameters that best align with the experimental recording

data (Figure 2B).

A C

B Initialization Simulation Gradient Update

＋
＋

＋

＋

Figure 2. Overview of the neuron fitting procedure. (A) Experi-

mental data: Step currents are injected into the neuron, and the

resultant membrane potential responses are recorded. (B) Illustra-

tion of the optimization procedure: Parameter values are initialized

from a distribution (initialization). Neurons with these parameters

are simulated in parallel, and their outputs are compared with the

ground truth data (simulation). The prediction error is utilized to

estimate gradients (gradient), which are then used to update the

initialized parameters for the subsequent iteration (update). (C)

Fitting results of the HH model on a cortical pyramidal cell using

five different optimization methods.

Our fitting method is first tested on GIF neuron models to

capture characteristic cortical firing patterns such as spike

frequency adaptation, phasic spiking, and rebound spiking.

We compare the performance and speed of our gradient-

based methods with conventional optimization algorithms,

namely differential evolution (DE), DE algorithm with two

points crossover (TwoPointsDE), and particle swarm opti-

mization (PSO) provided in Nevergrad [46], as well as the

Bayesian optimization method in scikit-optimize [47].

The experiments demonstrate that L-BFGS-B and Bayesian

optimizations exhibit the best fitting performance (Figure

S7), while DE, TwoPointsDE, and PSO methods demon-

strate faster fitting speed (Table S2). Although Bayesian

optimization shows good performance, it converges slowly.

These results indicate that the gradient-based L-BFGS-B

method provides a good tradeoff between fitting perfor-

mance and speed.

We further evaluate our fitting method on Hodgkin-Huxley

(HH) neuron models using realistic electrophysiological

recording data. Figure 2C and Figure S8 demonstrate the
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application of five fitting methods to an in vitro intracellular

recording of a cortical pyramidal cell. The fitting results

reveal that L-BFGS-B exhibits the best fitting performance

(Figure 2C), achieving nearly perfect fitting of membrane

potentials with a loss close to zero (Table S3). Moreover,

our fitting methods demonstrate comparable speed to the

evolutionary algorithm while being significantly faster than

the Bayesian optimization method (Table S3). These find-

ings underscore the potential of differentiable optimization

as a promising approach for neuronal fitting.

4.2. Task training

Understanding how the brain performs complex compu-

tations remains a challenge. Recent advances in training

recurrent neural networks have demonstrated high perfor-

mance across various tasks, offering a promising avenue

for uncovering the underlying dynamical and computational

mechanisms involved [48], [49]. However, these networks

often lack essential biological constraints, such as spike-

based communication, structural connectivity, and the dis-

tinction between excitatory and inhibitory neurons. In this

study, we propose training biological SNNs while explicitly

considering electrophysiological, anatomical, and structural

constraints. Specifically, we construct a foundational EI

network using conductance-based GIF neurons fitted to data

(see Section 4.1), incorporating connectomic connectivity

[44] and conductance-based synaptic dynamics [50] to im-

plement the working memory task through gradient-based

optimization algorithms [41].
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Figure 3. Training the biological-informed excitatory and in-

hibitory spiking networks using the evidence accumulation task.

(A) The input spike train. (B) The recurrent spiking dynamics. (C,

D) The membrane potentials of five excitatory (C) and inhibitory

(D) neurons. (E, F) The synaptic weight distribution before (E)

and after (F) training.

To generate the training data, we followed the experimental

setup of an evidence accumulation task [51]. The input

spike train was divided into four segments: the left and

right stimuli, the recall cue, and the background noise (Fig-

ure 3A). Our network was trained to separately count the

left and right cues and generate the correct response by

comparing the resulting numbers after prolonged periods

of delay. We recorded the responses of both the excita-

tory and inhibitory neurons in the recurrent layer (Figure

3B). During the evidence accumulation period, inhibitory

neurons exhibited significant responses after each stimulus

presentation, whereas excitatory neurons displayed lower

firing rates. However, during the recall period, inhibitory

neurons rarely spiked. We also examined the membrane

potential of all neurons (Figure 3C and D). In contrast to the

current-based synapse model commonly used in deep learn-

ing applications, our conductance-based synapse modeling

ensured that the membrane potential remained constrained

between excitatory and inhibitory reversal potentials, elimi-

nating the need for voltage regularization. Additionally, we

analyzed the synaptic weight distribution before and after

training (Figure 3E and F). We initialized excitatory and

inhibitory weights with a normal distribution and took their

absolute values (Figure 3E). After training, synaptic weights

exhibited a distribution similar to that observed in biological

measurements. Specifically, excitatory weights followed the

tail of a Gaussian distribution [52], while inhibitory weights

showed a log-normal distribution [53], [54].

5. Conclusion and discussion

We proposed a novel workflow for differentiable multi-scale

brain modeling by integrating various levels of information

and constraints to build brain models that can reproduce

cognitive behaviors observed in humans or animals. We

demonstrated this workflow by training a biologically in-

formed GIF network to accomplish an evidence accumula-

tion task. Although the current illustration utilizes a network

with hundreds of neurons, the online learning algorithms

employed are readily scalable to much larger models (refer

to Appendix G for scalability analysis). Overall, our pro-

posed differentiable approach has the potential to accelerate

progress in developing accurate and biologically plausible

multi-scale brain models, ultimately leading to a deeper

understanding of the brain.

However, many important challenges remain to be addressed

in the future (see Appendix H for details). These chal-

lenges include balancing data quality and availability with

model realism, determining the appropriate granularity for

simplifying and approximating biological processes within

the model, and ensuring the interpretability and theoretical

grounding of the derived models. Additionally, addressing

the computational efficiency of handling large-scale net-

works with high-dimensional parameter spaces is crucial.
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A. Software and Data

The in vitro intracellular recording of a cortical pyramidal cell can be obtained in brain2modelfitting [55]. BrainPy

is available publicly on GitHub at https://github.com/brainpy/BrainPy. As of now, BrainScale [41] is

undergoing a review process and is temporarily unavailable. However, it is expected to be released in the future. Additional

packages related to the BrainPy ecosystem are accessible through the BrainPy GitHub organization at https://github.

com/brainpy. The code necessary to reproduce the results presented in this paper can be found in the following GitHub

repository: https://github.com/chaoming0625/differentiable-brain-modeling-workflow.
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C. Surrogate gradient functions

In recent years, spiking neural networks (SNNs) have garnered attention due to their promising advantages in energy

efficiency, fault tolerance, and biological plausibility. However, training SNNs using standard gradient descent methods is

challenging because their activation functions are discontinuous and have near-zero gradients across most points. To tackle

this issue, a common approach is to replace the non-differentiable spiking function with a surrogate gradient function [22].

A surrogate gradient function is a smooth approximation of the derivative of the activation function, enabling the application

of gradient-based learning algorithms to SNNs. The BrainPy library offers a variety of surrogate gradient functions, each

possessing different characteristics such as smoothness, boundedness, and biological plausibility. A comprehensive list of

these functions is provided in Table S1, and an example of a surrogate gradient function is illustrated in Figure S4.

In practical applications, users can employ these surrogate gradient functions to determine whether a spike is generated at

the current time step, as demonstrated in the following Python code:

1 # V: the membrane potential

2 # V_th: the threshold of the membrane potential to generate a spike

3 spike = brainpy.math.surrogate.arctan(V - V_th)

Listing S1. The example code to employ the surrogate function as the method to determine whether a spike is generated.

By utilizing the appropriate surrogate gradient function, the code above allows users to assess whether a spike occurs based

on the comparison between the membrane potential (V) and the threshold (V_th).

D. Event-driven synaptic operators

Synaptic computation usually needs event-driven matrix-vector multiplication y = Mv, where v is the presynaptic spikes,

M the synaptic connection matrix, and y the postsynaptic current. Specifically, it performs matrix-vector multiplication in a

sparse and efficient way by exploiting the event property of the input vector v. Instead of multiplying the entire matrix M

by the vector v, which can be wasteful if v has many zero elements, event-driven matrix-vector multiplication in BrainPy

only performs multiplications for the non-zero elements of the vector, which are called events. This can reduce the number

of operations and memory accesses, and improve the running performance of matrix-vector multiplication.

Particularly, we implement event-driven operators based on arrays with the compressed sparse row (CSR) format and

provide both forward and backward differentiation rules. The CSR format represents the synaptic connectivity between pre-

and post-synaptic neuron populations, comprising three arrays: <val, col_ind, row_ptr>. val stores the non-zero

synaptic weights, col_ind stores the postsynaptic indices of the corresponding non-zero weights, and row_ptr stores the

starting indices of each presynaptic neuron in the val and col_ind arrays.

To perform an event-driven linear transformation y = xW, where W is the CSR-formatted connectivity, the pseudo-code

is implemented as:

1 def csrmv(val, col_ind, row_ptr, x, y):

2 for i, event in enumerate(x):

3 if event:

4 for j in range(row_ptr[i],row_ptr[i+1]):
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Figure S4. The collection of surrogate gradient functions g
′(x) in BrainPy [1], [2], where x ≥ 0 represents the neuronal membrane

potential exceeding the spiking threshold.

5 y[col_ind[i]] += val[j]

Listing S2. The forward pass of event-driven sparse matrix-vector multiplication.

To efficiently compute the gradients of dx and dW, we implement the event-driven gradient computation as follows:

1 # compute dx

2 def csrmv_dx(val, col_ind, row_ptr, dy, dx):

3 for i in range(dy.shape[0]):

4 r = 0.

5 for j in range(row_ptr[i], row_ptr[i+1]):

6 r += val[j] * dy[col_ind[j]]

7 dx[i] = r

8

9 # compute dW

10 def csrmv_dW(col_ind, row_ptr, x, dy, dW):

11 for i, event in enumerate(x):

12 if event:

13 for j in range(row_ptr[i], row_ptr[i+1]):

14 dW[j] = dy[col_ind[j]]

Listing S3. The backward pass of event-driven sparse matrix-vector multiplication.
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Table S1. The full list of surrogate gradient functions provided in BrainPy.

Surrogate Gradient Function Implementation

Sigmoid function brainpy.math.surrogate.sigmoid

Piecewise quadratic function [56], [57] brainpy.math.surrogate.piecewise_quadratic

Piecewise exponential function [22] brainpy.math.surrogate.piecewise_exp

Soft sign function brainpy.math.surrogate.soft_sign

Arctan function brainpy.math.surrogate.arctan

Nonzero sign log function brainpy.math.surrogate.nonzero_sign_log

ERF function [57]–[59] brainpy.math.surrogate.erf

Piecewise leaky ReLU function [57], [60] brainpy.math.surrogate.piecewise_leaky_relu

Squarewave Fourier series brainpy.math.surrogate.squarewave_fourier_series

S2NN function [61] brainpy.math.surrogate.s2nn

q-PseudoSpike function [62] brainpy.math.surrogate.q_pseudo_spike

Leaky ReLU function brainpy.math.surrogate.leaky_relu

Log-tailed ReLU function [63] brainpy.math.surrogate.log_tailed_relu

ReLU function [22] brainpy.math.surrogate.relu_grad

Gaussian function [18] brainpy.math.surrogate.gaussian_grad

Multi-Gaussian function [18] brainpy.math.surrogate.multi_gaussian_grad

Inverse-square function brainpy.math.surrogate.inv_square_grad

SLayer function [20] brainpy.math.surrogate.slayer_grad

E. Loss functions for neuron fitting

E.1. Mean square error for fitting membrane potentials

In order to align the simulated membrane potential with the experimentally recorded potentials, we compute the mean

squared difference between the data Ŷi and the simulated trace Yi using the mean square error formula:

MSE =
1

T

T
∑

i=1

(Yi − Ŷi)
2, (1)

where T is the total number of times.

E.2. Gamma factor for fitting spike trains

The Gamma factor [45] serves as a metric for assessing the agreement between spike timings in the simulated and target traces.

It is commonly employed to evaluate the performance of spiking neuron models when fitting them to electrophysiological

recordings of individual neurons. The gamma factor primarily focuses on the proportion of predicted spikes that coincide

with the spikes in the recording. Essentially, it quantifies how accurately the model reproduces the timing of the neuron’s

firing events. The calculation of the gamma factor is as follows:

Γ =

(

2

1− 2∆rexp

)(

Ncoinc − 2δNexprexp

Nexp +Nmodel

)

(2)

where

• Ncoinc: number of coincidences

• Nexp and Nmodel: number of spikes in experimental and model spike trains

• rexp: average firing rate in experimental train

• 2∆Nexprexp: expected number of coincidences with a Poisson process
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The gamma factor Γ equals 1 when the two spike trains match perfectly and decreases for less precise matches. It reaches 0

when the number of coincidences matches the expected count from two homogeneous Poisson processes with the same

firing rate.

To turn the Gamma factor into a loss function, we add a correction term:

Loss = 1 + 2
|rdata − rmodel|

rdata
− Γ, (3)

where rdata and rmodel are the firing rates measured in the data and model, respectively.

F. Excitatory and inhibitory spiking network models

F.1. Network structure

The architecture of recurrent excitatory and inhibitory spiking networks used here is shown in Figure S5, where the recurrent

layer consists of excitatory and inhibitory spiking units that receive and process the time-varying inputs from the input layer,

and generate the desired time-varying outputs. The input layer encodes the sensory information relevant to the task, while

the readout layer produces a decision in terms of an abstract decision variable.

Excitatory neuron

Inhibitory neuron

Inputs Recurrent Spiking Units Outputs

Excitatory synapse

Inhibitory synapse

Figure S5. Architecture of the recurrent spiking EI network. The network consists of excitatory (E) and inhibitory (I) spiking units,

denoted by r(t). These units are trained using an online gradient-based learning framework BrainScale [41]. Time-varying inputs u(t)
are received by the network, and the recurrent activity is encoded through time-varying outputs z(t). The inputs represent task-relevant

sensory information or internal rules, while the outputs encode a decision in the form of an abstract decision variable, probability

distribution, or direct motor output. Each spiking unit exhibits its own dynamics, and the firing rate of each unit is adjusted through our

differentiable fitting method (Section 4.1). The connectivity between the spiking units is determined based on connectomic measurements

[44].

F.2. Input layer

The input layer in our spiking neural network is designed for an evidence accumulation task and comprises Nin = 100
spiking neurons (Figure 3A). These neurons are divided into four functionally distinct groups:

• Left and Right Stimuli: The first two groups represent the left and right stimuli, respectively. Each group contains 25
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neurons and fires at a maximum rate of 40 Hz during the evidence accumulation period (first 1100 ms). This neural

activity encodes the sensory evidence for each side.

• Recall Signals: The third group consists of 25 neurons that generate recall signals during the output period (last 150

ms). These neurons are crucial for retrieving relevant information from memory to aid in the decision-making process.

• Background Noise: The fourth group comprises 25 neurons that fire at a constant rate of 10 Hz throughout the entire

simulation. This group simulates background activity from other cortical areas, adding a layer of realism to the network.

F.3. Recurrent spiking units

For the spiking model, the recurrent cell was implemented with the spiking neuron model. In this study, the spiking neuron

is modified from the generalized integrate-and-fire neuron model [42]. In particular, this model has two internal currents,

one fast and one slow. Its dynamic behavior is given by

τI1
dI1
dt

= −I1, fast internal current (4)

τI2
dI2
dt

= −I2, slow internal current (5)

τV
dV

dt
= −V + Vrest +R(I1 + I2 + Iext), membrane potential (6)

When V i of i-th neuron meets Vth, the modified GIF model fires:

Ii1 ← A1, (7)

Ii2 ← Ii2 +A2, (8)

V i ← Vrest, (9)

where τI1 denotes the time constant of the fast internal current, τI2 the time constant of the slow internal current, τV the

time constant of membrane potential, R the resistance, Iext the external input, Vrest the resting potential, and A1 and A2 the

spike-triggered currents.

To match the firing patterns observed in electrophysiological experiments, particularly the tonic spiking and adaptation, we

fit the neuron parameters A1, A2, τI1 , τI2 using our gradient-based optimization methods (Section 4.1).

For the forward spiking operation, we use the Heaviside function to generate the spike:

spike(x) = H(V[t]− Vth) = H(x), (10)

where x is used to represent V[t]− Vth.

To make the non-differentiable spiking activation compatible with the gradient-based algorithm, we considered a surrogate

gradient (Appendix C):

spike′(x) = ReLU(α ∗ (width− |x|)) (11)

where width = 1.0, and α = 0.3. α is the parameter that controls the altitude of the gradient, and width is the parameter

that controls the width of the gradient.

F.4. Synapse dynamics

For modeling the synaptic connections between these neurons, we employed a conductance-based current approach. The

input current (Iiext) for each neuron i is calculated as

Iiext = giexc(Eexc − V i) + giinh(Einh − V i), (12)

where the reversal potentials are Eexc = 0 mV and Einh = −120 mV.
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The synaptic dynamics are characterized by exponential synapses,

τsyn
dgexe/inh

dt
= −gexe/inh (13)

where τsyn is the time constant of the synaptic state decay, and tki is the k-th spiking time of the presynaptic neuron i.

Moreover, the appropriate synaptic variable of the postsynaptic conductance g
j
exe/inh increases when a presynaptic neuron

(i) fires. For an excitatory presynaptic neuron,

gjexc → gjexc +W exc
ij , (14)

and for an inhibitory presynaptic neuron,

g
j
inh → g

j
inh +W inh

ij . (15)

Typically, we set τsyn = 10 ms.

F.5. Scaled membrane potential

The subthreshold dynamics of biological neurons and synapses usually operate with very negative membrane potentials,

often in the range of -50 mV to -80 mV. These large negative values can create challenges during training, especially when

using low-precision computing. To address this, we employ a rescaling approach that normalizes the membrane potential.

The rescaling process involves an offset value (Voffset) and a scaling factor (Vscale). Every membrane potential (V ) is

transformed using the following equation:

Vs =
V − Voffset

Vscale

(16)

Here, Vs represents the rescaled membrane potential. By setting Vscale such that the firing threshold becomes 1 after

rescaling, we achieve a more manageable range of values for training purposes, particularly with limited computational

precision. Particularly, we use Vscale = 20 and Voffset = 60 mv, so that the membrane threshold is normalized to 1, and

reversal potentials of excitatory and inhibitory synapses are rescaled to 3.0 and -3.0.

F.6. Network connectivity

We designed a network comprising 400 cells, where the excitatory to inhibitory neuron ratio was set to 4:1 (Figure S5). To

establish connectivity within the network, we randomly interconnected these neurons with a connection probability of 10%.

This choice of connection probability takes into account the observed higher values for neighboring neurons in the cortex, as

well as the lower values for neurons that are more distant [44].

Apart from the recurrent connections, the input neurons project excitatory synapses to all the recurrent neurons. As for the

readout layer, since there is no known biological correspondence for how the brain interprets the recurrent signals, we opted

for a linear projection with leaky dynamics.

F.7. Readout layer

The spiking activity of the recurrent neurons is read out using a linear layer that incorporates the leaky dynamics of the

neurons:

τout
dy

dt
= −y +W outz+ bout, (17)

where τout is the time constant of the output neuron, W out the synaptic weights between the recurrent and output neurons,

and bout the bias. In the discrete description, the output dynamics is written as:

y[t+∆t] = αouty[t] + (W outz[t] + bout)∆t, (18)

where αout = e
−

1

τout
∆t

.
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F.8. Weight initialization

Initial input and recurrent weights were drawn from a Gaussian distribution and taken the absolute values Wji ∼
∣

∣

∣

√

s
nin

N(0, 1)
∣

∣

∣
, where nin is the number of afferent neurons, N(0, 1) is the zero-mean unit-variance Gaussian distri-

bution, and s is the weight scale. For excitatory neurons (including the input and recurrent excitatory neurons), s = 1.0; for

inhibitory neurons, s = 4.0. For the readout weights, we draw its values from a Gaussian distribution W out
ji ∼

√

2.0
nrec

N(0, 1),

where nrec is the number of neurons in the recurrent layer.

F.9. Training methods

The neuron fitting was performed using the L-BFGS-B algorithm [28], [29]. While for the task training, we utilized the

online learning algorithm in BrainScale [41]. The integration time step ∆t is 1 ms for the spiking neural network. The Adam

optimizer [64] was used to calculate gradient-based optimization. The goal of the training was to minimize the cross-entropy

between the output activity and the target output during the recall period.

G. Scalability analysis

The large-scale nature of the brain raises an important question: can our differentiable approach scale up to brain-scale

spiking neural networks? Currently, we cannot provide a definitive answer, as it involves not only computational resource

bottlenecks but also performance generalization to high-dimensional parameter spaces. However, from a computational

resource perspective, we have evaluated how our approach can scale up the training of large-scale spiking networks with

long time sequences (see Figure S6 for details).

A B C

Figure S6. Comparative Analysis of Computational Memory, Speed, and Training Performance between BPTT and BrainScale [41] using

the IBM DVS Gesture dataset [65]. (A) Memory Consumption Comparison per Batch: This subfigure illustrates the comparison of

memory requirements between BPTT and BrainScale, showcasing the amount of GPU runtime memory utilized by each method for

processing a single batch of data. (B) Computational Speed Comparison per Batch: This subfigure presents a comparative analysis of

the computational speed achieved by BPTT and BrainScale for processing a single batch of data, highlighting the differences in their

processing capabilities. (C) Maximum Testing Accuracy Comparison: This subfigure showcases the comparison of the maximum achieved

testing accuracy between BPTT and BrainScale, emphasizing the performance differences of the two methods when evaluated on the IBM

DVS Gesture dataset.

In particular, we conducted a memory and computational complexity analysis on a three-layer recurrent spiking neural

network trained on the IBM DVS Gesture dataset [65]. With a batch size of 128 and 512 hidden neurons per layer, we

compared the average memory usage and computation time per batch when training using backpropagation through time

(BPTT) [66]–[68] and the BrainScale neuromorphic system [41] across various sequence lengths.

As shown in Figure S6A, the training memory required by BPTT increases linearly with the number of time steps, leading to

an out-of-memory error for sequences longer than 600 steps. In contrast, BrainScale demonstrates remarkable memory

efficiency by maintaining a constant memory footprint for the eligibility trace, regardless of the sequence length. Notably,

BrainScale consumes less than 0.5 GB of GPU memory during the entire training process, reducing memory requirements

by hundreds of times compared to BPTT.

The computational time for both BPTT and BrainScale scales linearly with the number of time steps (Figure S6B). However,

BrainScale trains approximately twice as fast as BPTT, and this acceleration ratio increases for longer sequences due to its
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event-driven and low complexity computation.

We also evaluated the training performance of BPTT and BrainScale (Figure S6C under the same hyperparameter settings

for the training and network model. We calculated the maximum testing accuracy, and found that BrainScale demonstrated

comparable performance to BPTT, even as the sequence length increased.

These results highlight the potential scalability of our differentiable approach, leveraging the computational efficiency and

memory advantages of the online training system BrainScale. While further research is needed to generalize to larger

networks and more complex tasks, our approach paves the way for training brain-scale spiking neural networks efficiently.

H. Limitations and potential challenges

The multi-scale differentiable brain modeling workflow described above is a comprehensive approach that aims to integrate

various levels of information and constraints to build brain models that can reproduce cognitive behaviors observed in

humans or animals. However, there are potential limitations and challenges to this approach:

1. Data availability and quality: The accuracy of brain models at each scale heavily depends on the quality and availability

of the underlying data. At the microscale level, the accuracy of single neuron and synapse models relies on the

quality and completeness of electrophysiological recording data. However, in practice, it is often challenging to obtain

comprehensive electrophysiological data for all neurons. Similarly, at the mesoscopic level, the accuracy of connectome

constraints depends on the quality and resolution of structural connectivity data obtained from techniques such as

diffusion tensor imaging (DTI) or electron microscopy. These techniques face significant challenges in acquiring

precise connectomic information in humans and animals. For example, while high-resolution electron microscopy can

generate detailed 3D maps of neuronal connections from thin brain sections, the process is extremely labor-intensive,

requires specialized equipment, and is currently limited to small tissue volumes due to the immense computational

demands of reconstructing large-scale connectomes.

2. Biological realism and simplifications: While our approach aims to incorporate biological constraints, it necessarily

involves simplifications and approximations of the underlying biological processes. In particular, our current model

utilizes point-based simplified neuron models and considers only excitatory and inhibitory synaptic connections. This

level of abstraction cannot fully capture the complexity and dynamics of real biological systems, especially when

addressing intricate phenomena such as nonlinear dendritic effects, neuromodulation, and synaptic plasticity.

3. Complexity and computational resources: Building and training multi-scale brain models can be computationally

intensive, particularly when dealing with large-scale networks and high-dimensional parameter spaces. To address

this, we utilize the online learning framework BrainScale [41], which significantly reduces computational resource

requirements for long-sequence learning tasks (see Appendix G). However, while online learning algorithms in

BrainScale are memory-efficient, they are still approximations of full gradients and may encounter inefficiencies when

training very high-dimensional parameters. Moreover, multi-scale brain models necessitate substantial computational

resources, including powerful GPU hardware and efficient distributed computing algorithms. The complexity of these

models demands not only high-performance computing infrastructure but also optimized software frameworks to

manage and streamline the extensive computations involved.

4. Integration across scales: Seamlessly integrating information and constraints from different spatial and temporal scales

is a non-trivial task. More biological details or constraints usually lead to more poor training performance. As more

biological details are incorporated, the number of parameters in the model grows, making the optimization problem

more complex and prone to issues such as vanishing/exploding gradients, local minima, and slow convergence.

5. Interpretability and theoretical insights: While the gradient-based optimization methods can produce models that fit

the data, it may be challenging to derive theoretical insights or interpretable mechanisms from these models, especially

when dealing with highly complex and non-linear brain dynamics models.

Despite these potential limitations and challenges, the multi-scale differentiable brain modeling workflow still represents

a promising approach to integrate various levels of information and constraints to build more realistic and accurate brain

models.
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I. Supplementary data
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Figure S7. Fitting the GIF neuron model to the membrane potential data. (A) Synaptic current synthesized in vitor for fitting the GIF

neuron model with membrane potential data. (B) Fitting results of the GIF dynamics using the L-BFGS-B algorithm. (C) Fitting results

of the GIF dynamics using the differential evolution (DE) algorithm provided in Nevergrad. (D) Fitting results of the GIF dynamics

using the particle swarm optimization (PSO) algorithm provided in Nevergrad. (E) Fitting results of the GIF dynamics using the DE

optimization with two points crossover (TwoPointsDE) algorithm provided in Nevergrad. (F) Fitting results of the GIF dynamics using

the Bayesian optimization algorithm provided in scikit-optimize.
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Figure S8. Fitting the HH neuron model to the membrane potential data. (A) Synaptic current synthesized in vitor for fitting the HH

neuron model with membrane potential data. (B) Fitting results of the HH dynamics using the L-BFGS-B algorithm. (C) Fitting results

of the HH dynamics using the differential evolution (DE) algorithm provided in Nevergrad. (D) Fitting results of the HH dynamics

using the particle swarm optimization (PSO) algorithm provided in Nevergrad. (E) Fitting results of the HH dynamics using the DE

optimization with two points crossover (TwoPointsDE) algorithm provided in Nevergrad. (F) Fitting results of the HH dynamics using

the Bayesian optimization algorithm provided in scikit-optimize.

Table S2. The loss and speed comparison among five optimization methods, including L-BFGS-B, DE, PSO, TwoPointsDE, and Bayesian

optimizations, when fitting the GIF neuron dynamics on the membrane potential data.

FITTING METHOD FITTING LOSS FITTING SPEED

L-BFGS-B (OURS) 6.799 ± 4.623 5.404 ± 0.294 S

DE (NEVERGRAD) 9.966 ± 2.281 1.172 ± 0.09 S

PSO (NEVERGRAD) 14.034 ± 2.857 1.151 ± 0.150 S

TWOPOINTSDE (NEVERGRAD) 9.702 ± 5.115 1.161 ± 0.172 S

BAYESIAN (SCIKIT-OPTIMIZE) 3.511 ± 1.741 62.330 ± 10.917 S

Table S3. The loss and speed comparison among five optimization methods, including L-BFGS-B, DE, PSO, TwoPointsDE, and Bayesian

optimizations, when fitting the HH neuron dynamics on the membrane potential data.

FITTING METHOD FITTING LOSS FITTING SPEED

L-BFGS-B (OURS) 2.3E-08 ± 1.55E-08 3.818 ± 0.725 S

DE (NEVERGRAD) 24.42 ± 22.55 0.619 ± 0.139 S

PSO (NEVERGRAD) 35.72 ± 24.06 0.663 ± 0.168 S

TWOPOINTSDE (NEVERGRAD) 32.31 ± 22.60 0.658 ± 0.175 S

BAYESIAN (SCIKIT-OPTIMIZE) 27.95 ± 25.76 55.26 ± 12.39 S
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