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Abstract

Traditional language models(LMs) excel at next-

token prediction in text sequences but often strug-

gle with transduction tasks involving distinct sym-

bolic systems, particularly when parallel data is

scarce or nonexistent. This issue is even more pro-

nounced in domains dealing with complex, non-

natural language sequences, such as audio sig-

nals, protein structures, or biological sequences,

where the strengths of LMs in natural language do

not directly translate. To address this challenge,

we introduce symbolic autoencoding (ΣAE), a

self-supervised framework designed to exploit the

wealth of non-parallel data alongside limited par-

allel data. ΣAE integrates two generative mod-

els via a discrete bottleneck layer, optimizing the

entire system end-to-end by minimizing unsuper-

vised reconstruction loss for all data such that

the sequence generated at the discrete bottleneck

can be read out as the transduced input sequence,

and separately optimizing the two models with

supervised loss on the subset of labeled paral-

lel data. To allow optimization of the models in

the presence of discrete symbols, we use a fam-

ily of straight-through gradient estimators. We

demonstrate the effectiveness of ΣAE on four

sequence-to-sequence transduction tasks, show-

ing that it significantly outperforms strong base-

lines in weakly supervised settings.

1. Introduction and Preliminaries

The field of artificial intelligence has undergone a remark-

able transformation in recent years, propelled by the rise

of powerful language models. At the heart of this success

are sequence-to-sequence (seq2seq) transducers, a class of

models trained to infer the mapping M between two sym-

bolic systems X and Z such that Z = M(X). Recent large
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Figure 1. Illustration of the abstract flow of data in the symbolic au-

toencoding (ΣAE) framework, exemplified with the Rosetta Stone

problem. Two sequence-to-sequence models (Mxz and Mzx) are

trained with both parallel data (the Rosetta Stone) through next-

token prediction and unparallel data through connecting the models

with a discrete bottleneck layer (DBx and DBz) to autoencode

each language using the other as its hidden representation.

language models display striking emergent abilities to per-

form many such mappings after exposure to massive and

diverse textual data. However, they fail when one or both

language systems are scarce or nonexistent in the training

data, or when the mapping function deviates significantly

from patterns present during training (Magueresse et al.,

2020; Lample & Conneau, 2019; Joshi et al., 2020).

An epitome of such language systems is the ancient Egyp-

tian hieroglyphs, a system of writing used in ancient Egypt.

Although Egyptian hieroglyphs were abundant in ancient

Egyptian papyri, they remained a mystery until the discov-

ery of the Rosetta Stone in 1799, which provided the key

to unlocking the secrets of the hieroglyphs (Budge, 1913).

The stone slab bears the same text inscribed in three distinct

scripts: Egyptian hieroglyphs, Demotic script, and ancient

Greek. This limited parallel dataset, a mere 27 lines of text,

together with abundant unparallel text in the three scripts

was sufficient to guide researchers in understanding the full

translation M between ancient Egyptian hieroglyphs (X)

and ancient Greek (Z). The elegant solution to this historic

challenge leads us to pose the question: how can we train

models to automatically leverage the information in the

unparallel data in symbolic systems X and Z to help

with learning the mapping M between them?
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In this work, we address this question by introducing sym-

bolic autoencoding (ΣAE), a novel method that simulta-

neously learns the mapping Mxz from X to Z and the

mapping Mzx from Z to X , symmetrically, using both

parallel and unparallel data. This is achieved by orches-

trating several losses that reuse Mxz and Mzx with varying

inputs and outputs. First, two supervised losses are used

to tune Mxz and Mzx on the scarce parallel data. Given

the scarcity of parallel data, these alone are insufficient to

learn the mappings. Therefore, we introduce two additional

autoencoding losses. One autoencoder reconstructs z ∈ Z

after encoding it discretely into an unknown x ∈ X via

the path Z
Mzx−−−→ X

Mxz−−−→ Z, where Mzx is the encoder

and Mxz is the decoder. The connection between the two

models is implemented by a discrete bottleneck (DB), a dif-

ferentiable mechanism that binds two sequence-to-sequence

models into an end-to-end, fully differentiable sequence-

to-sequence-to-sequence model. The discrete bottleneck

serves as the differentiable glue between Mxz and Mzx by

allowing gradients to pass through the discrete latent space

using straight-through estimator (Bengio et al., 2013) and a

general family of sampling/quantization methods. Symmet-

rically, the second autoencoder reconstructs x after encoding

it into z. These two autoencoding losses utilize non-parallel

data, treating X as the hidden representation for the auto-

encoding of Z, and vice versa. The supervised losses further

ensure that the hidden symbolic systems are grounded in the

parallel data and not arbitrary languages.Fig. 1 illustrates

the abstract flow of data in the ΣAE framework.

We evaluate ΣAE on four sequence-to-sequence transduc-

tion tasks, demonstrating that it significantly outperforms

the three conventional strategies in weakly supervised set-

tings: fine-tuning a pre-trained language model using the

limited parallel data available, using in-context learning to

adapt the model to the new task, or the more direct approach

which is training a model from scratch only on supervised

data. Our main contributions are the following:

• We introduce ΣAE as a framework for connecting two

seq2seq models via DB and training them using gradient-

based optimization.

• We unify celebrated methods such as VQ-VAE and the

Gumbel-Softmax trick as different design choices for the

quantization function in DB and compare their perfor-

mances in our experiments.

• We empirically benchmark the performance of ΣAE over

traditional supervised baselines using both synthetic and

real-world data.

To facilitate further research, we open-source code and data.

Related work. Our work intersects with several key areas

in unsupervised and weakly supervised learning through

discrete representations.

Baziotis et al. (2019) connected two encoder-decoder mod-

els via a hidden sequence layer, employing a reconstruction

loss and a language model prior loss for unsupervised text

compression. Kaiser & Bengio (2018) explored semantic

hashing (Salakhutdinov & Hinton, 2009) and the Gumbel-

Softmax trick (Jang et al., 2017) for generating interpretable,

discrete encodings. Similarly, Fortuin et al. (2019) investi-

gated training with discrete bottlenecks and examined the

use of continuous paths alongside discrete ones.

Zhu et al. (2017) and He et al. (2016) enforced consistency

across translation tasks, with Zhu et al. (2017) using adver-

sarial networks and He et al. (2016) employing reinforce-

ment learning to update the models. Our work introduces

a third approach, leveraging straight-through gradient esti-

mators to train models end-to-end. Furthermore, numerous

studies have focused on the discretization of elements and

representations in neural networks (Liu et al., 2022; 2021;

Tamkin et al., 2023; Peng et al., 2018; Maddison et al., 2016).

Our proposed solution also parallels the technique of back-

translation (Sennrich et al., 2015; Çaglar Gülçehre et al.,

2015; 2017), which typically involves training an intermedi-

ate system on parallel data to translate target monolingual

data into the source language, thereby generating synthetic

parallel corpora for further training (Edunov et al., 2018).

The ΣAE framework is akin to an online version of back-

translation, where the intermediate system is continuously

improving without storing synthetic sequences.

2. ΣAE Framework

2.1. Discrete Bottleneck

In our setup a DB provides two essential outputs:

• Probability vector s represents a discrete distribu-

tion over tokens, facilitating training with negative log-

likelihood loss when labels are available. (supervised

training)

• Quantized vector vq serves as input for subsequent mod-

els or layers, such as the decoder in reconstruction tasks

when labels are not available. (unsupervised training)

Thus, DB can be described as a function s,vq = DB(v),

where s ∈ [0, 1]∥V ∥ and
∑∥V ∥

i=1 si = 1 with |V | as the size

of the vocabulary. The discrete nature of the DB implies

that the quantized vector belongs to a finite discrete domain

vq ∈ D, like a dictionary of embeddings D = {D[i]}
|V |
i=1.

This discrete computation within the DB introduces a point

of non-differentiability, necessitating the use of surrogate

gradients to enable gradient-based optimization.

2.1.1. DISCRETE BOTTLENECK IMPLEMENTATIONS

The DB allows us to see the celebrated methods such as

VQ-VAE and the Gumbel-Softmax reparameterization trick
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as different implementations of the same concept. We can

classify DBs into two categories: probability-based and

embedding-based.

Embedding based DB. Here the probability vector s is a

function of the dictionary embeddings, s = S(·;D). For

instance, this scoring function S can be the softmax function

of any distance metric between the input vector v and the

dictionary embeddings D[i], with the quantized vector vq

being the closest dictionary embedding to the input vector

v according to that metric:

l[i] = ∥v−D[i]∥, vq = D
[

argmin
i

l[i]
]

, s[i] = S(−l[i])

with l representing the vector of distances between v and

dictionary vectors D[i]. In backpropogation, gradients

are directly passed from vq to v using the assignment

vq ← vq + v − sg(v) in the computation graph, where

sg denotes the stop-gradient operation (van den Oord et al.,

2017; Bengio et al., 2013). In our experiments we focus

on the vector-quantized DB (VQ DB) similar to VQ-VAE,

with the distance metric being the Euclidean distance.

Probability-based DB. Here the score function does not de-

pend on the dictionary embeddings s = S(x), and the quan-

tized vector vq is computed by decoding/sampling from the

score vector vq = D[decode(s)]. Therefore, to concretely

implement a probability-based DB, we need to define a score

function S(·) and a sampling method. In this work we take

S to be a softmax function, and use maximum likelihood

decoding and categorical sampling for decoding:

• Softmax DB uses maximum likelihood decoding, i.e., the

quantized vector vq corresponds to the most likely token

in the dictionary:

s[i] =
exp(v[i])

∑|V |
j=1 exp(v[j])

, vq = D
[

argmax
i

s[i]
]

• Gumbel DB uses categorical sampling for decoding:

s[i] =
exp(v[i] + gi)

∑|V |
j=1 exp(v[j] + gj)

, vq = D
[

argmax
i

s[i]
]

Here gi is a sample from the Gumbel distribution, i.e.

gi = − log(− log(ui)) where ui ∼ Uniform(0, 1), using

the Gumbel reparameterization trick to translate the sam-

pling to taking the argmax of noisy probabilities (Jang

et al., 2017).

Crucially, during the backward pass, gradients are passed

to s as if vq was the soft average of dictionary embeddings.

This is expressed by assigning vq ← vq +
∑|V |

i=1 s[i]D[i]−

sg(
∑|V |

i=1 s[i]D[i]) in an automatic differentiation library.

2.2. Training Models with DB Head

We incorporate a DB layer into each seq2seq model: DBx

to Mzx and DBz to Mxz , enabling both separate and joint

training modes.

For parallel training data (x, z) ∈ Dxz we do a supervised

training step similar to common seq2seq training. Given

input sequence x and target sequence until step t, z<t, the

model Mxz predicts a probability vector s
t
z for the t-th

token zt and recieves a loss (similarly for predicting the x

sequence):

s
t
z,v

t
z = DBz(Mxz(x, z

<t)), Lxz = −
∑

t

log stz[z
t]

Given unlabeled data (x ∈ Dx or z ∈ Dz), the models

generate a latent sequence of quantized vectors (v<Tx

x =
{vt

x}
Tx

t=0):

s
t
x,v

t
x = DBx(Mzx(z,v

<t
x ))

These vectors are then used to reconstruct the original input:

s
t
z,v

t
z = DBz(Mxz(v

<Tx

x , z<t))

using as the reconstruction loss Lzxz = −
∑

t log s
t
z[z

t].
Similar steps are followed for the x sequence. We call these

X Reconstruction and Z Reconstruction modes, where we

use unparallel data, Dx or Dz , to minimize reconstruction

losses Lxzx or Lzxz .

To navigate this multi-objective optimization problem, we

propose three scheduling strategies: Joint Training involves

randomly selecting a batch from Dxz , Dx, or Dz at each

iteration and training in the corresponding mode. Unsuper-

vised Pretraining with Supervised Finetuning starts with

training on Dx and Dz until convergence, followed by fine-

tuning on Dxz . Conversely, Supervised Pretraining with

Unsupervised Finetuning trains on Dxz until convergence,

then shifts to fine-tuning on Dx and Dz .

2.3. Hidden Sequence Collapse in Seq2Seq Models

In symbolic autoencoding, the encoder seq2seq model au-

toregressively generates hidden tokens until an End-of-

Sequence (EOS) token or a maximum length is reached.

This process involves a discrete decision about when to halt

generation, for which the model never receives gradient

feedback. Specifically, in unsupervised training, the loss

gradient doesn’t directly inform the model that mistakenly

assigning a high likelihood to EOS has a penalty beyond

the negative log likelihood loss: it can prematurely stop the

entire sequence generation. In our early autoencoder train-

ings we empirically observed that the models tended to rely

excessively on the first token of the hidden representation,

leading to underutilization of subsequent tokens. This led

us to develop the following solution.
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Figure 2. Results for Softmax Discrete Bottleneck – Z Autoregressive Sentence Accuracy per Supervision Ratio (η). At least one training

method with the ΣAE framework consistently outperforms the pretrained and in-context learning baselines except on the CFQ dataset at

8% supervision ratio.

EOS Soft-Masking – Gradient Approximation for Halt-

ing the Generation. In unsupervised training mode, hid-

den sequences in a batch can have varying halting points

as the generation typically continues until the maximum

length is reached or all samples have produce an EOS to-

ken. Tokens generated after the EOS are masked out us-

ing a binary mask m of size T (the number of tokens),

where each m[i] is 1 if the EOS token has not been gen-

erated and 0 otherwise. Applying the mask to the quan-

tized vectors v<T
q during the forward pass enforces a halt-

ing mechanism by setting vectors post-EOS to a padding

embedding, vq ← vq ⊙ m + D[<PAD>] ⊙ (1 − m),
thereby terminating the sequence generation. The chal-

lenge arises during the backward pass, as this mask is a

non-differentiable output of the forward computation. To

address this, we propose a gradient approximation for m

that allows the model to learn the EOS effect through a

feedback mechanism. To mitigate autoregressive collapse,

we pass the gradients through m to P(Ok = <EOS>) as

if E[m[i]] =
∏i−1

k=1 (1− P(Ok = <EOS>)) had been the

masking matrix in the forward computation. This approxi-

mation provides direct feedback on the EOS effect by simply

assigning m←m+ E[m]− sg(E[m]). The derivation of

this approximation is detailed in Appendix A.2.

3. Experiments

Datasets. For our experiments, we utilized four seq2seq

datasets: SCAN (Lake & Baroni, 2017), PCFG SET (Hup-

kes et al., 2019), CFQ (Keysers et al., 2019), and COGS

(Kim & Linzen, 2020), chosen for their compositional com-

plexity, controlled environments, and precise accuracy mea-

sures. We evaluated the framework on the aforementioned

datasets, focusing on sentence accuracy (SA) and token ac-

curacy (TA). Additional performance metrics are discussed

in the appendix in Section A.5. More details on the datasets

are provided in Section A.3.

Baselines. In our experiments, we compare the perfor-

mance of the ΣAE framework against the following base-

lines: (1) Supervised Fine-tuning of a Pretrained Model

(T5 large), where a pretrained T5 model is fine-tuned on the

available parallel data; (2) In-context Learning (ICL) with

a Large Language Model (GPT-3.5), which utilizes GPT-

3.5 to perform tasks based on given context without explicit

fine-tuning; and (3) Supervised Training from Scratch,

where a model is trained from scratch on the available par-

allel data. Further details on the tasks, model architecture,

and hyperparameters are provided in Section A.4

Experimental Results. To show the feasibility of sym-

bolic autoencoding with straight-through gradients updates

we performed an unsupervised autoencoding reconstruc-

tion experiment for each dataset and DB and observed that

the models successfully learned a compression of the input

sequences, as shown in Table 2. The results are further

detailed in Sec. A.7.1.

In the weakly supervised task, we simulated a Rosetta Stone-

like scenario with a mix of parallel and unparallel data, vary-

ing the ratio of parallel data (η) to assess the framework’s

ability to balance and integrate supervised and unsupervised

losses. Notably, the unsupervised task is a special case of

the weakly supervised task where η = 0. Results for the

Softmax DB are detailed in Figure 2.

Our experiments demonstrated that the ΣAE framework can

efficiently utilize small amounts of parallel data to improve

performance on larger unparallel datasets. At each supervi-

sion ratio η, one of our scheduling methods from Section

2.1 consistently outperformed the supervised baselines. As

expected, model accuracy improved with increased super-

vised data, narrowing the performance gap as accuracies

converged to their maxima. An exception was observed

in the CFQ dataset at an 8% supervision ratio, where fine-

tuning the T5-large model outperformed our methods. This

is likely due to the CFQ dataset’s closer resemblance to

natural language question answering tasks, benefiting the

T5 model, which is pretrained on similar tasks. Additional

remarks on training dynamics and learning behavior are

provided in Section A.6. A detailed analysis of the results

and the full set of performance metrics, including other DBs,

are presented in Section A.7.2.
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A. Appendix

A.1. Remarks on ΣAE framework

For all our straight-through gradient estimations, as training progresses, models become more confident in their predictions,

resulting in more polarized score distributions. This polarization helps the models identify the most likely token with

increasing certainty, making the scores sparser and improving the accuracy of gradient approximations.

While we only use symbolic autoencoding in reconstruction setups, the framework is adaptable to additional models and

data sources. For instance, one could imagine models Mzy,Myx, etc., each with their own supervised and reconstruction

losses (e.g., Lzy,Lyxz,Lxyx, etc.) to be optimized. Unlike some multi-task scenarios where individual tasks may appear

independent or unrelated, in the ΣAE framework, improvement in one task can directly benefit others, creating a synergy

that enhances overall performance.

A.2. EOS Gradient Approximation

The EOS collapse phenomena can be explained by the model’s lack of understanding of the EOS token’s impact. Without

explicit feedback, the model does not learn the importance of distributing information across the entire sequence. Instead, it

packs all information into the first token to ensure it reaches the decoder robustly. This behavior is akin to how models learn

more robust representations under dropout conditions (Srivastava et al., 2014), where information is concentrated into fewer

units.

In the ΣAE framework, we inform the model of the halting effect of the EOS token by approximating a gradient for the

mask m, which masks the tokens appearing after the first EOS token. This approximation is crucial for the model to learn

the halting effect of the EOS token, essential for generating accurate sequences.

The m is 1 if the EOS token has not been generated and 0 otherwise:

m[i] =

{

1 if m[i− 1] = 1 and Oi−1 ̸= <EOS>

0 otherwise
(1)

Where O represents the output sequence generated by the model, whether in X or Z.

Hence, the binary random vector m is defined as:

P (m[i] = 1) =
(

1− P(O(i−1) = <EOS>)
)

P(m[i − 1] = 1) =

i−1
∏

k=1

(1− P(Ok = <EOS>)) . (2)

Therefore the expected value of m is:

E[m[i]] =
i−1
∏

k=1

(1− P(Ok = <EOS>)) (3)

Our ablation studies showed that unsupervised training often failed due to hidden state collapse when this approximation

was not used. Without this gradient approximation, the model struggled to learn effectively, highlighting the importance of

this technique for successful training.

As training progresses, models become more confident in correctly predicting the EOS token, leading to more polarized

probabilities. This makes the expected mask E[m] a better approximate the true mask, thereby improving the accuracy of

our approximation.

A.3. Dataset Description and Examples

We evaluated the ΣAE framework on four diverse datasets: SCAN, PCFG SET, CFQ, and COGS.

• SCAN (Lake & Baroni, 2017) is a simple language-driven navigation instruction task designed to evaluate the ability

of neural models to learn compositional commands.
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Table 1. Example of Samples from Different Datasets

Dataset Sample Train set size Parallel portion

SCAN

X: look right thrice after run left

Z: I TURN LEFT I RUN I TURN RIGHT I LOOK

I TURN RIGHT I LOOK I TURN RIGHT I LOOK

13382 1% to 8%

PCFG SET

X: echo append append E18 C13 ,

L18 M17 , R1 L1 Y1 T18 J18

Z: E18 C13 L18 M17 R1 L1 Y1 T18 J18 J18

65734 4% to 32%

CFQ

X: Who influenced M1 ’s cinematographer , writer , and editor

Z: SELECT DISTINCT ?x0 WHERE

?x0 a ns:people.person.

?x0 ns:influence.influence node.influenced ?x1.

?x1 ns:film.cinematographer.film M1.

?x1 ns:film.editor.film M1.

?x1 ns:film.writer.film M1.

76594 2% to 16%

COGS
X: Olivia rolled Liam.

Z: roll . agent ( x 1 , Olivia ) AND roll . theme ( x 1 , Liam )
24155 1% to 8%

• PCFG SET (Hupkes et al., 2019) is a synthetic dataset generated using probabilistic context-free grammars, aimed at

testing the systematic generalization of models.

• CFQ (Keysers et al., 2019) is a large-scale dataset of complex natural language questions and their corresponding

SPARQL query against the Freebase knowledge base designed to measure the compositional generalization capabilities

of semantic parsing models, with questions constructed to reflect the compositional structure of Freebase.

• COGS (Kim & Linzen, 2020): COGS is a dataset for evaluating the generalization of semantic parsing models to novel

linguistic structures, emphasizing the model’s ability to generalize from given sentences to new sentences that have

similar syntactic structures but different lexical items or phrasal constructions.

These datasets were chosen for their controlled environments and precise accuracy measures, making them ideal for

evaluating the framework’s performance. Examples of samples from each dataset are provided in Table 1.

The selection of these datasets ensures a comprehensive and nuanced evaluation of the ΣAE framework. They facilitate

direct evaluation of our approach, avoiding reliance on proxy metrics often used with larger datasets. Here, the mapping

from X to Z is unique and non-reversible, with Z typically being the longer sequence, serving as a reliable ground truth

for X . Our study diverges from the typical use of these datasets for compositional generalization. Instead of focusing on

out-of-distribution testing, we emphasize in-distribution performance assessment. We also conduct a bidirectional evaluation

of both Mxz and Mzx models, reflecting realistic seq2seq model applications where translation in both directions holds

equal significance, in line with the suggestions of (Bastings et al., 2018).

A.4. Details on Tasks, Model Architecture, and Hyperparameters

We conducted two sets of experiments on each dataset:

• Unsupervised Training: In this scenario, we only have access to unparallel data. The primary goal is to reconstruct Z

from a hidden discrete sequence. The framework matches the dictionary size and the maximum sequence length of the

hidden representation to those of X . This setup evaluates the ΣAE framework’s ability to compress the input sequence

into a shorter sequence and accurately reconstruct it.

• Weakly-supervised Training: This scenario simulates the Rosetta Stone problem, where a small portion of the data

is parallel, and the rest is unparallel. The objective is to leverage both parallel and unparallel data by minimizing

unsupervised losses (Lzxz and Lxzx) and supervised losses (Lzx and Lxz). We conduct experiments for each dataset

and DB implementation, varying the supervision ratio η = |Dxz|
|Dxz|+|Dx|+|Dz|

. This allows us to assess how effectively

the framework uses limited parallel data to improve performance on larger unparallel datasets.

In our experiments with the ΣAE framework, we adopted a standardized model architecture and hyperparameter setting

across all tasks to maintain consistency and focus on the framework’s effectiveness. We utilized a six-layer transformer

encoder–decoder model for Mxz and Mzx, with 8 attention heads and a hidden size of 512. The model was trained using the

Adam optimizer with learning rate reduction on loss plateau. We used greedy decoding consistently for all tasks, simplifying

the decoding process and ensuring uniformity across experiments.
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Model learning rates were manually chosen on the order of 10−3 or 10−4, to ensure a decrease in loss during the early

stages of training. Hyperparameters were not extensively tuned. For each task, the same hyperparameters were used across

different supervision ratios which are available in our configuration files in the code. This uniform approach underscores

the framework’s robustness, although we acknowledge that more nuanced tuning and regularization might yield higher

performance.

In both unsupervised and supervised finetuning after pretraining approaches, a gradual curriculum shift is employed rather

than an abrupt change. This involves slowly altering the probability distribution of the ‘three-sided coin’ used for batch

selection in joint training, to transition smoothly from the initial training phase to the subsequent finetuning phase.

A.5. Evaluation Metrics

In assessing the performance of the ΣAE framework, we measured two distinct metrics: sentence accuracy (SA) and

token accuracy (TA). These metrics are designed to provide both a holistic and a detailed view of the model’s capabilities.

Sentence accuracy (SA) for a sample is counted as 1 if the entire sentence is correctly generated. Token accuracy (TA) is a

more granular measure, where correctness of each predicted token in all sentences are measured separately. This metric

allows for partial credit within a sentence, providing a finer understanding of the model’s performance at the token level.

The token accuracy can be measured with two methods: We can teacher-force the correct previous tokens (as per the ground

truth) to the model and measure its accuracy in predicting the next token. Alternatively, the model’s previous outputs (which

may or may not be correct) can be used as inputs for generating subsequent tokens. This autoregressive approach is generally

more challenging than teacher-forcing.

Each X has a unique corresponding Z, simplifying the assessment of accuracy in this direction, therefore, evaluating Mxz

performance is simply done by examining the Autoregressive Z TA/SA, directly measuring the model’s capability to generate

accurate Z sequences. For a given Z, however, there could be multiple valid X sequences. Therefore, to evaluate Mzx, we

utilize the Teacher-forced X TA, which restricts the range of correct X sequences for end tokens. Another approach is the

Reconstruction Z TA/SA, where a model Mxz maps a generated sequence x̂ back to Z, and the accuracy of this reconstructed

sequence serves as a proxy for the correctness of x̂.

A.6. Remarks on Experimental Results

We note that the VQ DB faced a peculiar issue of numerical instability on the SCAN dataset after extended training periods

(+500 epochs). This instability was addressed through weight clipping, suggesting that while ΣAE offers substantial benefits,

optimizing stability and accuracy across different data representations and tasks may require tailored adjustments. These

insights into performance variations across X and Z spaces not only highlight the framework’s broad applicability but also

pinpoint areas for future refinement to maximize the ΣAE framework’s effectiveness.

A.7. Experiment Results

A.7.1. UNSUPERVISED TRAINING RESULTS

In the unsupervised task, we trained the discrete autoencoder to compress and reconstruct Z sequences without any

supervised signal, evaluating the learnability of the discrete bottleneck using straight-through gradients. The results,

summarized in Table 2, show that the Softmax DB achieved over 98% token accuracy on the SCAN, CFQ, and COGS

datasets. Both the Gumbel and VQ DBs demonstrated similar effectiveness, indicating robustness in discrete autoencoding

with straight-through gradients for sequence learning tasks. An exception to the high performance was the PCFG SET

reconstruction task, where model performances were notably lower. This variation may be attributed to the unique symbolic

nature of variables within the PCFG SET task, where basic tokenization assigns distinct representations to symbolically

equivalent variables, leading to observed performance discrepancies.

A.7.2. WEAKLY SUPERVISED TRAINING RESULTS

In the Z space, the Softmax DB consistently surpassed supervised baselines, significantly enhancing token and sentence

accuracy across all datasets. For instance, with only 8% supervision on the PCFG SET dataset, token accuracy improved

from below 15% to above 80%. While the Gumbel DB generally showed noisier training and slightly weaker performance,

it still outperformed supervised baselines in most scenarios, except for a minor shortfall in the COGS dataset at a 16%
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Table 2. Table of Test Autoregressive token accuracy (Z) (top) and Sentence Accuracy (Z) (bottom) on the unsupervised autoencoding

task (Z reconstruction). A high accuracy is achieved across all datasets, showing the feasibility of learning discrete representations with

gradient-based methods.

SCAN PCFG COGS CFQ

Softmax DB 1.00 0.74 0.98 0.99
0.96 0.31 0.55 0.69

Gumbel DB 0.98 0.75 0.98 0.99
0.74 0.36 0.51 0.43

VQ DB 1.00 0.44 0.94 0.90
0.93 0.00 0.03 0.00

supervision ratio. The VQ DB, despite showing a slight weaker performance in supervised baselines, improved the training

similar to the Softmax and Gumbel DBs, achieving over 20% token accuracy on CFQ dataset at 2% supervision ratio.

While no single Discrete Bottleneck or scheduling method universally outperforms others across all datasets and supervision

ratios, for every dataset and η value, at least one of our scheduling methods consistently surpasses the baseline performance.

In other words, training within the ΣAE paradigm always enhances performance, though the optimal choice of the scheduling

strategy depends on the task.

The ΣAE framework’s impact extends into the X space, where the Softmax, Gumbel, and VQ DBs exhibit performance

boosts. Notably, the exception to this trend occurs with teacher-forced token accuracy in the SCAN dataset for the Softmax

DB, indicating a unique challenge in this specific setting.

For all our experiments, we computed 95% confidence intervals via bootstrapped resampling of the test set, however they

are too small to be visible on the plots. This performance analysis underscores the ΣAE framework’s versatility and its

capacity to leverage both unsupervised and weakly supervised data to enhance model training and performance across

diverse seq2seq tasks.

We only measure the ICL and supervised finetuning of T5 baselines for Autoregressive Z TA and SA, as the teacher-forced

X TA is not applicable to these baselines. The ICL baseline is a flat line with a fixed number of in-context samples (20) and

the supervised finetuning of T5 is a single point at 100% supervision ratio.

We present the results of our experiments in the following tables. For Softmax discrete bottleneck, we present the results in

the following tables:

• Table 3 Shows the performance of the Softmax DB on Autoregressive Z token accuracy, from test inputs

• Table 4 Shows the performance of the Softmax DB on Autoregressive Z sentence accuracy, from test inputs

• Table 5 shows the performance of the Softmax DB on the Autoregressive Z reconstruction token accuracy, after

mapping to a hidden X

• Table 6 shows the performance of the Softmax DB on the Autoregressive Z reconstruction sentence accuracy, after

mapping to a hidden X

• Table 7 shows the performance of the Softmax DB on the X token accuracy when teacher-forcing the previous inputs

For Gumbel discrete bottleneck, we present the results in the following tables:

• Table 8 Shows the performance of the Gumbel DB on Autoregressive Z token accuracy, from test inputs

• Table 9 Shows the performance of the Gumbel DB on Autoregressive Z sentence accuracy, from test inputs

• Table 10 shows the performance of the Gumbel DB on the Autoregressive Z reconstruction token accuracy, after

mapping to a hidden X

• Table 11 shows the performance of the Gumbel DB on the Autoregressive Z reconstruction sentence accuracy, after

mapping to a hidden X

• Table 12 shows the performance of the Gumbel DB on the X token accuracy when teacher-forcing the previous inputs

For VQ discrete bottleneck, we present the results in the following tables:

• Table 13 Shows the performance of the VQ DB on Autoregressive Z token accuracy, from test inputs

• Table 14 Shows the performance of the VQ DB on Autoregressive Z sentence accuracy, from test inputs
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Table 3. Softmax DB – Autoregressive Z Token Accuracy. ∗ These baselines are not concerned with the discretizer type and are not

trained with our proposed discrete bottleneck. They will appear in all tables for comparison.

SCAN η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5)∗ – – – – 0.54

T5 Finetuning∗ 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.78 0.92 0.98 1.00 1.00

Joint training 0.76 0.89 0.98 0.99 —

Supervised Pretraining 0.84 0.96 0.99 1.00 —

Unsupervised Pretraining 0.79 0.91 0.97 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.17

T5 Finetuning 0.50 0.74 0.85 0.93 –

Supervised Baseline 0.17 0.30 0.78 0.93 0.97

Joint training 0.56 0.77 0.94 0.91 —

Supervised Pretraining 0.47 0.73 0.91 0.95 —

Unsupervised Pretraining 0.58 0.82 0.87 0.91 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.25

T5 Finetuning 0.35 0.72 0.95 0.99 –

Supervised Baseline 0.87 0.94 0.98 0.99 1.00

Joint training 0.94 0.97 0.99 1.00 —

Supervised Pretraining 0.94 0.93 0.98 1.00 —

Unsupervised Pretraining 0.95 0.98 0.99 1.00 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.26

T5 Finetuning 0.45 0.63 0.86 0.96 –

Supervised Baseline 0.62 0.70 0.78 0.82 0.86

Joint training 0.69 0.75 0.84 0.88 —

Supervised Pretraining 0.73 0.80 0.84 0.88 —

Unsupervised Pretraining 0.71 0.79 0.82 0.85 —

• Table 15 shows the performance of the VQ DB on the Autoregressive Z reconstruction token accuracy, after mapping

to a hidden X

• Table 16 shows the performance of the VQ DB on the Autoregressive Z reconstruction sentence accuracy, after mapping

to a hidden X

• Table 17 shows the performance of the VQ DB on the X token accuracy when teacher-forcing the previous inputs
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Table 4. Softmax DB – Autoregressive Z Sentence Accuracy

SCAN η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.18 0.52 0.87 0.97 1.00

Joint training 0.24 0.50 0.87 0.95 —

Supervised Pretraining 0.29 0.71 0.91 0.98 —

Unsupervised Pretraining 0.25 0.61 0.85 0.95 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.01

T5 Finetuning 0.39 0.61 0.82 0.91 –

Supervised Baseline 0.01 0.11 0.75 0.94 0.97

Joint training 0.45 0.73 0.94 0.92 —

Supervised Pretraining 0.32 0.70 0.92 0.96 —

Unsupervised Pretraining 0.47 0.81 0.87 0.91 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.09

T5 Finetuning 0.03 0.45 0.70 0.87 –

Supervised Baseline 0.48 0.71 0.89 0.95 1.00

Joint training 0.63 0.82 0.95 0.97 —

Supervised Pretraining 0.60 0.83 0.94 0.97 —

Unsupervised Pretraining 0.66 0.84 0.95 0.97 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.01

T5 Finetuning 0.01 0.13 0.55 0.83 –

Supervised Baseline 0.25 0.40 0.53 0.61 0.69

Joint training 0.43 0.50 0.65 0.73 —

Supervised Pretraining 0.49 0.59 0.66 0.73 —

Unsupervised Pretraining 0.47 0.60 0.64 0.69 —
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Table 5. Softmax DB – Reconstruction Z TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.74 0.81 0.89 0.92 0.96

Joint training 0.99 0.98 0.98 0.97 —

Supervised Pretraining 0.99 0.99 0.99 0.97 —

Unsupervised Pretraining 0.98 0.83 0.93 0.97 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.37 0.50 0.74 0.78 0.83

Joint training 0.71 0.80 0.86 0.91 —

Supervised Pretraining 0.68 0.75 0.86 0.89 —

Unsupervised Pretraining 0.76 0.79 0.88 0.87 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.92 0.95 0.97 0.98 0.99

Joint training 0.98 0.99 1.00 1.00 —

Supervised Pretraining 0.98 0.97 0.99 1.00 —

Unsupervised Pretraining 0.99 0.99 1.00 1.00 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.94 0.96 0.97 0.98 0.99

Joint training 0.97 0.97 0.98 0.99 —

Supervised Pretraining 0.98 0.98 0.99 0.99 —

Unsupervised Pretraining 0.98 0.99 0.99 0.99 —

Table 6. Softmax DB – Reconstruction Z SA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.11 0.24 0.28 0.46

Joint training 0.82 0.76 0.72 0.65 —

Supervised Pretraining 0.90 0.81 0.91 0.66 —

Unsupervised Pretraining 0.84 0.18 0.41 0.66 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.01 0.09 0.20 0.28 0.35

Joint training 0.21 0.29 0.44 0.63 —

Supervised Pretraining 0.15 0.22 0.33 0.47 —

Unsupervised Pretraining 0.19 0.26 0.44 0.41 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.02 0.04 0.35 0.48 0.57

Joint training 0.51 0.76 0.93 0.97 —

Supervised Pretraining 0.55 0.48 0.68 0.96 —

Unsupervised Pretraining 0.75 0.81 0.90 0.95 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.11 0.23 0.36 0.48 0.53

Joint training 0.29 0.36 0.50 0.61 —

Supervised Pretraining 0.36 0.44 0.54 0.62 —

Unsupervised Pretraining 0.40 0.51 0.52 0.60 —
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Table 7. Softmax DB – Teacher-forced X TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.66 0.77 0.84 0.88 0.88

Joint training 0.57 0.66 0.78 0.84 —

Supervised Pretraining 0.39 0.58 0.70 0.82 —

Unsupervised Pretraining 0.50 0.45 0.69 0.81 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.41 0.50 0.53 0.57 0.65

Joint training 0.50 0.54 0.57 0.61 —

Supervised Pretraining 0.47 0.50 0.54 0.57 —

Unsupervised Pretraining 0.48 0.50 0.61 0.63 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.87 0.95 0.98 0.99 1.00

Joint training 0.90 0.96 0.99 1.00 —

Supervised Pretraining 0.00 0.88 0.95 0.99 —

Unsupervised Pretraining 0.88 0.96 0.98 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.74 0.79 0.82 0.85 0.88

Joint training 0.77 0.80 0.83 0.85 —

Supervised Pretraining 0.73 0.80 0.83 0.85 —

Unsupervised Pretraining 0.71 0.78 0.82 0.84 —
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Table 8. Gumbel DB – Autoregressive Z Token Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.75 0.89 0.95 0.97 0.97

Joint training 0.76 0.88 0.95 0.96 —

Supervised Pretraining 0.80 0.93 0.96 0.97 —

Unsupervised Pretraining 0.79 0.90 0.96 0.96 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.16 0.25 0.70 0.82 0.89

Joint training 0.25 0.66 0.81 0.86 —

Supervised Pretraining 0.44 0.62 0.85 0.88 —

Unsupervised Pretraining 0.56 0.64 0.81 0.87 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.74 0.80 0.84 0.85 0.86

Joint training 0.76 0.79 0.82 0.84 —

Supervised Pretraining 0.78 0.81 0.84 0.84 —

Unsupervised Pretraining 0.75 0.81 0.83 0.84 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.52 0.57 0.63 0.65 0.65

Joint training 0.56 0.62 0.65 0.69 —

Supervised Pretraining 0.55 0.61 0.65 0.68 —

Unsupervised Pretraining 0.60 0.66 0.68 0.71 —
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Table 9. Gumbel DB – Autoregressive Z Sentence Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.13 0.46 0.79 0.86 0.89

Joint training 0.22 0.48 0.78 0.85 —

Supervised Pretraining 0.23 0.56 0.80 0.86 —

Unsupervised Pretraining 0.21 0.55 0.81 0.86 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.01 0.08 0.62 0.76 0.84

Joint training 0.06 0.57 0.74 0.80 —

Supervised Pretraining 0.26 0.51 0.78 0.81 —

Unsupervised Pretraining 0.45 0.55 0.75 0.81 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.30 0.48 0.62 0.70 0.73

Joint training 0.41 0.56 0.64 0.68 —

Supervised Pretraining 0.38 0.53 0.63 0.66 —

Unsupervised Pretraining 0.32 0.53 0.63 0.66 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.14 0.23 0.30 0.33 0.34

Joint training 0.21 0.29 0.34 0.40 —

Supervised Pretraining 0.21 0.29 0.35 0.39 —

Unsupervised Pretraining 0.29 0.37 0.41 0.45 —
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Table 10. Gumbel DB – Reconstruction Z TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.74 0.78 0.86 0.90 0.94

Joint training 0.96 0.94 0.96 0.95 —

Supervised Pretraining 0.97 0.98 0.97 0.97 —

Unsupervised Pretraining 0.81 0.88 0.90 0.94 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.33 0.46 0.70 0.75 0.79

Joint training 0.32 0.58 0.73 0.83 —

Supervised Pretraining 0.56 0.63 0.72 0.81 —

Unsupervised Pretraining 0.57 0.75 0.82 0.85 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.90 0.93 0.96 0.97 0.98

Joint training 0.96 0.98 0.98 0.99 —

Supervised Pretraining 0.96 0.97 0.98 0.99 —

Unsupervised Pretraining 0.97 0.98 0.99 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.92 0.94 0.95 0.96 0.97

Joint training 0.95 0.96 0.96 0.97 —

Supervised Pretraining 0.94 0.95 0.96 0.97 —

Unsupervised Pretraining 0.98 0.98 0.98 0.98 —

Table 11. Gumbel DB – Reconstruction Z SA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.08 0.17 0.27 0.30

Joint training 0.60 0.43 0.54 0.54 —

Supervised Pretraining 0.65 0.71 0.68 0.62 —

Unsupervised Pretraining 0.11 0.18 0.39 0.55 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.01 0.06 0.20 0.25 0.21

Joint training 0.01 0.11 0.19 0.38 —

Supervised Pretraining 0.07 0.11 0.15 0.25 —

Unsupervised Pretraining 0.05 0.21 0.32 0.42 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.02 0.02 0.20 0.27 0.34

Joint training 0.29 0.48 0.59 0.61 —

Supervised Pretraining 0.24 0.42 0.56 0.60 —

Unsupervised Pretraining 0.30 0.46 0.59 0.63 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.05 0.10 0.17 0.21 0.21

Joint training 0.10 0.14 0.21 0.25 —

Supervised Pretraining 0.07 0.13 0.19 0.27 —

Unsupervised Pretraining 0.26 0.27 0.31 0.34 —
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Table 12. Gumbel DB – Teacher-forced X TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.66 0.76 0.84 0.87 0.88

Joint training 0.60 0.70 0.78 0.85 —

Supervised Pretraining 0.40 0.63 0.76 0.84 —

Unsupervised Pretraining 0.36 0.64 0.62 0.76 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.39 0.48 0.51 0.55 0.57

Joint training 0.38 0.49 0.55 0.58 —

Supervised Pretraining 0.45 0.50 0.52 0.56 —

Unsupervised Pretraining 0.43 0.53 0.55 0.57 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.84 0.93 0.97 0.98 0.99

Joint training 0.88 0.95 0.98 0.99 —

Supervised Pretraining 0.86 0.93 0.97 0.98 —

Unsupervised Pretraining 0.85 0.94 0.98 0.99 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.71 0.77 0.80 0.83 0.85

Joint training 0.75 0.79 0.81 0.84 —

Supervised Pretraining 0.72 0.78 0.81 0.84 —

Unsupervised Pretraining 0.69 0.77 0.81 0.84 —
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Table 13. VQ DB – Autoregressive Z Token Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.73 0.89 0.98 1.00 1.00

Joint training 0.67 0.88 0.95 0.97 —

Supervised Pretraining 0.84 0.95 0.99 1.00 —

Unsupervised Pretraining 0.75 0.91 0.97 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.23 0.86 0.87 0.93 0.93

Joint training 0.31 0.66 0.90 0.89 —

Supervised Pretraining 0.41 0.86 0.90 0.93 —

Unsupervised Pretraining 0.12 0.13 0.13 0.13 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.86 0.95 0.99 1.00 1.00

Joint training 0.92 0.97 0.99 0.99 —

Supervised Pretraining 0.91 0.97 0.99 1.00 —

Unsupervised Pretraining 0.94 0.97 0.98 0.98 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.54

T5 Finetuning 0.0 0.47 0.69 0.91 –

Supervised Baseline 0.49 0.77 0.91 0.95 0.84

Joint training 0.71 0.81 0.91 0.96 —

Supervised Pretraining 0.69 0.83 0.94 0.96 —

Unsupervised Pretraining 0.44 0.54 0.52 0.61 —
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Table 14. VQ DB – Autoregressive Z Sentence Accuracy

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.10 0.41 0.85 0.98 1.00

Joint training 0.12 0.44 0.70 0.87 —

Supervised Pretraining 0.29 0.64 0.91 0.98 —

Unsupervised Pretraining 0.15 0.54 0.84 0.93 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.04 0.86 0.87 0.94 0.91

Joint training 0.14 0.59 0.91 0.89 —

Supervised Pretraining 0.23 0.86 0.90 0.94 —

Unsupervised Pretraining 0.00 0.00 0.00 0.00 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.47 0.74 0.92 0.97 0.84

Joint training 0.51 0.81 0.93 0.97 —

Supervised Pretraining 0.59 0.82 0.94 0.97 —

Unsupervised Pretraining 0.51 0.63 0.62 0.59 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

ICL (GPT3.5) – – – – 0.11

T5 Finetuning 0.0 0.02 0.08 0.53 –

Supervised Baseline 0.01 0.53 0.79 0.87 0.25

Joint training 0.69 0.78 0.92 0.96 —

Supervised Pretraining 0.41 0.66 0.85 0.91 —

Unsupervised Pretraining 0.01 0.02 0.07 0.05 —
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Table 15. VQ DB – Reconstruction Z TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.73 0.77 0.83 0.91 0.99

Joint training 0.95 0.95 0.95 0.96 —

Supervised Pretraining 0.99 0.98 0.98 0.97 —

Unsupervised Pretraining 0.86 0.97 0.99 0.99 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.35 0.67 0.77 0.81 0.53

Joint training 0.59 0.77 0.91 0.93 —

Supervised Pretraining 0.68 0.81 0.83 0.89 —

Unsupervised Pretraining 0.32 0.38 0.32 0.32 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.93 0.98 0.99 1.00 0.98

Joint training 0.97 0.99 0.99 1.00 —

Supervised Pretraining 0.97 0.98 0.99 1.00 —

Unsupervised Pretraining 0.98 0.99 0.98 0.98 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.89 0.95 0.98 0.98 0.98

Joint training 0.97 0.98 0.99 0.99 —

Supervised Pretraining 0.97 0.98 0.99 0.99 —

Unsupervised Pretraining 0.94 0.94 0.94 0.94 —

Table 16. VQ DB – Reconstruction Z SA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.05 0.12 0.29 0.61 0.91

Joint training 0.40 0.38 0.39 0.52 —

Supervised Pretraining 0.89 0.76 0.71 0.66 —

Unsupervised Pretraining 0.17 0.67 0.90 0.85 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.02 0.18 0.19 0.25 0.12

Joint training 0.10 0.30 0.64 0.75 —

Supervised Pretraining 0.13 0.33 0.39 0.56 —

Unsupervised Pretraining 0.00 0.00 0.00 0.00 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.32 0.68 0.78 0.95 0.39

Joint training 0.41 0.68 0.86 0.93 —

Supervised Pretraining 0.35 0.69 0.88 0.96 —

Unsupervised Pretraining 0.44 0.57 0.52 0.53 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.01 0.19 0.51 0.52 0.22

Joint training 0.27 0.40 0.57 0.67 —

Supervised Pretraining 0.19 0.41 0.56 0.71 —

Unsupervised Pretraining 0.00 0.01 0.00 0.00 —
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Table 17. VQ DB – Teacher-forced X TA

SCAN η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.65 0.73 0.81 0.86 0.88

Joint training 0.56 0.67 0.74 0.84 —

Supervised Pretraining 0.41 0.62 0.71 0.78 —

Unsupervised Pretraining 0.27 0.61 0.57 0.79 —

PCFG η = 0.04 η = 0.08 η = 0.16 η = 0.32 η = 0.99

Supervised Baseline 0.32 0.52 0.55 0.58 0.62

Joint training 0.43 0.54 0.59 0.65 —

Supervised Pretraining 0.48 0.53 0.55 0.58 —

Unsupervised Pretraining 0.33 0.34 0.33 0.33 —

COGS η = 0.02 η = 0.04 η = 0.08 η = 0.16 η = 0.99

Supervised Baseline 0.85 0.96 0.99 0.99 0.97

Joint training 0.88 0.95 0.98 0.99 —

Supervised Pretraining 0.85 0.93 0.98 0.99 —

Unsupervised Pretraining 0.88 0.93 0.93 0.93 —

CFQ η = 0.01 η = 0.02 η = 0.04 η = 0.08 η = 0.99

Supervised Baseline 0.60 0.77 0.83 0.86 0.88

Joint training 0.74 0.78 0.83 0.86 —

Supervised Pretraining 0.68 0.78 0.84 0.86 —

Unsupervised Pretraining 0.49 0.55 0.53 0.53 —
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