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Abstract

We propose a differentiable model of robot-terrain

interactions that delivers the expected robot trajec-

tory given an onboard camera image and the robot

control. The model is trained on a real dataset that

covers various terrains ranging from vegetation to

man-made obstacles. Since robot-endangering in-

teractions are naturally absent in real-world train-

ing data, the consequent learning of the model suf-

fers from training/testing distribution mismatch,

and the quality of the result strongly depends on

generalization of the model. Consequently, we

propose a grey-box, explainable, physics-aware,

and end-to-end differentiable model that achieves

better generalization through strong geometrical

and physical priors. Our model, which functions

as an image-conditioned differentiable simulation,

can generate millions of trajectories per second

and provides interpretable intermediate outputs

that enable efficient self-supervision. Our exper-

imental evaluation demonstrates that the model

outperforms state-of-the-art methods.

1. Introduction

Reliable navigation in a wild, unstructured environment re-

mains the key challenge in deploying autonomous robotic

platforms during real-world missions. The main difficulty

stems from the inability to train an accurate model that

predicts the outcome of robot-terrain interactions in robot-

endangering situations. The reason is that the training in-

herently suffers from a severe training/testing distribution

mismatch since robot-endangering and robot-devastating

situations are naturally absent in real-world training data.

Consequently, the generalization on these dangerous out-

of-training-distribution situations is imperative for any real-
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Figure 1. Model overview: The proposed model can be seen as an

image-conditioned differentiable simulation that delivers a million

simulated trajectories per second on the terrain depicted in the

onboard camera image. The explainable structure also delivers

many intermediate interpretable outputs that can serve for efficient

self-supervision.

world deployment.

In order to achieve generalization, roboticists proposed a

wide variety of white-box [1]–[3] and black-box models [4]–

[8]. While white-box models suffer from oversimplifications

and inability to adapt to a new domain without massive

hand tuning, black-box models suffer from poor generaliza-

tion, weak explainability, and the need to gather expensive

training data when re-trained. In contrast, we introduce a

grey-box, explainable, physics-aware, and end-to-end differ-

entiable model that enables self-supervised learning.

We focus on the problem of predicting the robot’s trajec-

tory given a single image captured by an onboard camera.

In contrast to common black-box models, the proposed

architecture comprises strong geometrical and physical pri-

ors that yield superior generalization. The resulting model

thus feels like learnable physics engine conditioned by a

real image that delivers one million trajectories per second;

see Figure 1 for details. In addition to that, the model is
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end-to-end-differentiable; therefore, gradients can be back-

propagated towards its (i) convolutional filters, (ii) camera

and robot parameters, and (iii) control. The differentiabil-

ity, in conjunction with the rapid simulation speed, draws

the model suitable for a myriad of tasks, including model

predictive control [9], trajectory shooting [10], supervised

and reinforcement learning [11], online robot-model rei-

dentification or camera recalibration [12]. The explainable

structure of the proposed architecture also delivers a variety

of intermediate outputs, such as terrain shape and its physi-

cal properties, robot-terrain reaction forces or contact points,

which can all serve as efficient sources of self-supervision

if measured during the training set creation.

In particular, we employ self-supervision from the robot’s

trajectories estimated by a common SLAM procedure, ge-

ometrical heightmaps estimated from lidar scans [5] and

material types estimated through Microsoft’s image founda-

tion model [13]. While lidar scans serve as an upper bound

on the shape of predicted heightmaps, the image foundation

model delivers prior explicit knowledge about the rigidity

of some objects that cannot be traversed.

We propose several differentiable physics engines that con-

vert the predicted terrain and control into trajectory. The

first implementation is based on a simple kinematic model

which assumes that the robot always lies at the minimum of

its potential energy. Since this model contains a non-convex

constrained optimization problem in the feedforward pass,

we backpropagate it through its KKT conditions. [14]. The

remaining three implementations explicitly model physics

interaction between the robot body and non-rigid terrain.

[15]. Backpropagation is based on auto-differentiation [16],

Neural ODE [17] and Nvidia’s WARP [18]. Our main

contributions are as follows.

Image-conditioned simulation: The end-to-end differen-

tiable image-conditioned simulation that predicts a million

trajectories per second is suitable for a myriad of underlying

tasks such as model predictive control, trajectory shooting,

supervised and reinforcement learning, online robot-model

reidentification or camera recalibration.

Self-supervised learning: Explainability of the proposed

grey-box model provides several well-interpretable inter-

mediate outputs that serve as a natural source of self-

supervision.

Experimental evaluation on non-rigid terrains: The pro-

posed model outperforms other state-of-the-art methods on

non-rigid terrains, such as grass or soft undergrowth that

deforms when traversed by the robot.

2. THEORY

A detailed overview of the proposed architecture that con-

verts images and control commands into trajectories is de-

picted in Figure 2. The model consists of several learnable

modules that deeply interact with each other. The geome-

try module carefully transforms visual features from input

image into the heightmap space using known camera geom-

etry. The terrain encoder further refines visual features into

interpretable physical quantities that capture properties of

the terrain such as its shape, friction, stiffness and damp-

ing. Next, the force encoder combines the terrain properties

with the robot model, robot state and control commands and

delivers reaction forces at points of robot-terrain contacts.

Finally, the physics engine solves the equations of motion

dynamics by integrating these forces and delivers the trajec-

tory of the robot. Since the complete computational graph of

the feedforward pass is retained, the backpropagation from

an arbitrary loss, constructed on top of delivered trajectories,

or any other intermediate outputs, is at hand.

2.1. Model architecture

Given an input image z, the proposed architecture succes-

sively estimates geometric heightmap Hg , terrain heightmap

Ht, robot-terrain forces fi and trajectories τ . The geometri-

cal map Hg is a multichannel 2D array whose first channel

contains heights of the environment observed in the camera,

and the remaining channels contain visual features. Simi-

larly, the terrain map Ht is a multichannel 2D array whose

first channel contains the heights at which terrain is assumed

to start generating forces against the robot, and the remain-

ing channels again contain visual features. The intuition

is that Ht models a partially flexible layer of terrain (e.g.

mud) that is hidden under fully flexible vegetation. It is

estimated by subtracting the estimated heightmap decrease

Hd from the geometrical heightmap Hg . Both maps are aug-

mented with visual features that are successively converted

into terrain properties. The part of the architecture that pre-

dicts terrain properties is called terrain encoder. Given the

predicted terrain properties, state of the robot and control

commands (e.g. track speed or flipper position), the forces

fi acting on the robot are computed. Finally, the physics

engine solves the robot motion equation and estimates the

trajectory corresponding to the delivered forces.

2.2. Self-supervised learning

Self-supervised learning of the proposed architecture mini-

mizes three different losses:

Trajectory loss Lτ = ∥τ − τ
⋆∥2 that minimizes the differ-

ence between SLAM-reconstructed trajectory τ
⋆ and pre-

dicted trajectory τ .

Geometrical loss Lg = ∥Wg◦(Hg−H⋆
g)∥

2 that minimizes
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Figure 2. Detailed architecture overview: Neural network estimates depth predictions and rich visual features for each pixel ray.

Depth-weighted visual features are vertically projected on 2.5D representation, and a geometrical heightmap Hg is estimated. This

heightmap is further refined through Terrain encoder. It delivers terrain properties such as the heights of the rigid layer of terrain hidden

under the vegetation, Ht = Hg −Hd, or stiffness and dampening. Given state, control and terrain properties, forces at robot-terrain

contacts are estimated. Finally, ∇Physics engine integrates these forces to estimate the resulting robot trajectory. Learning employs three

losses: Trajectory loss, which measures the distance between the predicted and real trajectory; Geometrical loss, which measures the

distance between the predicted geometrical heightmap and lidar-estimated heightmap; Terrain loss, which enforces rigid terrain on rigid

semantic classes revealed through image foundation model.

the difference between ground truth lidar-reconstructed

heightmap H⋆
g and predicted geometrical heightmap Hg.

Wg denotes an array selecting the heightmap channel corre-

sponding to the terrain shape.

Terrain loss Lt = ∥Wt ◦ (Ht − H⋆
t )∥

2 that minimizes

the difference between ground truth H⋆
t and predicted Ht

terrain heightmaps for rigid objects detected through Mi-

crosoft’s image segmentation model SEEM [19], that is

derived from Segment Anything foundation model [13].

Wt denotes the array selecting heightmap cells that are cov-

ered by rigid materials (e.g. stones, walls, trunks), and ◦ is

element-wise multiplication.

2.3. Implementation of differentiable physics engine

We implemented four physics engines that convert the

terrain and control into trajectories. The first implementa-

tion is based on a simple kinematic model assuming that

the robot always lies in the minimum of its potential en-

ergy [14]. The remaining three implementations explicitly

model physical interactions between the robot body and

non-rigid terrain [15].

Simple kinematic model assumes that the robot always

lies in the minimum of its potential energy. Consequently,

the feedforward pass contains a non-convex, constrained

optimization problem. Backpropagation from ground truth

trajectories is performed by constructing its KKT conditions.

In particular, for each pose in the ground truth trajectory, we

construct necessary conditions that make it an optimal solu-

tion to the optimization problem and then train the network

to predict the terrain that satisfies these conditions. The

resulting loss is called KKT-loss and it is detailed in [14].

All three following implementations explicitly model forces

that appear during interaction between the robot and non-

rigid terrain. These forces are then double-integrated into

the final trajectory.

Auto-differentiation implementation uses Euler integra-

tor in the feedforward pass and estimates gradient through

the auto-differentiation [16], i.e. it builds and retains the

full computational graph of the feedforward integration.

The resulting implementation achieves only real-time speed;

therefore, it is unsuitable for fast learning. In order to over-

come this difficulty, we backpropagate from trajectories to

terrain heightmaps before the training procedure and merge

the resulting heightmaps with the ground truth terrain labels

H⋆
t . This simplification may fail in cases where multiple dif-

ferent terrains are consistent with a ground truth trajectory.

We observed that the terrain ambiguity could be prevented

by using sufficiently large heighmap bins.

Neural ODE implementation uses Runge-Kutta ODE

solver in the feedforward pass and estimates the gradient

through implicit function theorem as suggested in Neural

ODE framework [17]. The resulting implementation is more

accurate, especially when simulating almost non-penetrating

contacts requiring huge forces. On the other hand, it runs

about 0.2×real-time, making it intractable for large-scale

learning.
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(a) Moving up the ramp (b) Crashing into the wall (c) Overcoming a stone (d) Crashing into a tree (e) Traversing high grass

Figure 3. Robot-terrain interaction predictions in a diverse set of environments. The predicted heightmap Ht, predicted robot’s trajectories

and interaction forces at contact points are being projected into RGB image plane. The heightmap color denotes its height (blue - low, red

- high). Note: images (a) and (b) contain part of a robot’s payload captured on the left side.

Nvidia’s WARP implementation defines the physics en-

gine kernel in Nvidia’s WARP [18]. Since WARP allows

parallel processing of multiple trajectories, the resulting

implementation allows to generate 103 trajectories (10sec-

long) in 0.3sec on GTX 1660 Ti GPU. Such speed is suffi-

cient for large-scale learning which directly backpropagates

from trajectories into the network kernels. Note that we

found most of WARP’s advertised non-core functionality,

such as implemented physics of common geometric shapes,

unusable due to many missing features, such as collision de-

tection for cylinders. Consequently, we used only WARP’s

kernel compiler and implemented the physics from scratch.

3. EXPERIMENTS AND RESULTS

To evaluate the robot-terrain interaction models, we col-

lected a dataset called RobInGas. It contains examples of

robots moving in different weather conditions over hills,

obstacles, and traversing high grass. It is recorded with

the tracked (Figure 1) and wheeled (Figure 2.3) robotic

platforms. The dataset contains point cloud scans from

Ouster OS0-128, OS0-32 lidars and corresponding RGB

images from Basler and IDS cameras installed on the robots.

For each lidar-images data sample, we additionally record

robot’s poses. The localization was performed using SLAM

methods [20], [21].

Figure 2.3 demonstrates qualitative results achieved on dif-

ferent types of terrains. All trajectories are predicted only

from a single camera image and expected robot control. Ob-

serve that the resulting model reliably predicts robot-terrain

interaction in dangerous scenarios that have not been cov-

ered by the training data. Examples in Figure 2.3 (a) and (b)

demonstrate robot’s motion on a rigid terrain. The red ar-

rows represent normal components of the interaction forces

that affect the robot’s contact points. Note that the force

values are much higher for the collision cases (b) and (d).

Figure 2.3 (c) and (e) contain examples of a terrain with

both rigid (tree trunks, stones) and traversable (grass) ob-

jects. The terrain encoder is able to differentiate between the

two terrain types correctly for the most part of the images.

The strong generalization stems from the internal physics

engine. Table 1 provides quantitative comparison on real

trajectories with respect to state-of-the-art competitors. The

vast majority of existing models estimate terrain properties

and then use a simple kinematic model to infer the robot-

terrain interaction. The resulting interaction is often limited

to a binary decision about the terrain traversability or ex-

pected static pose of the robot on the terrain. To achieve

a fair comparison, we employ our physics engine to con-

vert predicted terrain properties on the trajectories for all

competing models. Note that the dataset does not contain

robot-endangering trajectories, on which the model outper-

forms the competitors the most due to its generalization.

The codes and data are publicly available1.

Table 1. Trajectory estimation accuracy on RobInGas data. ∇phys

(Sec. 2.3) is used to predict trajectories τ (horizon T = 10 sec).

input terrain encoder ∆x [m] ∆R [◦]

lidar Hg interp. [22] 0.29 4.56

lidar Hg pred. [14] 0.14 4.47

camera Hg , LSS [23] 0.11 5.53

camera Ht, our 0.08 2.72

4. CONCLUSIONS

We have proposed a physics-aware end-to-end differentiable

model of robot-terrain interaction that predicts robot tra-

jectory given the controls and onboard camera image de-

picting terrain in front of the robot. We studied four im-

plementations of underlying physics engines: backpropaga-

tion through KKT stability conditions, Neural ODE, auto-

differentiation, and Nvidia WARP. The resulting model may

serve the robotics community as its rapid speed and differen-

tiability make it suitable for large-scale learning and online

planning and control.

1https://github.com/ctu-vras/monoforce
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