
ΦFlow: Differentiable Simulations for Machine Learning

Philipp Holl 1 Nils Thuerey 1

Abstract

We present ΦFlow, a Python toolkit that seamlessly

integrates with PyTorch, TensorFlow, Jax and

NumPy, simplifying the process of writing differ-

entiable simulation code at every step. ΦFlow pro-

vides many essential features that go beyond the

capabilities of the base ML libraries, such as dif-

ferential operators, boundary conditions, the abil-

ity to write dimensionality-agnostic code, floating-

point precision management, fully differentiable

preconditioned (sparse) linear solves, automatic

matrix generation via function tracing, integration

of SciPy optimizers, simulation vectorization, and

visualization tools. At the same time, ΦFlow in-

herits all important traits of the base ML libraries,

such as GPU / TPU support, just-in-time compila-

tion, and automatic differentiation. Put together,

these features drastically simplify scientific code

like PDE or ODE solvers on grids or unstructured

meshes, and ΦFlow even includes out-of-the-box

support for fluid simulations. ΦFlow is available at

https://github.com/tum-pbs/PhiFlow.

1. Introduction

Inferring physical parameters or states with neural networks

has sparked a multitude of promising lines of research. Neu-

ral networks have been used to accelerate simulations [1],

[2], improve simulation accuracy for fixed resolutions [3],

[4], control complex physical systems [5], [6], encode phys-

ical states and sequences [7] and find conservation laws [8],

among others. All of these tasks can be learned end-to-end

only with the aid of a differentiable simulator, as the net-

work predictions pass through a simulator in the forward

pass. However, many differentiable simulators don’t al-

low for seamless integration with ML frameworks, forcing

users to manually handle the forward and backward data

flow [9]–[11]. Meanwhile, the ML libraries PyTorch [12],

*Equal contribution 1School of Computation, Information and
Technology, Technical University of Munich, Germany. Corre-
spondence to: Philipp Holl <philipp.holl@tum.de>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

TensorFlow [13], and Jax [14]–[16] lack vital functionality

required for many types of simulations, which has led re-

searchers to either not use end-to-end training [1], [17]–[19]

or implement custom differentiable simulations [2], [3], [5]

or libraries [11], [20]–[23] compatible with only one ML

framework, preventing adoption in the other communities.

In this work, we present ΦFlow (PhiFlow), an open-source

framework for differentiable simulations that builds on top

of PyTorch, TensorFlow, Jax or NumPy [24]. It is intended

to be used for a wide variety of simulations and includes

high-level data structures for grid/mesh-based (Eulerian) as

well as particle-based (Lagrangian) simulations. ΦFlow is

designed to make simulation code as reusable as possible

without sacrificing readability or performance. Additionally

ΦFlow aims to accelerate development iterations by promot-

ing interactivity and clean code. It has been used in produc-

tion for multiple works and publications [4], [6], [25]–[48],

as well as open data sets [49], [50].

2. Major features of ΦFlow

All of ΦFlow’s core functionality is implemented directly

in Python 3 [51]. This makes it easy to understand its

source code and enables seamless integration with PyTorch,

TensorFlow and Jax using the abstraction layer ΦML [52]

which supports DLPack [53]. ΦFlow provides classes to

represent grids, graphs, unstructured meshes, point clouds,

as well as various primitive geometries. Next we present

features that ΦFlow adds on top of the ML libraries with

further details in appendix A.

Fluid solver Incompressible fluid simulations are chal-

lenging, both theoretically and numerically [54]. Unlike

many other toolkits, ΦFlow does not provide a stand-alone

solver but rather a set of building blocks from which a full

simulation can quickly be assembled as in Fig. 1. These

include functions for advection, diffusion, and pressure com-

putation, giving users full control and making it easy to

adapt the code to their specific needs.

Discrete differential operators ΦFlow implements all

common differential operators for grids as well as unstruc-

tured meshes. These includes the gradient ∇u, divergence

∇ · u⃗, laplace ∇2u, and curl ∇ × u⃗, as well as their gen-

eralizations to matrix fields. For grids, ΦFlow also provides

1

https://github.com/tum-pbs/PhiFlow


PhiFlow: Differentiable Simulations for Machine Learning

from phi.torch.flow import *

@jit_compile

def incompressible_fluid_step(v, dt=.25):

v, p = fluid.make_incompressible(v)

v = diffuse.explicit(v, 0.1, dt)

v = advect.semi_lagrangian(v, v, dt)

return v

v0 = StaggeredGrid(Noise(), x=256, y=256, bounds=Box(x=100, y=100), boundary=0)

v_trj = iterate(incompressible_fluid_step, batch(t=100), v0)

Figure 1. Executable source code of an incompressible fluid simu-

lation using staggered grids running on PyTorch.

higher-order operators, letting users specify arbitrary spa-

tial orders of accuracy for which the stencils are generated

on-the-fly.

Boundary conditions ΦFlow provides an extensive library

dedicated to boundary condition (BC) handling, including

Dirichlet, Neumann, periodic and symmetric BCs, all of

which support BC arithmetic, padding and distance func-

tions, as well as index transforms. All built-in physics

functions are coded to work with all of these BCs and adjust

the employed numerical scheme accordingly.

Dimensionality-agnostic code Many PDEs can be real-

ized in multiple dimensionalities (1D, 2D, 3D), because their

mathematical formulations are abstract, e.g. u̇ = κ∇2u. We

introduce a system for writing dimensionality-agnostic code

which works by letting users mark tensor dimensions as

being spatial. All relevant functions then infer the dimen-

sionality from the number of tagged dimensions. The code

given in Fig. 1 can be made to run in 1D, 2D, 3D, and higher

dimensions, by modifying only line 8. No change to the

simulation function is required.

Floating-point precision management ΦFlow includes

a novel system of controlling precision that is more pre-

dictable, less error-prone and easier to control than existing

solutions. All operations determine the desired precision

from the operation context rather than the data types of its

inputs. The precision can be set globally or locally, and oper-

ations automatically convert non-matching tensors, avoiding

all data type errors. To enable double precision in Fig. 1,

insert math.set global precision(64) below line 1.

Fully differentiable preconditioned linear solvers ΦFlow

includes all SciPy solvers, as well as custom GPU-

compatible conjugate gradient and (stabilized) bi-conjugate

gradient methods [55] for solving linear systems of equa-

tions, both with sparse and dense matrices. Furthermore,

ΦFlow comes with support for GPU-compatible precondition-

ers, such as the incomplete LU decomposition [56] and clus-

tering, which can drastically improve convergence speed.

We support differentiating not only w.r.t. the right-hand-side

but also the (sparse) matrix and all of its dependencies, a

feature that is missing from the base ML libraries.

Automatic matrix generation via function tracing

Given an affine function Â(x), ΦFlow can build a sparse

matrix A and offset o, such that Â(x) = A · x + o. This

allows users to conveniently express linear systems of equa-

tions as interpretable Python functions but solve them with

the efficiency of explicit representations. This is achieved

by tracing low-level affine operations, similar to just-in-time

(JIT) compilation. The matrix assembly itself can be JIT

compiled to avoid tracing overheads at runtime.

Integration of SciPy optimizers ΦFlow includes a simple

API to use all SciPy optimizers, integrating them into the

computational graph of the base ML library. Derivatives

are computed via automatic differentiation and can be eval-

uated on the GPU. ΦFlow also supports solving batches of

optimization problems in parallel by bundling the current

estimates of the individual optimizations.

Vectorization via batch dimensions ΦFlow supports par-

allelization via batch dimensions for all operations. This

eliminates the need for a vmap function which would pre-

vent debugging or visualizing the parallelized code. In

ΦFlow, dimensions can be tagged as batch, allowing users to

define arbitrarily many batch dimensions. Quantities with

different batch dimensions are automatically reshaped to

match, making user code parallelize trivially. Specifying

batch(config=n) in line 8 of Fig. 1 runs n parallel fluid

simulations with different initial conditions.

Single-call visualization ΦFlow includes a plotting fron-

tend for Matplotlib [57] and Plotly [58] that creates fully-

fledged figures from a single plot() call. Despite this

simplicity, the above-mentioned dimension tags allow ΦFlow

to know the type of data being visualized and choose an

appropriate plot. For example, two spatial dimensions indi-

cate a grid which might be plotted as a heatmap or vector

field depending on the other dimensions. Batch dimensions

translate to subfigures by default but can alternatively be

used as the time axis in an animation. All plots shown in

this document were created with one plot() call.

3. Experiments

We use the above features to solve two challenging inverse

problems involving PDEs. Furthermore, we reimplement

three experiments from prior work to show that ΦFlow is

broadly applicable.

Material composition from thermal conductivity First,

we consider heat conduction involving a mixture of two ma-

terials with different thermal conductivity coefficients, e.g. a

conductor and an insulator. The task is to determine the frac-

tion of each material at every point based on two snapshots

of the temperature distribution. An exact reconstruction is

impossible due to the limited information. Fig. 2 shows our

implementation along with an example reconstruction. Us-

2



PhiFlow: Differentiable Simulations for Machine Learning

0

25Y
Initial Temperature Final Temperature

0 50 100
X

0

25Y

True Conductivity

0 50 100
X

Fit
2.5

0.0
2.5

2.5
0.0
2.5

0

1

0.0

0.5

from phi.jax.flow import *

def simulate(x):  # x is the guess for the conductivity

return diffuse.implicit(initial_temp, field.maximum(0, x), 10, Solve('biCG-stab(2)'))

boundary = {'x': 'periodic', 'y': 'zero-gradient'}

conductivity = field.maximum(0, CenteredGrid(Noise(scale=100), boundary, x=100, y=40))

initial_temp = CenteredGrid(Noise(), boundary, x=100, y=40)

final_temp = simulate(conductivity)

fit = minimize(lambda x: math.l2_loss(final_temp - simulate(x)), 

Solve('GD', x0=conductivity.with_values(.01)))

Figure 2. Conductivity reconstruction on a 100× 40 grid with im-

plicit heat diffusion. The conductivity distribution is optimized for

using gradient descent with Jax, based on the initial and diffused

state after 10 seconds.

ing ΦFlow, we can easily write a differentiable simulator for

implicit heat conduction, ensuring numerical stability. We

use this to generate the ground-truth observation data and

to optimize for the material composition by minimizing the

MSE between the observed and reconstructed temperature

profile with gradient descent. Differentiating w.r.t. the con-

ductivity requires the implicit gradient w.r.t. the diffusion

matrix. This would require manual gradient implementation

in most ML libraries, but ΦFlow supports matrix gradients

for linear systems.

As can be seen in Fig. 2, fine detail cannot be recovered,

but the fit approximates the ground truth conductivity distri-

bution. The whole experiment can be written in 8 lines of

code using ΦFlow, attesting to the high information density.

We encourage readers to read the source code, as we believe

it explains our methodology in more detail and clarity than

we can achieve in text.

Particle image velocimetry Reconstruction the motion of

a fluid can be done by tracking the positions of small marker

particles, i.e. particle image velocimetry (PIV). The markers

are passively advected with the fluid, and, given the particle

positions at two consecutive frames, one can fit the velocity

field at that time. We realize a PIV solver using ΦFlow’s

differentiable advection operation. With the objective to

minimize the observed marker positions M(M0,∆t, v) on

the second frame given the initial positions M0, we get the

inverse problem

v = arg min
v′ ||M(M0,∆t, v′)−M0||

2

2
, (1)

0 10 20
X

0

5

10

15

20

Y

Velocity & Particles

0 10 20
X

0

5

10

15

20

Y

Vorticity Difference

3

2

1

0

1

2

3

128 256 512 102420484096
Count

101

102

Velocity MSE

128 256 512 1024 2048 4096
Count

102

4 × 101

6 × 101

44.3057.63

43.23

MSE per Particle (10 9)

from phi.jax.flow import *

@jit_compile

def simulate(v):  # v is the guess for the velocity

return advect.points(initial_markers, v, dt=.1, integrator=advect.rk4)

v0 = StaggeredGrid(Noise(batch(seed=16)), x=64, y=64, bounds=Box(x=20, y=20))

v0, _ = fluid.make_incompressible(v0)

marker_count = vec(batch('count'), 128, 256, 512, 1024, 2048, 4096)

initial_markers = v0.bounds.sample_uniform(instance(markers=marker_count))

final_markers = simulate(v0)

fit1 = minimize(lambda x: math.l2_loss(final_markers - simulate(x)),

Solve('L-BFGS-B', x0=0 * v0.downsample(4))).at(v0)

fit2 = minimize(lambda x: math.l2_loss(final_markers - simulate(x+fit1)),

Solve('L-BFGS-B', x0=0 * v0))

v_estimate = fit1 + fit2

Figure 3. Reconstruction of a divergence-free velocity field v from

128 to 2096 particles, observed at two times 0.1 seconds apart. We

use L-BFGS-B to first fit v at quarter-resolution and afterwards for

a residual fit at full resolution.

where v denotes the fluid velocity. We first fit a coarse veloc-

ity grid at quarter-resolution to avoid zero-velocity values

in cells empty of markers, and then perform a residual fit at

full resolution. For both fits, we employ SciPy’s L-BFGS-B

optimizer, which converges significantly faster than gradient

descent. The top plots of Fig. 3 show an example velocity

field with 4096 markers and the reconstruction error.

To determine how many markers are required to adequately

reconstruct v with this algorithm, we perform this exper-

iment for multiple numbers of marker particles and test

16 different velocity fields, each. Using ΦFlow’s batch di-

mensions, we can simply expand the relevant simulation

inputs and run the optimization and simulation code without

modification, as can be seen in Fig. 3, where the two batch

dimensions seed and count are introduced in lines 5 and

7. Varying the number of particles does change the tensor

sizes, but all sizes are still tracked consistently throughout

the simulation. The bottom plots in Fig. 3 show that increas-

ing the number of markers improves the velocity MSE at

about one order of magnitude per 8× more markers. The

average particle position MSE also decreases but is more

variable across runs with large standard deviations.

3



PhiFlow: Differentiable Simulations for Machine Learning

0.2 0.4 0.6
X

0.4

0.5

0.6

Y
Billiard balls

0.50 0.25 0.00 0.25 0.50
Alpha

0.6

0.7
Loss by angle

Figure 4. Replication of the billiards experiment from [21]. Setup

with orange cue ball left, and loss L(α) right, where α denotes

angle of the cue ball velocity vcue. Source code in appendix C.

0 5 10 15 20
X

0

5

10

15

20

Y

1

0 5 10 15
X

0

5

10

15

Y
0.5

from phi.tf.flow import *

def energy(x: Tensor, boundary=PERIODIC):

dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size)

dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o'))

return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr))

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres'))

size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5

x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size)

x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size

Figure 5. Replication of the sphere packing experiment from [20].

We use L-BFGS-B to find the maximally frustrated state.

Billiards This experiment [21] served as a demonstration

of differentiable collisions. Ten billiard balls are placed in a

triangular formation, and a cue ball is placed some distance

apart, as shown in Fig. 4. The task is finding the initial

velocity of the cue ball vcue, such that one corner ball from

the triangle reaches a desired location after some time. The

objective is measured as the mean squared error between

desired and observed ball position x, L(vcue) = ||x(vcue)−
x∗||2

2
. What makes this task challenging is the chaotic nature

of the collisions, resulting in discontinuous gradients ∂L

∂vcue
.

The corresponding loss landscape depending on the incident

angle, L(α) with α = tan−1(
vy

vx

), is shown in Fig. 4.

Figure 6. Replication of the wave propagation example from

warp [11]. Source code in appendix C.

The original implementation uses a custom Python-like pro-

gramming language designed for differentiable simulations.

To generate an animation of the simulation and the loss plot,

it requires 79 lines for computation, and 41 lines for plotting.

Our replication consists of 29 lines for computation and 2

lines for plotting, one for the animation and one for the loss

graph. We provide our source code for this experiment in

the SI.

Sphere packing The goal of this experiment [20] is to

pack spheres in a periodic 2D domain with minimal overlap,

i.e. to find the maximally frustrated state. This can be

achieved by defining an energy function E(x,R) given the

positions x and radii R of all particles and then minimizing

the energy. As in the original experiment, we divide the

spheres into two types, half with radius R = 1, the other

half with R = D, D ∈ (0, 1]. Fig. 5 shows the maximally

frustrated states for two values of D, along with our source

code. For this result, the original experiment used 25 lines of

imports, 25 lines for computation, and 33 lines for plotting.

Wave propagation This example [11] consists of a wave

simulation on a 128×128 grid, driven by a circular obstacle

that moves inside the domain. Fig. 6 shows the final wave

height after five seconds. Our implementation, shown in ap-

pendix C, consists of 14 lines of code, which is significantly

shorter than the original warp implementation at 165 lines.

4. Conclusions

We have explained and demonstrated the capabilities of

ΦFlow, both for challenging problems involving PDEs and

for general inverse problems. We have showcased the mod-

ular nature of ΦFlow as well as its tight integration with

PyTorch, Jax and TensorFlow, which can be interchanged

by simply modifying the import statement. ΦFlow provides

a large number of simulation-related functions and unique

features, such as automatic matrix generation or the ability

to write dimension-agnostic code.

The source code provided in this document and appendix C

demonstrates that user code written against ΦFlow’s API is

concise and expressive, without sacrificing flexibility or

performance. To emphasize this point, we reimplemented

three experiments that were published as showcases for their

respective frameworks. In all cases, we achieve the same

result with more concise, less convoluted code, making our

implementation easier to understand. To assess the readabil-

ity, we tasked ChatGPT with explaining our code and the

original code, see Appendix C. We believe code readability

is a greatly underappreciated aspect of machine learning re-

search, resulting in many unnecessary re-implementations,

and we hope that ΦFlow will aid in that regard.

4



PhiFlow: Differentiable Simulations for Machine Learning

References

[1] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J.
Leskovec, and P. Battaglia, “Learning to simulate complex
physics with graph networks,” in International Conference
on Machine Learning, PMLR, 2020, pp. 8459–8468.

[2] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin,
“Accelerating eulerian fluid simulation with convolutional
networks,” in International Conference on Machine Learn-
ing, PMLR, 2017, pp. 3424–3433.

[3] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Bren-
ner, and S. Hoyer, “Machine learning–accelerated com-
putational fluid dynamics,” Proceedings of the National
Academy of Sciences, vol. 118, no. 21, 2021.

[4] K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey,
“Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6111–6122,
2020.

[5] K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz, and M. Dell-
nitz, “Deep model predictive flow control with limited
sensor data and online learning,” Theoretical and computa-
tional fluid dynamics, vol. 34, no. 4, pp. 577–591, 2020.

[6] P. Holl, V. Koltun, and N. Thuerey, “Learning to con-
trol pdes with differentiable physics,” arXiv preprint
arXiv:2001.07457, 2020.

[7] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational
physics, vol. 378, pp. 686–707, 2019.

[8] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian
neural networks,” Advances in Neural Information Process-
ing Systems, vol. 32, 2019.

[9] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control,” in 2012 IEEE/RSJ in-
ternational conference on intelligent robots and systems,
IEEE, 2012, pp. 5026–5033.

[10] S. K. Mitusch, S. W. Funke, and J. S. Dokken, “Dolfin-
adjoint 2018.1: Automated adjoints for fenics and fire-
drake,” Journal of Open Source Software, vol. 4, no. 38,
p. 1292, 2019.

[11] M. Macklin, Warp: A high-performance python framework
for gpu simulation and graphics, https://github.
com/nvidia/warp, NVIDIA GPU Technology Confer-
ence (GTC), Mar. 2022.

[12] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imper-
ative style, high-performance deep learning library,” Ad-
vances in neural information processing systems, vol. 32,
2019.

[13] M. Abadi, P. Barham, J. Chen, et al., “{Tensorflow}: A sys-
tem for {large-scale} machine learning,” in 12th USENIX
symposium on operating systems design and implementa-
tion (OSDI 16), 2016, pp. 265–283.

[14] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Compos-
able transformations of Python+NumPy programs, ver-
sion 0.2.5, 2018. [Online]. Available: http://github.
com/google/jax.

[15] I. Babuschkin, K. Baumli, A. Bell, et al., The DeepMind
JAX Ecosystem, 2020. [Online]. Available: http : / /
github.com/deepmind.

[16] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin, Haiku:
Sonnet for JAX, version 0.0.3, 2020. [Online]. Available:
http://github.com/deepmind/dm-haiku.

[17] S. Rasp and N. Thuerey, “Data-driven medium-range
weather prediction with a resnet pretrained on climate
simulations: A new model for weatherbench,” Journal
of Advances in Modeling Earth Systems, vol. 13, no. 2,
e2020MS002405, 2021.

[18] S. Thapa, N. Li, and J. Ye, “Dynamic fluid surface recon-
struction using deep neural network,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 21–30.

[19] K. Stachenfeld, D. B. Fielding, D. Kochkov, et al.,
“Learned coarse models for efficient turbulence simulation,”
arXiv preprint arXiv:2112.15275, 2021.

[20] S. Schoenholz and E. D. Cubuk, “Jax md: A framework for
differentiable physics,” Advances in Neural Information
Processing Systems, vol. 33, pp. 11 428–11 441, 2020.

[21] Y. Hu, L. Anderson, T.-M. Li, et al., “Difftaichi: Dif-
ferentiable programming for physical simulation,” arXiv
preprint arXiv:1910.00935, 2019.

[22] D. A. Bezgin, A. B. Buhendwa, and N. A. Adams, “Jax-
fluids: A fully-differentiable high-order computational fluid
dynamics solver for compressible two-phase flows,” Com-
puter Physics Communications, p. 108 527, 2022, ISSN:
0010-4655. DOI: https://doi.org/10.1016/j.
cpc.2022.108527. [Online]. Available: https://
www.sciencedirect.com/science/article/

pii/S0010465522002466.

[23] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Bren-
ner, and S. Hoyer, “Machine learning–accelerated com-
putational fluid dynamics,” Proceedings of the National
Academy of Sciences, vol. 118, no. 21, 2021, ISSN: 0027-
8424. DOI: 10 . 1073 / pnas . 2101784118. eprint:
https : / / www . pnas . org / content / 118 /

21/e2101784118.full.pdf. [Online]. Available:
https://www.pnas.org/content/118/21/

e2101784118.

[24] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array
programming with NumPy,” Nature, vol. 585, no. 7825,
pp. 357–362, Sep. 2020. DOI: 10.1038/s41586-020-
2649-2. [Online]. Available: https://doi.org/10.
1038/s41586-020-2649-2.

[25] P. Holl, V. Koltun, and N. Thuerey, “Physical gradients for
deep learning,” arXiv preprint arXiv:2109.15048, 2021.

[26] N. Thuerey, P. Holl, M. Mueller, P. Schnell, F. Trost, and
K. Um, “Physics-based deep learning,” arXiv preprint
arXiv:2109.05237, 2021.

[27] P. Schnell, P. Holl, and N. Thuerey, “Half-inverse
gradients for physical deep learning,” arXiv preprint
arXiv:2203.10131, 2022.

[28] P. Holl, V. Koltun, and N. Thuerey, “Scale-invariant learn-
ing by physics inversion,” Advances in Neural Information
Processing Systems, vol. 35, pp. 5390–5403, 2022.

[29] J. Brandstetter, D. E. Worrall, and M. Welling, “Message
passing neural pde solvers,” in International Conference
on Learning Representations, 2021.

[30] N. Wandel, M. Weinmann, and R. Klein, “Teaching the
incompressible navier-stokes equations to fast neural sur-
rogate models in 3d,” arXiv preprint arXiv:2012.11893,
2020.

5

https://github.com/nvidia/warp
https://github.com/nvidia/warp
http://github.com/google/jax
http://github.com/google/jax
http://github.com/deepmind
http://github.com/deepmind
http://github.com/deepmind/dm-haiku
https://doi.org/https://doi.org/10.1016/j.cpc.2022.108527
https://doi.org/https://doi.org/10.1016/j.cpc.2022.108527
https://www.sciencedirect.com/science/article/pii/S0010465522002466
https://www.sciencedirect.com/science/article/pii/S0010465522002466
https://www.sciencedirect.com/science/article/pii/S0010465522002466
https://doi.org/10.1073/pnas.2101784118
https://www.pnas.org/content/118/21/e2101784118.full.pdf
https://www.pnas.org/content/118/21/e2101784118.full.pdf
https://www.pnas.org/content/118/21/e2101784118
https://www.pnas.org/content/118/21/e2101784118
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2


PhiFlow: Differentiable Simulations for Machine Learning

[31] J. Brandstetter, R. van den Berg, M. Welling, and J. K.
Gupta, “Clifford neural layers for pde modeling,” in The
Eleventh International Conference on Learning Represen-
tations, 2022.

[32] M. Takamoto, F. Alesiani, and M. Niepert, “Learning neu-
ral pde solvers with parameter-guided channel attention,”
arXiv preprint arXiv:2304.14118, 2023.

[33] O. Teikmanis, L. Leja, and K. Freivalds, “Applying a dif-
ferentiable physics simulation to move objects with fluid
streams,”

[34] N. Wandel, M. Weinmann, and R. Klein, “Teaching the
incompressible navier–stokes equations to fast neural surro-
gate models in three dimensions,” Physics of Fluids, vol. 33,
no. 4, 2021.

[35] N. Wandel, M. Weinmann, and R. Klein, “Learning in-
compressible fluid dynamics from scratch-towards fast, dif-
ferentiable fluid models that generalize,” in International
Conference on Learning Representations, 2020.

[36] G. Bokil, T. Geyer, and S. Wolff, “Towards convolutional
neural networks for heat exchangers in electrified aircraft,”
2023.

[37] V. Sengar, K. Seemakurthy, J. Gubbi, and B. P, “Multi-task
learning based approach for surgical video desmoking,” in
Proceedings of the twelfth Indian conference on computer
vision, graphics and image processing, 2021, pp. 1–9.

[38] N. Parekh, A. Zou, I. Jungling, K. Endlich, J. Sad-
owski, and M. Steinhausen, “Sex differences in con-
trol of renal outer medullary circulation in rats: Role of
prostaglandins,” American Journal of Physiology-Renal
Physiology, vol. 264, no. 4, F629–F636, 1993.

[39] S. Brahmachary and N. Thuerey, “Unsteady cylinder wakes
from arbitrary bodies with differentiable physics-assisted
neural network,” arXiv preprint arXiv:2308.04296, 2023.

[40] B. Ramos, F. Trost, and N. Thuerey, “Control of two-way
coupled fluid systems with differentiable solvers,” in ICLR
2022 Workshop on Generalizable Policy Learning in Physi-
cal World, 2022.

[41] V. C. Yadav et al., “Simulation of fluid flows based on the
data-driven evolution of vortex particles,” Ph.D. disserta-
tion, Institut für Strömungsmechanik, 2021.

[42] N. Tathawadekar, N. A. K. Doan, C. F. Silva, and N.
Thuerey, “Hybrid neural network pde solvers for reacting
flows,” arXiv preprint arXiv:2111.11185, 2021.

[43] R. Wang, R. Walters, and R. Yu, “Approximately equiv-
ariant networks for imperfectly symmetric dynamics,” in
International Conference on Machine Learning, PMLR,
2022, pp. 23 078–23 091.

[44] J. A. Kurz, M. G. Seman, T. Khan, B. A. Bowman, and
C. A. Oian, “Machine learning for pac1d and sese,” 2023.

[45] R. Wang, R. Walters, and R. Yu, “Meta-learning dynamics
forecasting using task inference,” Advances in Neural In-
formation Processing Systems, vol. 35, pp. 21 640–21 653,
2022.

[46] P. Wang, “The applications of generative adversarial net-
work in surgical videos,” in Third International Conference
on Intelligent Computing and Human-Computer Interac-
tion (ICHCI 2022), SPIE, vol. 12509, 2023, pp. 300–305.

[47] T. Wu, T. Maruyama, and J. Leskovec, “Learning to accel-
erate partial differential equations via latent global evolu-
tion,” Advances in Neural Information Processing Systems,
vol. 35, pp. 2240–2253, 2022.

[48] Z. Li, S. Patil, D. Shu, and A. B. Farimani, “Latent neural
pde solver for time-dependent systems,” in NeurIPS 2023
AI for Science Workshop, 2023.

[49] M. Takamoto, T. Praditia, R. Leiteritz, et al., “Pdebench:
An extensive benchmark for scientific machine learn-
ing,” Advances in Neural Information Processing Systems,
vol. 35, pp. 1596–1611, 2022.

[50] J. K. Gupta and J. Brandstetter, “Towards multi-
spatiotemporal-scale generalized pde modeling,” arXiv
preprint arXiv:2209.15616, 2022.

[51] G. Van Rossum and F. L. Drake Jr, Python reference man-
ual. Centrum voor Wiskunde en Informatica Amsterdam,
1995.

[52] P. Holl and N. Thuerey, “Φ-ml: Intuitive scientific comput-
ing with dimension types for jax, pytorch, tensorflow &
numpy,” Journal of Open Source Software, vol. 9, no. 95,
p. 6171, 2024. DOI: 10.21105/joss.06171. [Online].
Available: https://doi.org/10.21105/joss.
06171.

[53] T. C. et al., Dlpack: Open in memory tensor structure,
https://github.com/dmlc/dlpack, 2017.

[54] J. H. Ferziger, M. Perić, and R. L. Street, Computational
methods for fluid dynamics. springer, 2019.

[55] J. R. Shewchuk et al., An introduction to the conjugate
gradient method without the agonizing pain, 1994.

[56] Y. Saad, “Iterative methods for sparse linear systems,”
IEEE Computational Science and Engineering, vol. 3, no. 4,
p. 87, 1996.

[57] J. D. Hunter, “Matplotlib: A 2d graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 90–
95, 2007. DOI: 10.1109/MCSE.2007.55.

[58] P. T. Inc. “Collaborative data science.” (2015), [Online].
Available: https://plot.ly.

[59] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Compos-
able transformations of Python+NumPy programs, ver-
sion 0.3.13, 2018. [Online]. Available: http://github.
com/google/jax.

6

https://doi.org/10.21105/joss.06171
https://doi.org/10.21105/joss.06171
https://doi.org/10.21105/joss.06171
https://github.com/dmlc/dlpack
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
http://github.com/google/jax
http://github.com/google/jax


PhiFlow: Differentiable Simulations for Machine Learning

A. Additional Information on the Design and Implementation of ΦFlow

Simulation implementation For all simulations, users assemble a custom simulation function from the building blocks

provided by ΦFlow, such as diffusion, advection or linear system solves. We provide a large number of pre-built examples

on our website, but always expose the simulation procedure directly to the user. This allows users to easily implement

complex simulation schemes, from operator splitting approaches to the SIMPLE algorithm patankar1980numerical. Most

of ΦFlow’s functions can operate both on grids and meshes.

Spatial order of accuracy All differential operators can be configured in the spatial order to be used. For grids, all

positive inegers are supported in theory, and all operators can be applied either explicitly or implicitly for added stability.

Unstructured meshes support first and second-order as well as upwind schemes.

Solving linear systems of equations ΦFlow includes all SciPy solvers, as well as custom GPU-compatible conjugate

gradient and (stabilized) bi-conjugate gradient methods [55] for solving linear systems of equations, both with sparse and

dense matrices. Furthermore, ΦFlow comes with support for GPU-compatible preconditioners, such as the incomplete LU

decomposition [56] and clustering, which can drastically improve convergence speed.

Linear solves are implemented differentiably, i.e. the adjoint system is solved during backpropagation or computation of

higher-order derivatives. This is implemented via implicit differentiation in order to save on memory requirements and

converge more quickly than backpropagating through the rolled-out solve. Users can specify the termination of the gradient

solve and higher-order derivative solves independently of the forward solve if desired. Preconditioners are generally re-used

in the adjoint solve.

In addition to differentiating w.r.t. the right-hand-side b, ΦFlow can also differentiate w.r.t. the (sparse) matrix A and all of

its dependencies, a feature that is missing from the base ML libraries but is required in many circumstances, e.g. when

differentiating through implicit convection or finding the optimal viscosity in implicit diffusion.

Automatic matrix generation via function tracing There are generally two categories of linear system solvers: ones

that use an explicit representation of the matrix A, and matrix-free solvers which use a functional representation Â(x) that

computes the result of A · x. While the latter is more convenient, concise, readable and debuggable in code, the former is

more efficient and enables usage of generic preconditioners, such as the incomplete LU decomposition of A. We aim to

combine the best of both worlds by introducing automatic (sparse) matrix generation. This allows users to write and test the

effect of A as a function but still perform an explicit matrix solve with automatically-generated preconditioners. To achieve

this, we implement a function tracing algorithm similar to just-in-time compilation, but, instead of low-level code, it outputs

a matrix, representing the effect of the function Â on a placeholder vector. It records all affine operations, including boundary

conditions, performed by Â and assembles the matrix A ∈ R
n×m and offset o ∈ R

n, such that Â(x) = A · x+ o ∀x ∈ R
m.

Tracing can be done explicitly by the user via matrix from function(), or under-the-hood by decorating an affine

Python function with @jit compile linear. Then the matrix will be generated when the function is used in a linear

solve, and all constant terms in Â will be automatically subtracted from the right-hand-side vector to solve A · x = b− o.

Tracing Python functions may seem like a large overhead if it needs to be done for each simulation step, but, in addition to

caching, ΦFlow includes various optimizations for production code, i.e. when the simulation is jit-compiled.

• The dependencies of A and o on simulation parameters are expressed as a jit-compiled computational graph in the

corresponding ML library, reducing the overhead of matrix construction.

• The sparsity pattern of A is determined at jit-compile time, usually performed only once. For variable patterns, such as

upwind schemes, the combined pattern is determined and zeros are added to the matrix values where necessary.

• Sparse matrices are automatically compressed at compile-time into the most optimal format supported by the ML

library, such as the compressed sparse row (CSR) format. At runtime, this only induces a gather operation with fixed

indices on the values tensor to order the entries correctly.

• If Â has no dependence on variables outside x, the matrix is computed using NumPy. It enters the computational graph

of the ML library as a constant, and no matrix-building operations need to be performed at runtime.

• If the matrix values depend on parameters that vary across examples, the sparse matrix can be represented in either

monolithic block-diagonal form or batched-values form to maximize hardware utilization.

7



PhiFlow: Differentiable Simulations for Machine Learning

These optimizations also apply to all preconditioners.

B. Performance measurements

We benchmark all experiments with the three supported machine learning backends: PyTorch, TensorFlow and JAX. We

always enable just-in-time (JIT) compilation using ΦFlow’s @jit compile function decorator. The results are shown in

Tab. 1. Overall, the performance gap between the backends is reasonably small, and no library consistently outperforms the

others. For fluids and tasks involving random data access, JAX usually yields the best performance, while PyTorch works

best for easy-to-parallelize tasks.

Table 1. Performance measurements of our experiments by ML backend. The table shows wall-clock time in ms per step on an NVIDIA

RTX 3090 excluding warm-up.

PyTorch TensorFlow JAX

Thermal conductivity 24.4 ± 1.5 28.2 ± 1.1 40.5 ± 3.1

PIV 25 ± 2 41.6 ± 1.7 46 ± 2

Learning fluids 293 ± 363 296 ± 356 156 ± 373

Billiards 0.88 ± 1.80 1.20 ± 2.45 0.85 ± 0.21

Sphere packing 2.0 ± 0.3 4.4 ± 0.4 7.8 ± 0.7

2D Waves 0.50 ± 0.07 0.74 ± 0.05 0.38 ± 0.05

C. Code readability

To measure the readability of our code, we prompt ChatGPT with the input ”Explain this code to me:”, followed by the

source code. We show the first output generated by ChatGPT 3.5 for each experiment in full below. We made no changes to

our code after reading the explanations generated by ChatGPT to prevent biasing the results.

Sphere packing (ΦFlow) ChatGPT accurately explains our code, recognizing our library PhiFlow and the TensorFlow

backend. Its summary is also correct, but it misses the physical interpretation of the energy function. ChatGPT breaks the

code into sections and explains each variable separately, citing the appropriate snippets of code. The explanation resembles

our description above, which was written without AI-assistance.

Sphere packing (JAX-MD) Given the original Jax-MD code, ChatGPT summarizes the task as ”self-assembly of colloidal

particles”, which matches the domain of the Jax-MD library but is not correct for the given code, as the spheres are explicitly

referred to as bubbles in the original experiment and code. ChatGPT also fails to recognize the Jax-MD library, despite 7

lines of corresponding imports. Instead, it assumes the code uses JAX [59] directly. ChatGPT breaks the code down into

nine sections, each with two to seven subsections. It does not cite lines from the source, likely due to the lengthy input.

Billiards (ΦFlow) ChatGPT’s explanation of our code is concise and to the point, structuring the code into four sections

with three to five points each. Despite the brevity, the output captures all essential parts with sufficient detail, such as the

triangular initialization, how the simulation works, and what the loss function is intended to do. ChatGPT even draws on its

physics knowledge to explain that the elasticity is connected to the energy conserved in collisions. The output is generally

high-level, focusing more on the purpose than on individual variables. All explanations are correct except for two minor

issues: (i) ChatGPT did not recognize that only the cue ball velocity is optimized and (ii) it refers to a ”controllable ball”,

which does not match the code. ChatGPT’s summary at the bottom perfectly describes the experiment.

Billiards (DiffTaichi) ChatGPT’s explanation of the original source code differs greatly from our version. ChatGPT

structures the original source code from DiffTaichi into 13 sections, many of which only sport a single bullet point. This lack

of structure is likely due to the fact that ChatGPT tries to mirror the order in which variables and functions are defined in the

source code. Unlike with our code, the explanations here are low-level, usually limited to individual variables or functions.

The bigger picture, such as the purpose of functions or the code as a whole, is not mentioned. Except for missclassifying sys

and os as scientific computing libraries and describing the loss as a ”scalar field”, the output is mostly correct. However,

most statements seem trivial and redundant, e.g. ”collide pair(t, i, j): Function to handle collisions between

8



PhiFlow: Differentiable Simulations for Machine Learning

pairs of balls” or ”vis resolution: Resolution for visualization”. How the simulation works is not explained; ChatGPT

only states that the simulation ”initializes the system, performs collision handling, and updates the positions and velocities

of the particles”. The initial triangle configuration as well as the loss function are not explained at all. Evidently ChatGPT

understands that the code runs a Billiards simulation but fails to figure out how the simulation works or what its purpose is.

Waves (ΦFlow) ChatGPT identifies the code as a 2D grid simulation of propagating waves, quoting many important lines

from the source code. It correctly identifies the purpose of both functions and all of their arguments, and it extracts the

resolution, domain size and boundary conditions of the simulation. While it correctly identifies that 60 steps per second with

16 sub-steps each are used, it fails to derive the total simulation time, mixing up seconds and minutes.

Waves (Warp) ChatGPT identifies the code as a grid-based wave propagation simulation but does not extract its resolution,

domain size, boundary conditions, or simulation time. No line from the source code is quoted, instead the explana-

tion focusses on the code structure, likely due to the lengthy input. The helper functions sample, laplacian and

grid update are summarized very briefly, and ChatGPT seems unaware that, as kernel functions, these will run on the

whole grid in parallel. The descriptions of the main functions wave displace and wave solve are also very short

but also partly inaccurate. ChatGPT describes wave displace as displacing points in a circular pattern to simulate

wave generation. While technically true, the function simply fills a circle on the grid with a constant value. Furthermore,

wave solve is described as solving the wave equation iteratively for each point in the grid. This fails to capture that the

function only performs one simulation sub-step, and it misses that the execution is performed in parallel, not iteratively. The

bulk of ChatGPT’s response deals with the code structure, such as the Example class. Only section 2 out of six sections

describes the simulation, and no concrete numbers are given.

The full ChatGPT generations are shown on the next pages, followed by the source code we gave to ChatGPT. For both

experiments, the outputs based on our code seem easier to understand, more concise and more insightful.

9



Sphere Packing (Φ𝐹𝑙𝑜𝑤) 

You: Explain this code to me: from phi.tf.flow import * […] 

 

ChatGPT: 

This code appears to be a Python script using the TensorFlow-based library called “PhiFlow” to simulate a physical system involving spheres. Let’s break down the code step by step: • Import necessary modules: 

from phi.tf.flow import * This line imports the required modules from the “phi.tf.flow” package. PhiFlow is a library for differentiable 
physics in TensorFlow. - Define an energy function: 

def energy(x: Tensor, boundary=PERIODIC): 

  dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size) 

  dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o')) 

  return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr)) 

This function energy calculates the energy of a system of spheres at positions x. It uses the periodic 

boundary condition (PERIODIC). The energy is based on the shortest distances (dx) between the spheres, and 

dr is a normalized distance. The energy is calculated using the L2 loss of a modified distance. - Set up initial 

parameters: 

R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres')) 

This line sets up a list of radii (R) for 64 small spheres with radius 1 and 64 larger spheres with radius 0.5. - 

Compute system size: 

size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5 

This line calculates the total volume of the spheres and computes the size of the simulation domain based on 

that volume. - Initialize particle positions randomly: 

x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size) 

This line initializes the positions (x0) of the spheres randomly within the simulation domain. - Minimize the 

energy using L-BFGS-B optimization: 

x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size 

The code uses the minimize function to find the configuration of sphere positions (x_packed) that 

minimizes the energy. The optimization is performed using the L-BFGS-B algorithm. The result is wrapped 

around to ensure periodic boundary conditions. 

In summary, this code sets up a physical system with spheres, defines an energy function based on sphere 

positions, initializes the system, and then minimizes the energy using an optimization algorithm to find a 

stable configuration for the spheres. The periodic boundary conditions ensure that the system behaves 

consistently at the edges of the simulation domain. 

 



Sphere Packing (Φ𝐹𝑙𝑜𝑤) 

from phi.tf.flow import * 
 
def energy(x: Tensor, boundary=PERIODIC): 
    dx = boundary.shortest_distance(x, rename_dims(x, 'spheres', 'o'), size) 
    dr = math.vec_length(dx, eps=1e-8) / (R + rename_dims(R, 'spheres', 'o')) 
    return math.l2_loss(math.where((dr < 2e-4) | (dr > 1), 0, 1 - dr)) 
 
R = wrap([1]*64 + [vec(batch('d'), 1, .5)]*64, instance('spheres')) 
size = (math.sum(Sphere(vec(x=0, y=0), R).volume, 'spheres') * 1.05) ** .5 
x0 = math.random_uniform(instance(R), channel(vector='x,y'), high=size) 
x_packed = minimize(energy, Solve('L-BFGS-B', x0=x0)) % size 
plot(Sphere(x_packed, R), size=(6, 3)) 

 



Sphere Packing (JAX-MD) 

You:   Explain this code to me:   import time   […]   finalize_plot((2.0, 1))

 

ChatGPT: 

This code is a Python script that uses JAX (Just Another XLA) to simulate the self-assembly of colloidal 

particles. The simulation is based on the minimization of a soft sphere pair potential energy function. Let’s break down the code into sections: • Importing Libraries: – The code starts by importing necessary libraries like JAX, NumPy, and Matplotlib. – It also includes some utilities for progress bars and plot formatting. • Progress Bars and Plot Settings: – The ProgressIter and progress functions are used for displaying progress bars. – Matplotlib settings are configured for plot formatting. • System Visualization Functions: – draw_system: Function to visualize the system by plotting particle positions. – finalize_plot: Function to adjust the plot size and layout. • System Property Utilities: – box_size_at_number_density: Calculates the box size based on particle count and number 

density. • Simulation Parameters: – N: Total number of particles. – simulation_steps: Number of simulation steps. – dt: Time step for the simulation. – temperature: Temperature of the system. – key: Random key for initializing the system. – packing_fraction: Desired packing fraction of particles in the system. – markersize: Size of markers for particle visualization. • Particle Species and Interaction: – The system consists of two types of particles, species 0 and species 1. – species_sigma: Function to define the diameter matrix based on particle species. • Simulation Function: – simulation: Main simulation function that takes a diameter and a random key as input. – It sets up the simulation environment, defines the soft sphere pair potential energy, initializes 

the system, and performs minimization steps. • Simulation Visualization: – The script plots two visualizations using Matplotlib: • The first subplot shows the self-assembly of particles with a diameter of 1.0. • The second subplot shows the self-assembly of particles with diameters 0.8 and 1.0. – Plotting and Finalization: – The draw_system function is used to plot the particle positions. – The finalize_plot function adjusts the plot size and layout. 

In summary, the code simulates the self-assembly of colloidal particles using JAX and visualizes the results with Matplotlib. The particles interact through a soft sphere pair potential energy, and the system’s evolution 
is visualized at different diameters. 

 



 

Sphere Packing (JAX-MD) 

import time 
 
from functools import partial 
import numpy as onp 
 
import jax.numpy as np 
 
from jax.api import jit 
from jax.api import grad 
from jax.api import vmap 
from jax.api import value_and_grad 
 
from jax import random 
from jax import lax 
 
from jax.experimental import stax 
from jax.experimental import optimizers 
 
from jax.config import config 
config.update('jax_enable_x64', True) 
 
from jax_md import space 
from jax_md import minimize 
from jax_md import simulate 
from jax_md import space 
from jax_md import energy 
from jax_md import quantity 
from jax_md.util import f32, f64 
 
 
# Progress Bars. 

from IPython.display import HTML, display 
import time 
 
def ProgressIter(iter_fun, iter_len=0): 
  if not iter_len: 
    iter_len = len(iter_fun) 
  out = display(progress(0, iter_len), display_id=True) 
  for i, it in enumerate(iter_fun): 
    yield it 
    out.update(progress(i + 1, iter_len)) 
 
def progress(value, max): 
    return HTML(""" 
        <progress 
            value='{value}' 
            max='{max}', 
            style='width: 45%' 
        > 
            {value} 
        </progress> 
    """.format(value=value, max=max)) 
 
 
# Matplotlib settings. 

 

import matplotlib 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
sns.set_style(style='white') 
sns.set(font_scale=1.6) 
 
def format_plot(x, y): 
  plt.xlabel(x, fontsize=20) 
  plt.ylabel(y, fontsize=20) 
 
def finalize_plot(shape=(1, 1)): 
  plt.gcf().set_size_inches( 
    shape[0] * 1.5 * plt.gcf().get_size_inches()[1], 
    shape[1] * 1.5 * plt.gcf().get_size_inches()[1]) 
  plt.tight_layout() 
 
def draw_system(R, box_size, marker_size, color=None): 
  if color == None: 
    color = [64 / 256] * 3 
  ms = marker_size / box_size 
 
  R = onp.array(R) 
 
  marker_style = dict( 
      linestyle='none', 
      markeredgewidth=3, 
      marker='o', 
      markersize=ms, 
      color=color, 
      fillstyle='none') 
 
  plt.plot(R[:, 0], R[:, 1], **marker_style) 



  plt.plot(R[:, 0] + box_size, R[:, 1], **marker_style) 
  plt.plot(R[:, 0], R[:, 1] + box_size, **marker_style) 
  plt.plot(R[:, 0] + box_size, R[:, 1] + box_size, **marker_style) 
  plt.plot(R[:, 0] - box_size, R[:, 1], **marker_style) 
  plt.plot(R[:, 0], R[:, 1] - box_size, **marker_style) 
  plt.plot(R[:, 0] - box_size, R[:, 1] - box_size, **marker_style) 
 
  plt.xlim([0, box_size]) 
  plt.ylim([0, box_size]) 
  plt.axis('off') 
  plt.gca().set_facecolor([1, 1, 1]) 
 
 
# System property utilities. 

 

def box_size_at_number_density(particle_count, number_density): 
  return f32((particle_count / number_density) ** 0.5) 
 
N = 128 
N_2 = N // 2 
 
simulation_steps = np.arange(300) 
dt = 1e-2 
temperature = 1e-5 
 
key = random.PRNGKey(0) 
 
packing_fraction = 0.98 
markersize = 260 
 
def box_size_at_packing_fraction(diameter): 
  bubble_volume = N_2 * np.pi * (diameter ** 2 + 1) / 4 
  return np.sqrt(bubble_volume / packing_fraction) 
 
species = np.array([0] * (N_2) + [1] * (N_2), dtype=np.int32) 
 
def species_sigma(diameter): 
  d_AA = diameter 
  d_BB = 1 
  d_AB = 0.5 * (diameter + 1) 
  return np.array( 
      [[d_AA, d_AB], 
       [d_AB, d_BB]] 
  ) 
 
@jit 
def simulation(diameter, key): 
  # Create the simulation environment. 
  box_size = box_size_at_packing_fraction(diameter) 
  displacement, shift = space.periodic(box_size) 
 
  # Create the energy function. 
  sigma = species_sigma(diameter) 
  energy_fun = energy.soft_sphere_pair( 
      displacement, species=species, sigma=sigma) 
 
  # Randomly initialize the system. 
  R = random.uniform(key, (N, 2), maxval=box_size) 
 
  # Minimize to the nearest minimum. 
  init_fn, apply_fn = minimize.fire_descent(energy_fun, shift) 
  state = init_fn(R) 
 
  do_step = lambda state, t: (apply_fn(state, t=t), ()) 
  state, _ = lax.scan(do_step, state, simulation_steps) 
 
  return box_size, energy_fun(state.position), state.position 
 
plt.subplot(1, 2, 1) 
 
box_size, raft_energy, bubble_positions = simulation(1.0, key) 
draw_system(bubble_positions, box_size, markersize) 
finalize_plot((0.5, 0.5)) 
 
plt.subplot(1, 2, 2) 
 
box_size, raft_energy, bubble_positions = simulation(0.8, key) 
draw_system(bubble_positions[:N_2], box_size, 0.8 * markersize) 
draw_system(bubble_positions[N_2:], box_size, markersize) 
finalize_plot((2.0, 1)) 

 



Billiards (Φ𝐹𝑙𝑜𝑤) 

You: Explain this code to me:   from phi.torch.flow import *    […] 

 

ChatGPT: 

This code appears to be a Python script that defines a simulation of billiard balls moving in a triangular configuration. Let’s break down the code into its main components: • billiards_triangle function: – This function generates the initial configuration of the billiard balls arranged in a triangular 

pattern. – billiard_layers determines the number of layers in the triangle, and radius is the radius of 

each ball. – The function uses nested loops to create the ball coordinates based on the layer and position 

within the layer. • physics_step function: – This function simulates a physics step for the billiard balls. – It uses the phi library (specifically, advect.points and math functions) for numerical 

simulation. – The function calculates the next position of the balls (v_next) based on advection (movement). – It then computes the distance between balls, checks for collisions, and updates the velocities 

accordingly. – Elasticity determines how much energy is conserved during collisions. • loss_function function: – This function defines the loss function for the optimization process. – It takes initial position x0 and initial velocity v0 as inputs and simulates the motion of the 

billiard balls using the physics_step function. – The goal is to minimize the L2 loss between the final position of the controllable ball and a 

specified goal position. – The function returns the L2 loss and the trajectory of the simulation. • Last part: – The script sets an initial position x0 and a function v0 that generates initial velocities based on 

an angle alpha. – It then uses the loss_function to create a scan over different values of alpha, aiming to find 

the best initial velocity that minimizes the L2 loss. – The result is stored in the scan variable, which represents a centered grid of loss values over 

the specified range of alpha. 

In summary, this code defines a simulation of billiard balls with a triangular initial configuration, and it aims 

to find the optimal initial velocity to reach a specified goal position. The optimization is performed over a 

range of angles using the phi library for numerical simulations. 

 



Billiards (Φ𝐹𝑙𝑜𝑤) 

from phi.torch.flow import * 
 
 
def billiards_triangle(billiard_layers=4, radius=.03): 
    coords = [] 
    for i in range(billiard_layers): 
        for j in range(i + 1): 
            coords.append(vec(x=i * 2 * radius + 0.5, y=j * 2 * radius + 0.5 - i * radius * 0.7)) 
    return Sphere(stack(coords, instance('balls')), radius=radius) 
 
 
def physics_step(v: PointCloud, dt: float, elasticity=0.8): 
    v_next = advect.points(v, v, dt) 
    dist = v_next.points - rename_dims(v_next.points, 'balls', 'others') 
    dist_norm = math.vec_length(dist, eps=1e-4)  # eps to avoid NaN during backprop of sqrt 
    rel_v = v.values - rename_dims(v.values, 'balls', 'others') 
    dist_dir = math.safe_div(dist, dist_norm) 
    projected_v = dist_dir.vector * rel_v.vector 
    has_impact = (projected_v < 0) & (dist_norm < 2 * v.geometry.radius) 
    impulse = -(1 + elasticity) * .5 * projected_v * dist_dir 
    radius_sum = v.geometry.radius + rename_dims(v.geometry.radius, 'balls', 'others') 
    impact_time = math.safe_div(dist_norm - radius_sum, projected_v) 
    x_inc_contrib = math.sum(math.where(has_impact, math.minimum(impact_time - dt, 0) * impulse, 0), 'others') 
    v = v.with_elements(v.geometry.shifted(x_inc_contrib)) 
    v += math.sum(math.where(has_impact, impulse, 0), 'others') 
    return advect.points(v, v, dt) 
 
 
def loss_function(x0: Tensor, v0: Tensor, goal=vec(x=0.9, y=0.75), steps=1024): 
    triangle_balls = PointCloud(billiards_triangle()) * (0, 0) 
    controllable_ball = PointCloud(Sphere(expand(x0, instance(triangle_balls).with_size(1)), 
radius=triangle_balls.geometry.radius)) * v0 
    all_balls = controllable_ball & triangle_balls 
    trj = iterate(physics_step, batch(t=steps), all_balls, f_kwargs={'dt': 0.003}) 
    return math.l2_loss(trj.t[-1].balls[-1] - goal), trj 
 
 
x0 = vec(x=.1, y=.5) 
v0 = lambda alpha: vec(x=0.3 * math.cos(alpha), y=0.3 * math.sin(alpha)) 
scan = CenteredGrid(lambda alpha: loss_function(x0, v0(alpha))[0], alpha=1000, bounds=Box(alpha=(-PI/4, PI/4))) 
plot({"Billiard balls": [billiards_triangle(), Sphere(x0, radius=.03)], "Loss by angle": scan.alpha[200:-200]}, size=(6, 1.8), 
overlay='list') 

 



Billiards (DiffTaichi) 

You:   Explain this code to me:   import taichi as ti   […]    scan(float(sys.argv[1])) 

 

ChatGPT: 

This code is a simulation of billiards using the Taichi programming language. It employs a numerical 

approach to simulate the physics of billiards, including collision detection and response. 

Here is a breakdown of the code: • Importing Libraries: – taichi, sys, math, numpy, os: Libraries for scientific computing and simulation. – matplotlib.pyplot: Used for plotting graphs. • Taichi Initialization: – ti.init(): Initializes the Taichi runtime with a default floating-point precision (real is set to 

ti.f32). • Simulation Parameters: – max_steps, vis_interval, output_vis_interval, steps: Parameters for the simulation. – vis_resolution: Resolution for visualization. – scalar and vec: Functions to define scalar and vector fields. – loss: Scalar field to represent the loss. • Particle Properties and Simulation Setup: – init_x, init_v: Initial positions and velocities. – x, v, x_inc, impulse: Particle positions, velocities, increments, and impulses. – billiard_layers, n_balls, target_ball: Parameters defining the billiard scene. – goal, radius, elasticity: Goal position, radius of the balls, and elasticity factor. – ti.root: Defines the hierarchical structure of the simulation data. • Simulation Parameters and Constants: – dt, alpha, learning_rate: Time step, regularization parameter, and learning rate. • Collision Pair Function: – collide_pair(t, i, j): Function to handle collisions between pairs of balls. • Collision, Advance, and Loss Computation Kernels: – collide(t): Kernel to handle collisions between all pairs of balls. – advance(t): Kernel to update particle velocities and positions based on impulses. – compute_loss(t): Kernel to compute the loss at a given time step. • Initialization Function: – initialize(): Initializes the initial positions and velocities of the particles. • Taichi GUI Setup: – ti.GUI: Initializes a graphical user interface for visualization. • Forward Simulation Function: 



• forward(visualize=False, output=None): Main simulation function that initializes the system, 

performs collision handling, and updates the positions and velocities of the particles. • Clear Function: • clear(): Resets the impulse and position increment fields. • Scan Function: • scan(zoom): Performs a parameter scan by varying the initial velocity angle and plots the resulting 

loss. • Simulation Execution: • The script executes by calling the scan function with a zoom factor specified from the command line 

argument (sys.argv[1]). 

The simulation progresses through time steps, handling collisions, updating positions and velocities, and 

computing the loss. The final loss values are plotted against the angle of the initial velocity, providing insights 

into the objective of the billiard scene. 

 



Billiards (DiffTaichi) 

import taichi as ti 
import sys 
import math 
import numpy as np 
import os 
import matplotlib.pyplot as plt 
 
real = ti.f32 
ti.init(default_fp=real, flatten_if=True) 
 
max_steps = 2048 
vis_interval = 64 
output_vis_interval = 16 
steps = 1024 
assert steps * 2 <= max_steps 
 
vis_resolution = 1024 
 
scalar = lambda: ti.field(dtype=real) 
vec = lambda: ti.Vector.field(2, dtype=real) 
 
loss = scalar() 
 
init_x = vec() 
init_v = vec() 
 
x = vec() 
x_inc = vec()  # for TOI 
v = vec() 
impulse = vec() 
 
billiard_layers = 4 
n_balls = 1 + (1 + billiard_layers) * billiard_layers // 2 
target_ball = n_balls - 1 
# target_ball = 0 
goal = [0.9, 0.75] 
radius = 0.03 
elasticity = 0.8 
 
ti.root.dense(ti.i, max_steps).dense(ti.j, n_balls).place(x, v, x_inc, impulse) 
ti.root.place(init_x, init_v) 
ti.root.place(loss) 
ti.root.lazy_grad() 
 
dt = 0.003 
alpha = 0.00000 
learning_rate = 0.01 
 
 
@ti.func 
def collide_pair(t, i, j): 
    imp = ti.Vector([0.0, 0.0]) 
    x_inc_contrib = ti.Vector([0.0, 0.0]) 
    if i != j: 
        dist = (x[t, i] + dt * v[t, i]) - (x[t, j] + dt * v[t, j]) 
        dist_norm = dist.norm() 
        rela_v = v[t, i] - v[t, j] 
        if dist_norm < 2 * radius: 
            dir = ti.Vector.normalized(dist, 1e-6) 
            projected_v = dir.dot(rela_v) 
 
            if projected_v < 0: 
                imp = -(1 + elasticity) * 0.5 * projected_v * dir 
                toi = (dist_norm - 2 * radius) / min( 
                    -1e-3, projected_v)  # Time of impact 
                x_inc_contrib = min(toi - dt, 0) * imp 
    x_inc[t + 1, i] += x_inc_contrib 
    impulse[t + 1, i] += imp 
 
 
@ti.kernel 
def collide(t: ti.i32): 
    for i in range(n_balls): 
        for j in range(i): 
            collide_pair(t, i, j) 
    for i in range(n_balls): 
        for j in range(i + 1, n_balls): 
            collide_pair(t, i, j) 
 
 
@ti.kernel 
def advance(t: ti.i32): 
    for i in range(n_balls): 
        v[t, i] = v[t - 1, i] + impulse[t, i] 
        x[t, i] = x[t - 1, i] + dt * v[t, i] + x_inc[t, i] 
 
 
@ti.kernel 
def compute_loss(t: ti.i32): 
    loss[None] = (x[t, target_ball][0] - goal[0])**2 + (x[t, target_ball][1] - 



                                                        goal[1])**2 
 
 
@ti.kernel 
def initialize(): 
    x[0, 0] = init_x[None] 
    v[0, 0] = init_v[None] 
 
 
gui = ti.GUI("Billiards", (1024, 1024), background_color=0x3C733F) 
 
 
def forward(visualize=False, output=None): 
    initialize() 
 
    interval = vis_interval 
    if output: 
        interval = output_vis_interval 
        os.makedirs('billiards/{}/'.format(output), exist_ok=True) 
 
    count = 0 
    for i in range(billiard_layers): 
        for j in range(i + 1): 
            count += 1 
            x[0, count] = [ 
                i * 2 * radius + 0.5, j * 2 * radius + 0.5 - i * radius * 0.7 
            ] 
 
    pixel_radius = int(radius * 1024) + 1 
 
    for t in range(1, steps): 
        collide(t - 1) 
        advance(t) 
 
        if (t + 1) % interval == 0 and visualize: 
            gui.clear() 
            gui.circle((goal[0], goal[1]), 0x00000, pixel_radius // 2) 
 
            for i in range(n_balls): 
                if i == 0: 
                    color = 0xCCCCCC 
                elif i == n_balls - 1: 
                    color = 0x3344cc 
                else: 
                    color = 0xF20530 
 
                gui.circle((x[t, i][0], x[t, i][1]), color, pixel_radius) 
 
            if output: 
                gui.show('billiards/{}/{:04d}.png'.format(output, t)) 
            else: 
                gui.show() 
 
    compute_loss(steps - 1) 
 
 
@ti.kernel 
def clear(): 
    for t, i in ti.ndrange(max_steps, n_balls): 
        impulse[t, i] = ti.Vector([0.0, 0.0]) 
        x_inc[t, i] = ti.Vector([0.0, 0.0]) 
 
 
def scan(zoom): 
    N = 1000 
    angles = [] 
    losses = [] 
    forward(visualize=True, output='initial') 
    for i in range(N): 
        alpha = ((i + 0.5) / N - 0.5) * math.pi * zoom 
        init_x[None] = [0.1, 0.5] 
        init_v[None] = [0.3 * math.cos(alpha), 0.3 * math.sin(alpha)] 
 
        loss[None] = 0 
        clear() 
        forward(visualize=False) 
        print(loss[None]) 
 
        losses.append(loss[None]) 
        angles.append(math.degrees(alpha)) 
 
    plt.plot(angles, losses) 
    fig = plt.gcf() 
    fig.set_size_inches(5, 3) 
    plt.title('Billiard Scene Objective') 
    plt.ylabel('Objective') 
    plt.xlabel('Angle of velocity') 
    plt.tight_layout() 
    plt.show() 
 
 
scan(float(sys.argv[1])) 

 



Waves (Φ𝐹𝑙𝑜𝑤) 

You: Explain this code to me: from phi.jax.flow import * […] 

 

ChatGPT: 

This code seems to be a simulation of a wave propagating through a 2D grid, possibly representing a 
water surface or similar phenomenon. Let's break it down step by step: 

1. Import Statements: 

from phi.jax.flow import * 

This imports necessary functions and classes from the phi library for running simulations with 
computational fluid dynamics (CFD) applications. 

2. Function Definitions: 

• wave_displace(sphere: Sphere, *fields: Field, mag=.5, t=-math.PI * 0.5): This 
function takes a Sphere object and one or more Field objects as input. It displaces the fields 
based on the distance to the sphere and a time-dependent displacement value. The displacement 
value is calculated as a sinusoidal function of time (t). It returns a list of displaced fields. 

• step(h_c, h_p, time, dt=1/60./16, k_speed=1.0, k_damp=0.0): This function defines a 
single time step in the simulation. It takes the current state of the simulation grid h_c, the previous 
state h_p, the current time, and optional parameters for time step (dt), wave speed coefficient 

(k_speed), and damping coefficient (k_damp). It computes the next state h_n based on the wave 
equation and returns it along with updated values of the current grid and time. 

3. Initial Conditions: 
h_initial = CenteredGrid(x=128, y=128, bounds=Box(x=12.8, y=12.8), 

boundary=ZERO_GRADIENT) 

This initializes the simulation grid (h_initial) with a resolution of 128x128 cells and a spatial 
domain defined by a bounding box of size 12.8x12.8. ZERO_GRADIENT indicates the boundary 
condition where the gradient at the boundary is assumed to be zero. 

4. Simulation Execution: 
final, *_ = iterate(step, 5 * 60 * 16, h_initial, h_initial, 0) 

This line executes the simulation. It iterates the step function for a total of 5 minutes (using 60 steps 
per second and 16 iterations per step). It starts with the initial grid state (h_initial) and previous 
state (h_initial) and initial time 0. It returns the final state of the simulation grid. 

5. Visualization: show(final) 
This line displays the final state of the simulation grid. 

In summary, this code simulates the propagation of waves through a 2D grid using computational fluid 
dynamics principles, possibly representing phenomena like water waves, with the capability to displace 
the grid based on a spherical object. 

 



Waves (Φ𝐹𝑙𝑜𝑤) 

from phi.jax.flow import * 
 
def wave_displace(sphere: Sphere, *fields: Field, mag=.5, t=-math.PI * 0.5): 
    sq_dist_to_sphere = math.vec_squared(fields[0].center - sphere.center) 
    displace_val = mag * math.sin(t) 
    return [field.where(sq_dist_to_sphere < sphere.radius**2, displace_val, f) for f in fields] 
 
@jit_compile 
def step(h_c, h_p, time, dt=1/60./16, k_speed=1.0, k_damp=0.0): 
    sphere = Sphere(center=h_c.bounds.center + math.rotate_vector(vec(x=0, y=-12.8/3), time), radius=1.) 
    h_c, h_p = wave_displace(sphere, h_c, h_p) 
    h_n = 2.0 * h_c - h_p + dt * dt * (k_speed * h_c.laplace() - k_damp * (h_c - h_p))  # wave_solve 
    return h_n, h_c, time + dt 
 
h_initial = CenteredGrid(x=128, y=128, bounds=Box(x=12.8, y=12.8), boundary=ZERO_GRADIENT) 
final, *_ = iterate(step, 5 * 60 * 16, h_initial, h_initial, 0) 
plot(final) 

 



Waves (Warp) 

You: Explain this code to me:   import math    […] 
 

ChatGPT: 

This code appears to be a simulation of wave propagation in a grid-based environment, with a visualization 

component. Let's break it down: 

1. Imports: The code imports necessary libraries, including math for mathematical operations and a 

module named warp for parallel computation and rendering. 

2. Function Definitions: 

o sample: Retrieves the value from a 2D array at specified coordinates, clamping the 

coordinates within the array boundaries. 

o laplacian: Computes the Laplacian of a scalar field at a given point in the grid. 

o wave_displace: Displaces the grid points around a specified center in a circular pattern to 

simulate wave generation. 

o wave_solve: Solves the wave equation iteratively for each point in the grid. 

o grid_update: Updates the vertex positions of a grid based on the calculated heights. 

3. Class Definition: 

o Example: Manages the simulation and rendering of the wave propagation. 

▪ Initializes simulation parameters, grid dimensions, and wave constants. 

▪ Generates grid vertices and indices for rendering. 

▪ Provides methods to advance the simulation (step) and render the current state 

(render). 

4. Main Execution: 

o Instantiates an Example object. 

o Iterates over simulation frames, advancing the simulation and rendering each frame. 

o If a renderer is available, saves the rendered frames to a file. 

5. Simulation Process: 

o In each frame, the simulation advances in discrete substeps. 

o Wave displacement and wave equation solving kernels are launched in parallel for each grid 

point. 

o Grid heights are updated based on the wave simulation results. 

o The simulation time is incremented. 



6. Rendering: 

o If a renderer is available, the grid vertices along with a sphere representing the wave source 

are rendered in a 3D scene. 

o The rendering process is timed using ScopedTimer. 

Overall, the code simulates the propagation of waves in a grid-based environment and visualizes the results 

using parallel computation and rendering techniques provided by the warp module. 

 



Waves (Warp) 

import math 
 
import warp as wp 
import warp.render 
 
wp.init() 
 
 
@wp.func 
def sample(f: wp.array(dtype=float), x: int, y: int, width: int, height: int): 
    # clamp texture coords 
    x = wp.clamp(x, 0, width - 1) 
    y = wp.clamp(y, 0, height - 1) 
 
    s = f[y * width + x] 
    return s 
 
 
@wp.func 
def laplacian(f: wp.array(dtype=float), x: int, y: int, width: int, height: int): 
    ddx = sample(f, x + 1, y, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x - 1, y, width, height) 
    ddy = sample(f, x, y + 1, width, height) - 2.0 * sample(f, x, y, width, height) + sample(f, x, y - 1, width, height) 
 
    return ddx + ddy 
 
 
@wp.kernel 
def wave_displace( 
        hcurrent: wp.array(dtype=float), 
        hprevious: wp.array(dtype=float), 
        width: int, 
        height: int, 
        center_x: float, 
        center_y: float, 
        r: float, 
        mag: float, 
        t: float, 
): 
    tid = wp.tid() 
 
    x = tid % width 
    y = tid // width 
 
    dx = float(x) - center_x 
    dy = float(y) - center_y 
 
    dist_sq = float(dx * dx + dy * dy) 
 
    if dist_sq < r * r: 
        h = mag * wp.sin(t) 
 
        hcurrent[tid] = h 
        hprevious[tid] = h 
 
 
@wp.kernel 
def wave_solve( 
        hprevious: wp.array(dtype=float), 
        hcurrent: wp.array(dtype=float), 
        width: int, 
        height: int, 
        inv_cell: float, 
        k_speed: float, 
        k_damp: float, 
        dt: float, 
): 
    tid = wp.tid() 
 
    x = tid % width 
    y = tid // width 
 
    l = laplacian(hcurrent, x, y, width, height) * inv_cell * inv_cell 
 
    # integrate 
    h1 = hcurrent[tid] 
    h0 = hprevious[tid] 
 
    h = 2.0 * h1 - h0 + dt * dt * (k_speed * l - k_damp * (h1 - h0)) 
 
    # buffers get swapped each iteration 
    hprevious[tid] = h 
 
 
# simple kernel to apply height deltas to a vertex array 
@wp.kernel 
def grid_update(heights: wp.array(dtype=float), vertices: wp.array(dtype=wp.vec3)): 
    tid = wp.tid() 
 
    h = heights[tid] 
    v = vertices[tid] 



 
    v_new = wp.vec3(v[0], h, v[2]) 
 
    vertices[tid] = v_new 
 
 
class Example: 
    def __init__(self, stage): 
        self.sim_width = 128 
        self.sim_height = 128 
 
        self.sim_fps = 60.0 
        self.sim_substeps = 16 
        self.sim_duration = 5.0 
        self.sim_frames = int(self.sim_duration * self.sim_fps) 
        self.sim_dt = (1.0 / self.sim_fps) / self.sim_substeps 
        self.sim_time = 0.0 
 
        # wave constants 
        self.k_speed = 1.0 
        self.k_damp = 0.0 
 
        # grid constants 
        self.grid_size = 0.1 
        self.grid_displace = 0.5 
 
        vertices = [] 
        self.indices = [] 
 
        def grid_index(x, y, stride): 
            return y * stride + x 
 
        for z in range(self.sim_height): 
            for x in range(self.sim_width): 
                pos = ( 
                    float(x) * self.grid_size, 
                    0.0, 
                    float(z) * self.grid_size, 
                ) 
 
                # directly modifies verts_host memory since this is a numpy alias of the same buffer 
                vertices.append(pos) 
 
                if x > 0 and z > 0: 
                    self.indices.append(grid_index(x - 1, z - 1, self.sim_width)) 
                    self.indices.append(grid_index(x, z, self.sim_width)) 
                    self.indices.append(grid_index(x, z - 1, self.sim_width)) 
 
                    self.indices.append(grid_index(x - 1, z - 1, self.sim_width)) 
                    self.indices.append(grid_index(x - 1, z, self.sim_width)) 
                    self.indices.append(grid_index(x, z, self.sim_width)) 
 
        # simulation grids 
        self.sim_grid0 = wp.zeros(self.sim_width * self.sim_height, dtype=float) 
        self.sim_grid1 = wp.zeros(self.sim_width * self.sim_height, dtype=float) 
        self.sim_verts = wp.array(vertices, dtype=wp.vec3) 
 
        # create surface displacement around a point 
        self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3 
        self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3 
 
        self.renderer = None 
        if stage: 
            self.renderer = wp.render.UsdRenderer(stage) 
 
    def step(self): 
        with wp.ScopedTimer("step", active=True): 
            for s in range(self.sim_substeps): 
                # create surface displacement around a point 
                self.cx = self.sim_width / 2 + math.sin(self.sim_time) * self.sim_width / 3 
                self.cy = self.sim_height / 2 + math.cos(self.sim_time) * self.sim_height / 3 
 
                wp.launch( 
                    kernel=wave_displace, 
                    dim=self.sim_width * self.sim_height, 
                    inputs=[ 
                        self.sim_grid0, 
                        self.sim_grid1, 
                        self.sim_width, 
                        self.sim_height, 
                        self.cx, 
                        self.cy, 
                        10.0, 
                        self.grid_displace, 
                        -math.pi * 0.5, 
                    ], 
                ) 
 
                # integrate wave equation 
                wp.launch( 
                    kernel=wave_solve, 
                    dim=self.sim_width * self.sim_height, 
                    inputs=[ 
                        self.sim_grid0, 
                        self.sim_grid1, 



                        self.sim_width, 
                        self.sim_height, 
                        1.0 / self.grid_size, 
                        self.k_speed, 
                        self.k_damp, 
                        self.sim_dt, 
                    ], 
                ) 
 
                # swap grids 
                (self.sim_grid0, self.sim_grid1) = (self.sim_grid1, self.sim_grid0) 
 
                self.sim_time += self.sim_dt 
 
        with wp.ScopedTimer("mesh", active=False): 
            # update grid vertices from heights 
            wp.launch(kernel=grid_update, dim=self.sim_width * self.sim_height, inputs=[self.sim_grid0, self.sim_verts]) 
 
    def render(self): 
        if self.renderer is None: 
            return 
 
        with wp.ScopedTimer("render", active=True): 
            vertices = self.sim_verts.numpy() 
 
            self.renderer.begin_frame(self.sim_time) 
            self.renderer.render_mesh("surface", vertices, self.indices, colors=((0.35, 0.55, 0.9),) * len(vertices)) 
            self.renderer.render_sphere( 
                "sphere", 
                (self.cx * self.grid_size, 0.0, self.cy * self.grid_size), 
                (0.0, 0.0, 0.0, 1.0), 
                10.0 * self.grid_size, 
                color=(1.0, 1.0, 1.0), 
            ) 
            self.renderer.end_frame() 
 
 
if __name__ == "__main__": 
    stage_path = "example_wave.usd" 
 
    example = Example(stage_path) 
 
    for i in range(example.sim_frames): 
        example.step() 
        example.render() 
 
    if example.renderer: 
        example.renderer.save() 

 


