
Implicit Diffusion: Efficient Optimization through Stochastic Sampling

Pierre Marion 1 * Anna Korba 2 Peter Bartlett 3 Mathieu Blondel 3 Valentin De Bortoli 3 Arnaud Doucet 3

Felipe Llinares-López † Courtney Paquette 3 Quentin Berthet 3

Abstract

We present a new algorithm to optimize distribu-

tions defined implicitly by parameterized stochas-

tic diffusions. Doing so allows us to modify the

outcome distribution of sampling processes by

optimizing over their parameters. We introduce a

general framework for first-order optimization of

these processes, that performs jointly, in a single

loop, optimization and sampling steps. We show-

case it in training and finetuning applications.

1. Introduction

Sampling from a target distribution is a ubiquitous task at

the heart of various methods in machine learning, optimiza-

tion, and statistics. Increasingly, sampling algorithms rely

on iteratively applying large-scale parameterized functions

(e.g. neural networks), as in denoising diffusion models

[1]. This iterative sampling operation implicitly maps a

parameter θ ∈ R
p to a distribution π⋆(θ).

In [2], we focus on optimization problems over these implic-

itly parameterized distributions. For a space of distributions

P (e.g. over Rd), and a function F : P → R, our main

problem is

min
θ∈Rp

ℓ(θ) := min
θ∈Rp

F(π⋆(θ))

We present in this short version the main ideas of this work,

and refer to it for further details and theoretical results.

Applying first-order optimizers to this problem raises the

challenge of computing gradients of functions of the tar-

get distribution with respect to the parameter: we have to

differentiate through a sampling operation, where the link

between θ and π⋆(θ) can be implicit (see, e.g., Figure 2).

To this aim, we propose to exploit the perspective of sam-

pling as optimization, where the task of sampling is seen as

an optimization problem over the space of probability distri-

butions P [3]. Typically, approximating a target probability

distribution π can be cast as the minimization of a dissimilar-

ity functional between probability distributions w.r.t. π, that

only vanishes at the target. For instance, Langevin diffusion

dynamics follow a gradient flow [4].

Figure 1. Optimizing through sampling with Implicit Diffusion

to finetune denoising diffusion models. The reward is the average

brightness for MNIST and the red channel average for CIFAR-10.

This allows us to draw a link between optimization through

stochastic sampling and bilevel optimization, which often

involves computing derivatives of the solution of a parame-

terized optimization problem obtained after iterative steps

of an algorithm.

Main Contributions. In this work, we introduce the al-

gorithm of Implicit Diffusion, an effective and principled

technique for optimizing through a sampling operation. It

allows us to train or finetune models that are used to gen-

erate samples. Our main contributions are the following:

- We present a general framework describing parameterized

sampling algorithms, and introduce Implicit Diffusion

optimization, a single-loop optimization algorithm to

optimize through sampling.

- We provide theoretical guarantees in the continuous and

discrete time settings in [2].

- We show in Section 5 its performance and efficiency in

experimental settings. Applications include finetuning

denoising diffusions and training energy-based models.

1

Implicit Diffusion

Figure 2. Illustration of one step of optimization through sampling. For a given parameter θ0, the sampling process is defined by

applying Σs for s ∈ [T], producing π⋆(θ0). The goal of optimization through sampling is to update θ to minimize ℓ = F ◦ π⋆. Here the

objective F corresponds to having lighter images (on average), which produces thicker digits.

2. Problem presentation

2.1. Sampling and optimization perspectives

The core operation that we consider is sampling by running

a stochastic diffusion process that depends on a parameter

θ ∈ R
p. We consider iterative sampling operators, that are

mappings from a parameter space to a space of probabil-

ities. We denote by π⋆(θ) ∈ P the outcome distribution

of this sampling operator. This parameterized distribution

is defined in an implicit manner since there is not always

an explicit way to write down its dependency on θ. More

formally, iterative sampling operators are defined as follows.

Definition 2.1 (Iterative sampling operators). For a parame-

ter θ ∈ R
p, a sequence of parameterized functions Σs(·, θ)

from P to P defines a diffusion sampling process, that starts

from p0 ∈ P and iterates

ps+1 = Σs(ps, θ) . (1)

The outcome of this process π⋆(θ) ∈ P (either in the limit

when s→∞, or for some fixed s = T) defines a sampling

operator π⋆ : Rp → P .

Optimization objective. We aim to optimize with respect

to θ the output of the sampling operator, for a function

F : P → R. In other words, we consider the optimization

problem

min
θ∈Rp

ℓ(θ) := min
θ∈Rp

F(π⋆(θ)) . (2)

This formulation allows us to transform a problem over

distributions in P into a finite-dimensional problem over

θ ∈ R
p. Optimizing a loss over θ allows for convenient

post-optimization sampling: for some θopt ∈ R
d obtained

by solving problem (2) one can sample from π⋆(θopt). This

is the common paradigm in model finetuning.

2.2. Examples

Langevin dynamics. Langevin dynamics [5] are defined

by the stochastic differential equation (SDE)

dXt = −∇1V (Xt, θ)dt+
√
2dBt , (3)

where V and θ ∈ R
p are such that this SDE has a solution

for t > 0 that converges in distribution. We consider in this

case Σ : θ 7→ π⋆(θ) the limiting distribution of Xt when

t→∞, given by the Gibbs distributions

π⋆(θ)[x] = exp(−V (x, θ))/Zθ . (4)

Denoising diffusion. Denoising diffusion [1], [6], [7] con-

sists in running the SDE, for Y0 ∼ N (0, I),

dYt = {Yt + 2sθ(Yt, T − t)}dt+
√
2dBt , (5)

where sθ : Rd × [0, T]→ R
d is a parameterized score func-

tion. Its aim is to reverse a forward Ornstein–Uhlenbeck

process dXt = −Xtdt +
√
2dBt, where we have sample

access to X0 ∼ pdata ∈ P . More precisely, denoting by

pt the distribution of Xt, if sθ ≈ ∇ log pt, then the distri-

bution of YT is close to pdata for large T [8], which allows

approximate sampling from pdata.

Two optimization objectives F are of particular interest

in this case: for some reward R : R
d → R over our

samples, we consider F(p) := −Ex∼p[R(x)]. Second, to

approximate a reference distribution pref with sample access,

it is possible to takeF(p) := KL(pref || p). We also consider

linear combination of these objectives.

3. Methods

Solving the optimization problem (2) with first-order meth-

ods presents several challenges, that we review here. We

then introduce an overview of our approach, before getting

in the details of our proposed algorithms.

2

Implicit Diffusion

Figure 3. Illustration of the Implicit Diffusion optimization algorithm, in the finite time setting. Left: Sampling - one step of the

parameterized sampling scheme is applied in parallel to all distributions in the queue. Right: Optimization - the last element of the queue

is used to compute a gradient for the parameter.

3.1. Overview

Estimation of gradients through sampling. Applying a

first-order method to (2) requires computing and evaluating

gradients of ℓ := F ◦ π⋆. There is no closed form for ℓ,
the gradient must be evaluated in another fashion, and we

consider the following setting.

Definition 3.1 (Implicit gradient estimation). We consider

settings where Σs,F are such that the gradient of ℓ can be

implicitly estimated: there is a function Γ : P × R
p → R

p

such that ∇ℓ(θ) = Γ(π⋆(θ), θ).

Beyond nested-loop approaches. Sampling from π⋆(θ)
requires iterations of the sampling process Σs, suggesting

a nested loop: at each optimization step k, running an in-

ner loop for a large amount T of steps of Σs as in (1) to

evaluate a gradient. It can be inefficient: it requires solv-

ing the inner sampling problem at each optimization step.

Further, nested loops are typically impractical with modern

accelerator-oriented computing hardware. We step away

from the nested-loop paradigm and jointly iterate on both

the sampling problem (inner problem), and the optimization

problem over θ ∈ R
p (outer F).

3.2. Methods for gradient estimation through sampling

Several methods are used in our work to perform implicit

gradient estimation as in Definition 3.1. We describe in our

long version [2] several methods based on direct analytical

derivation, implicit differentiation, and the adjoint method.

3.3. Implicit Diffusion optimization algorithm

Our proposed approach is to circumvent solving the inner

problem (i.e. sample exactly or approximately from π⋆(θk)
at each update of θk). We propose a joint single-loop ap-

proach that keeps track of a single dynamic of probabilities

(pk)k≥0. At each optimization step, the probability pk is

updated with one sampling step depending on the current

parameter θk, as detailed in Algorithm 1.

This point of view is well-suited for stationary processes

Algorithm 1 Implicit Diff. optimization, infinite time

input θ0 ∈ R
p, p0 ∈ P

for k ∈ {0, . . . ,K − 1} (joint single loop) do

pk+1 ← Σk(pk, θk)
θk+1 ← θk − ηΓ(pk, θk) (or another optimizer)

end for

output θK

with infinite-time horizon. We also adapt our approach to a

finite time setting.

Finite time-horizon: queuing trick. When π⋆(θ) is ob-

tained or approximated by a large, but finite number T
of iterations of the operator Σs, we propose to leverage

hardware parallelism to evaluate in parallel several, say M ,

dynamics of the distribution pk, through a queue of length

M . We present for simplicity in Figure 3 the case where

M = T . At each step, the M -th element of the queue p
(M)
k

provides a distribution to update θ through evaluation of Γ.

Algorithm 2 Implicit Diff. optimization, finite time

input θ0 ∈ R
p, p0 ∈ P

input PM = [p
(0)
0 , . . . , p

(M)
0]

for k ∈ {0, . . . ,K − 1} (joint single loop) do

p
(0)
k+1 ← p0

parallel p
(m+1)
k+1 ← Σm(p

(m)
k , θk) for m ∈ [M − 1]

θk+1 ← θk − ηΓ(p
(M)
k , θk) (or another optimizer)

end for

output θK

Updating a single dynamic of probabilities (pk)k≥0 would

only provide a single gradient estimate (after T sampling

steps). Moreover, leveraging parallelism, the running time

of our algorithm is O(K), gaining a factor of T compared

to the nested-loop approach.

4. Theoretical analysis

We include in [2] a theoretical analysis of our algorithms.

3

Implicit Diffusion

5. Experiments

We empirically illustrate the performance of Implicit Diffu-

sion. Details are given in Appendix A.

5.1. Reward training of Langevin processes

We consider the case of an explicit V (·, θ) and reward R(x).
We run six sampling algorithms, including the infinite time-

horizon version of Implicit Diffusion (Algorithm 1), all

starting from p0 = N (0, Id) and for K = 5, 000 steps.

Langevin 0 Implicit Diffusion *

Figure 4. Contours and samples for π⋆(θopt) and Implicit Diffusion.

Both qualitatively (Figure 4) and quantitatively (Figure 5),

we observe that our approach efficiently optimizes through

sampling. We analyze their performance both in terms

of steps (number of optimization steps–updates in θ) and

gradient evaluations (number of sampling steps).

0 1000 2000 3000 4000 5000
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Reward

L. 0
L. 0 + R.
L. opt *
Nest. loop T= 2
Nest. loop T= 200
Unroll. T= 2
Unroll. T= 200
Implicit Diff. *

0 1000 2000 3000 4000 5000

7

6

5

4

3

2

1
log-likelihood E[V(X, opt)]

1st threshold
2nd threshold

Figure 5. Metrics for reward training of Langevin processes (see

Section 5.1), 10 runs. Left: Reward on the sample distribution,

at each outer objective step, averaged on a batch. Right: Log-

likelihood of π⋆(θopt) on the sample distribution, at each outer

step, averaged on a batch–higher is better.

After K optimization steps, our algorithm yields both

θopt := θK and a sample p̂K approximately from π⋆(θopt).
We compare our approach with several baselines (see Ap-

pendix A).

5.2. Reward training of denoising diffusion models

We also apply Implicit Diffusion for reward finetuning of

denoising diffusion models pretrained on image datasets.

We denote by θ0 the weights of a model pretrained on these

datasets, such that π⋆(θ0) ≈ pdata. For various reward func-

tions on the samples R : Rd → R, we consider

F(p) := −λEx∼p[R(x)] + βKL(p ||π⋆(θ0)) ,

common in reward finetuning see, e.g. [9] and references

therein, for positive and negative values of λ. We run Im-

plicit Diffusion using the finite time-horizon variant de-

scribed in Algorithm 2, applying the adjoint method on

SDEs for gradient estimation. We report selected samples

generated by π⋆(θt), as well as reward and KL divergence

estimates (see Figures 1, 6 and 7).

0 10 20 30 40 50 60

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
Reward: Light (< 0)

 = 1e-04, / = -1
 = 1e-04, / = -5
 = 1e-04, / = -10
 = 1e-04, / = -30

0 10 20 30 40 50 60

120

100

80

60

40

20

0
-KL(| (0)) : MNIST

0 20 40 60
0

2

4

6

8

Reward: Red

0 20 40 60

200

150

100

50

0
-KL(| (0)) : CIFAR-10

 = 1e-06, / = 100
 = 1e-05, / = 10
 = 1e-05, / = 100
 = 1e-05, / = 1000

Figure 6. Reward training with Implicit Diffusion for various λ, η.

For each dataset, we plot the evolution of the reward (left) and of

the divergence w.r.t. the distribution after pretraining (right).

We report results on models pretrained on the image datasets

MNIST [10], CIFAR-10 [11], and LSUN (bedrooms) [12]

(see Appendix A). While the finetuned models diverge from

the original distribution, they retain overall semantic infor-

mation (e.g. brighter digits are thicker, rather than on a gray

background in the case of MNIST).

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 0

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 5

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 10

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 15

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 20

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 25

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 30

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 35

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 40

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 45

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 50

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 60

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

Figure 7. Samples of reward training after pretraining on LSUN

(λ/β = 10). The reward incentives for redder images. Images are

re-sampled with the same seed every five steps (see Appendix A.2).

4

Implicit Diffusion

References

[1] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion proba-
bilistic models,” in Advances in Neural Information Pro-
cessing Systems, vol. 33, Curran Associates, Inc., 2020,
pp. 6840–6851.

[2] P. Marion, A. Korba, P. Bartlett, et al., “Implicit diffusion:
Efficient optimization through stochastic sampling,” arXiv
preprint arXiv:2402.05468, 2024.

[3] A. Korba and A. Salim, Sampling as first-order op-
timization over a space of probability measures, Tu-
torial at ICML 2022. Accessible at https : / /

akorba.github.io/resources/Baltimore_

July2022 _ ICMLtutorial . pdf, consulted on
01/30/2024, 2022.

[4] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational
formulation of the fokker–planck equation,” SIAM journal
on mathematical analysis, vol. 29, no. 1, pp. 1–17, 1998.

[5] G. O. Roberts and R. L. Tweedie, “Exponential conver-
gence of langevin distributions and their discrete approxi-
mations,” Bernoulli, pp. 341–363, 1996.

[6] A. Hyvärinen, “Estimation of non-normalized statistical
models by score matching,” Journal of Machine Learning
Research, vol. 6, no. 24, pp. 695–709, 2005.

[7] P. Vincent, “A connection between score matching and de-
noising autoencoders,” Neural Computation, vol. 23, no. 7,
pp. 1661–1674, 2011.

[8] B. D. O. Anderson, “Reverse-time diffusion equation mod-
els,” Stochastic Processes and their Applications, vol. 12,
no. 3, pp. 313–326, 1982.

[9] D. M. Ziegler, N. Stiennon, J. Wu, et al., “Fine-tuning
language models from human preferences,” arXiv preprint
arXiv:1909.08593, 2019.

[10] Y. LeCun and C. Cortes, MNIST handwritten digit
database, 1998. [Online]. Available: http://yann.
lecun.com/exdb/mnist/.

[11] A. Krizhevsky, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009.

[12] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J.
Xiao, “Lsun: Construction of a large-scale image dataset us-
ing deep learning with humans in the loop,” arXiv preprint
arXiv:1506.03365, 2016.

[13] J. Bolte, E. Pauwels, and S. Vaiter, “One-step differentia-
tion of iterative algorithms,” in Advances in Neural Infor-
mation Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36,
Curran Associates, Inc., 2023, pp. 77 089–77 103.

[14] K. Clark, P. Vicol, K. Swersky, and D. Fleet, “Directly
fine-tuning diffusion models on differentiable rewards,” in
The Twelfth International Conference on Learning Repre-
sentations, 2024.

[15] P. Dhariwal and A. Nichol, “Diffusion models beat GANs
on image synthesis,” in Advances in Neural Informa-
tion Processing Systems, M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. S. Liang, and J. W. Vaughan, Eds., vol. 34,
Curran Associates, Inc., 2021, pp. 8780–8794.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning
Representations, 2015.

[17] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Compos-
able transformations of Python+NumPy programs, ver-
sion 0.3.13, 2018. [Online]. Available: http://github.
com/google/jax.

[18] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-
volutional networks for biomedical image segmentation,”
in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, Springer, 2015, pp. 234–241.

[19] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “GANs trained by a two time-scale update
rule converge to a local nash equilibrium,” in Advances in
Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, et al., Eds., vol. 30, Curran Associates,
Inc., 2017.

[20] A. Q. Nichol and P. Dhariwal, “Improved denoising dif-
fusion probabilistic models,” in Proceedings of the 38th
International Conference on Machine Learning, M. Meila
and T. Zhang, Eds., ser. Proceedings of Machine Learn-
ing Research, vol. 139, PMLR, 18–24 Jul 2021, pp. 8162–
8171.

[21] X. Wu, K. Sun, F. Zhu, R. Zhao, and H. Li, “Human pref-
erence score: Better aligning text-to-image models with
human preference,” in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), Oct.
2023, pp. 2096–2105.

[22] K. D. Dvijotham, S. Omidshafiei, K. Lee, et al., “Algo-
rithms for optimal adaptation of diffusion models to reward
functions,” in ICML Workshop on New Frontiers in Learn-
ing, Control, and Dynamical Systems, 2023.

[23] Y. Fan, O. Watkins, Y. Du, et al., “Dpok: Reinforcement
learning for fine-tuning text-to-image diffusion models,”
arXiv preprint arXiv:2305.16381, 2023.

[24] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine,
“Training diffusion models with reinforcement learning,” in
The Twelfth International Conference on Learning Repre-
sentations, 2024.

[25] D. Watson, W. Chan, J. Ho, and M. Norouzi, “Learning fast
samplers for diffusion models by differentiating through
sample quality,” in International Conference on Learning
Representations, 2022.

[26] H. Dong, W. Xiong, D. Goyal, et al., “RAFT: Reward
ranked finetuning for generative foundation model align-
ment,” Transactions on Machine Learning Research, 2023,
ISSN: 2835-8856.

[27] B. Wallace, A. Gokul, S. Ermon, and N. Naik, “End-to-end
diffusion latent optimization improves classifier guidance,”
arXiv preprint arXiv:2303.13703, 2023.

[28] K. Lee, H. Liu, M. Ryu, et al., “Aligning text-to-
image models using human feedback,” arXiv preprint
arXiv:2302.12192, 2023.

[29] A. Graikos, N. Malkin, N. Jojic, and D. Samaras, “Dif-
fusion models as plug-and-play priors,” in Advances in
Neural Information Processing Systems, S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds.,
vol. 35, Curran Associates, Inc., 2022, pp. 14 715–14 728.

[30] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch,
and D. Cohen-or, “Prompt-to-prompt image editing with
cross-attention control,” in The Eleventh International Con-
ference on Learning Representations, 2023. [Online]. Avail-
able: https://openreview.net/forum?id=
_CDixzkzeyb.

5

https://akorba.github.io/resources/Baltimore_July2022_ICMLtutorial.pdf
https://akorba.github.io/resources/Baltimore_July2022_ICMLtutorial.pdf
https://akorba.github.io/resources/Baltimore_July2022_ICMLtutorial.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://github.com/google/jax
http://github.com/google/jax
https://openreview.net/forum?id=_CDixzkzeyb
https://openreview.net/forum?id=_CDixzkzeyb

Implicit Diffusion

[31] M. Kwon, J. Jeong, and Y. Uh, “Diffusion models already
have a semantic latent space,” in The Eleventh International
Conference on Learning Representations, 2023. [Online].
Available: https://openreview.net/forum?
id=pd1P2eUBVfq.

[32] Q. Wu, Y. Liu, H. Zhao, et al., “Uncovering the disentan-
glement capability in text-to-image diffusion models,” in
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Jun. 2023, pp. 1900–
1910.

[33] Z. Zhang, L. Liu, Z. Lin, Y. Zhu, and Z. Zhao, “Un-
supervised discovery of interpretable directions in h-
space of pre-trained diffusion models,” arXiv preprint
arXiv:2310.09912, 2023.

[34] Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang, “A novel
convergence analysis for algorithms of the adam family
and beyond,” arXiv preprint arXiv:2104.14840, 2021.

[35] J. Yang, K. Ji, and Y. Liang, “Provably faster algorithms
for bilevel optimization,” Advances in Neural Information
Processing Systems, vol. 34, pp. 13 670–13 682, 2021.

[36] T. Chen, Y. Sun, Q. Xiao, and W. Yin, “A single-timescale
method for stochastic bilevel optimization,” in Interna-
tional Conference on Artificial Intelligence and Statistics,
PMLR, 2022, pp. 2466–2488.

[37] M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau, “A frame-
work for bilevel optimization that enables stochastic and
global variance reduction algorithms,” in Advances in Neu-
ral Information Processing Systems, S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds.,
vol. 35, Curran Associates, Inc., 2022, pp. 26 698–26 710.

[38] M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-
timescale stochastic algorithm framework for bilevel opti-
mization: Complexity analysis and application to actor-
critic,” SIAM Journal on Optimization, vol. 33, no. 1,
pp. 147–180, 2023.

[39] J. Kuntz, J. N. Lim, and A. M. Johansen, “Particle algo-
rithms for maximum likelihood training of latent variable
models,” in International Conference on Artificial Intelli-
gence and Statistics, PMLR, 2023, pp. 5134–5180.

[40] L. Sharrock, D. Dodd, and C. Nemeth, “Tuning-free maxi-
mum likelihood training of latent variable models via coin
betting,” in Proceedings of The 27th International Confer-
ence on Artificial Intelligence and Statistics, S. Dasgupta,
S. Mandt, and Y. Li, Eds., ser. Proceedings of Machine
Learning Research, vol. 238, PMLR, Feb. 2024, pp. 1810–
1818.

[41] Y. F. Atchadé, G. Fort, and E. Moulines, “On perturbed
proximal gradient algorithms,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 310–342, 2017.

[42] V. De Bortoli, A. Durmus, M. Pereyra, and A. F. Vidal,
“Efficient stochastic optimisation by unadjusted langevin
monte carlo: Application to maximum marginal likelihood
and empirical bayesian estimation,” Statistics and Comput-
ing, vol. 31, pp. 1–18, 2021.

[43] L. Xiao and T. Zhang, “A proximal stochastic gradient
method with progressive variance reduction,” SIAM Jour-
nal on Optimization, vol. 24, no. 4, pp. 2057–2075, 2014.

[44] L. Rosasco, S. Villa, and B. C. Vũ, “Convergence of
stochastic proximal gradient algorithm,” Applied Mathe-
matics & Optimization, vol. 82, pp. 891–917, 2020.

[45] A. Nitanda, “Stochastic proximal gradient descent with
acceleration techniques,” Advances in Neural Information
Processing Systems, vol. 27, 2014.

[46] V. B. Tadić and A. Doucet, “Asymptotic bias of stochastic
gradient search,” Annals of Applied Probability, vol. 27,
no. 6, pp. 3255–3304, 2017.

[47] A. Eberle, “Reflection couplings and contraction rates for
diffusions,” Probability theory and related fields, vol. 166,
pp. 851–886, 2016.

[48] Z. Wang and J. Sirignano, “Continuous-time stochastic gra-
dient descent for optimizing over the stationary distribution
of stochastic differential equations,” Mathematical Finance,
vol. 34, no. 2, pp. 348–424, 2024.

[49] Z. Wang and J. Sirignano, “A forward propagation algo-
rithm for online optimization of nonlinear stochastic differ-
ential equations,” arXiv preprint arXiv:2207.04496, 2022.

6

https://openreview.net/forum?id=pd1P2eUBVfq
https://openreview.net/forum?id=pd1P2eUBVfq

Implicit Diffusion

Appendix

A. Experimental details

We provide here details about our experiments in Section 5.

A.1. Langevin processes

We consider a parameterized family of potentials for x ∈ R
2 and θ ∈ R

6 defined by

V (x, θ) = − log
(

6
∑

i=1

σ(θ)i exp
(

−∥x− µi∥2
)

)

,

where the µi ∈ R
2 are the six vertices of a regular hexagon and σ is the softmax function mapping R

6 to the unit simplex.

In this setting, for any θ ∈ R
6,

π⋆(θ) =
1

Z

6
∑

i=1

σ(θ)i exp
(

−∥x− µi∥2
)

,

where Z is an absolute renormalization constant that is independent of θ. This simplifies drawing contour lines, but we do

not use this prior knowledge in our algorithms, and only use calls to functions∇1V (·, θ) and∇2V (·, θ) for various θ ∈ R
6.

We run six sampling algorithms, all initialized with p0 = N (0, I2). For all of them we generate a batch of variables X(i) of

size 1, 000, all initialized independently with X
(i)
0 ∼ N (0, I2). The sampling and optimization steps are realized in parallel

over the batch. The samples are represented after K = 5, 000 steps of each algorithm in Figure 4, and used to compute

the values of reward and likelihood reported in Figure 5. We also display in Figure 10 the dynamics of the probabilities

throughout these algorithms.

102 103 104 105 106

of gradient calls

0.10

0.15

0.20

0.25

0.30
Reward

102 103 104 105 106

of gradient calls

7

6

5

4

3

2

1
log-likelihood E[V(X, opt)]

Nest. loop T= 2
Nest. loop T= 10
Nest. loop T= 20
Nest. loop T= 100
Nest. loop T= 200
Nest. loop T= 1000
Unroll. T= 2
Unroll. T= 10
Unroll. T= 20
Unroll. T= 100
Unroll. T= 200
Unroll. T= 1000
Implicit Diff. *

Figure 8. Comparison between Implicit Diffusion, nested loop algorithm and unrolling algorithm, for various number of inner steps T .

The x-axis is the total number of gradient evaluations (roughly equal to the number of optimization steps multiplied by the number of

inner loop steps T). Left: Evolution of the reward. Right: Evolution of the log-likelihood.

We provide here additional details of and motivation for these algorithms, denoted by the colored markers that represent

them in these figures.

- Langevin θ0 (■): This is the discrete-time process (a Langevin Monte Carlo process) approximating a Langevin

diffusion with potential V (·, θ0) for fixed θ0 := (1, 0, 1, 0, 1, 0). There is no reward here; the time-continuous Langevin

7

Implicit Diffusion

0 1000 2000 3000 4000 5000
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Reward

Implicit Diff.
L. 0
L. 0 + R.
L. opt *
Nest. loop T= 2
Nest. loop T= 200
Unroll. T= 2
Unroll. T= 200

0 1000 2000 3000 4000 5000

7

6

5

4

3

2

1
log-likelihood E[V(X, opt)]

1st threshold
2nd threshold

Figure 9. Confidence intervals for metrics for reward training of Langevin processes. Left: Evolution of the reward. Right: Evolution of

the log-likelihood.

process converges to π⋆(θ0), which has some symmetries. It can be thought of as a pretrained model, and the Langevin

sampling algorithm as an inference-time generative algorithm.

- Implicit Diffusion (⋆): We run the infinite-time horizon version of our method (Algorithm 1), aiming to minimize

ℓ(θ) := F(π⋆(θ)) for F(p) = −EX∼p[R(X)] with R(x) = 1(x1 > 0) exp
(

−∥x− µ∥2
)

where µ = (1, 0.95). This

algorithm yields both a sample p̂K and parameters θopt after K steps, and can be thought of as jointly sampling and

reward finetuning.

- Nested loop (♦): We run a nested-loop algorithm with T inner sampling steps for each gradient step. For T = 1, this is

exactly Implicit Diffusion. For T ≫ 1, it means we compute nearly perfectly π⋆(θt) at each optimization step.

- Unrolling through the last step of sampling (▲): For each optimization step, we perform T sampling steps, then

differentiate through the last step of sampling by automatic differentiation. This is akin to a stop gradient method. The

learning rate here is chosen as 2γθ/γX to improve its performance, for a fair comparison. Recent studies show that

differentiating through the last sampling step is an efficient and theoretically-grounded method in bilevel optimization

[13]. It has been applied successfully to denoising diffusions [14].

- Langevin θ0 + R (▼): This is a discrete-time process approximating a Langevin diffusion with reward-guided potential

V (·, θ0) − λRsmooth, where Rsmooth is a smoothed version of R (replacing the indicator by a sigmoid). Using this

approach is different from finetuning: it proposes to modify the sampling algorithm, and does not yield new parameters θ.

This is akin to guidance of generative models [15]. Note that this approach requires a differentiable reward Rsmooth,

contrarily to our approach that handles non-differentiable rewards.

- Langevin θopt - post Implicit Diffusion (): This is a discrete-time process approximating a Langevin diffusion with

potential V (·, θopt), where θopt is the outcome of reward training by our algorithm. This can be thought of as doing

inference with the new model parameters, post reward training with Implicit Diffusion.

As mentioned in Section 5.1, this setting illustrates the advantage of our method, which allows the efficient optimization of a

function over a constrained set of distribution, without overfitting outside this class. We display in Figure 10 snapshots

throughout some selected steps of these six algorithms (in the same order and with the same colors as indicated above).

We observe that the dynamics of Implicit Diffusion are slower than those of Langevin processes (sampling), which can be

observed also in the metrics reported in Figure 5. The reward and log-likelihood change slowly, plateauing several times:

when θk in this algorithm is initially close to θ0, the distribution gets closer to π⋆(θ0) (steps 0-100). It then evolves towards

another distribution (steps 1000-2500), after θ has been affected by accurate gradient updates, before converging to π⋆(θopt).
The two-timescale dynamics is by design: the sampling dynamics are much faster, aiming to quickly lead to an accurate

8

Implicit Diffusion

evaluation of gradients with respect to θk. This corresponds to our theoretical setting where εk ≪ 1. To complement the

comparisons between our algorithm and other baselines included in Section 5.1, we also provide in Figure 8 a comparison

between Implicit Diffusion, the nested loop and unrolling approaches, in terms of reward and log-likelihood optimization, as

a function of the number of gradient evaluations (i.e., number of sampling steps), rather than number of optimization

steps. Again, it is apparent that the algorithmic cost of doing several steps (T > 1) of inner loop is much higher than the

small improvement obtained by a better estimate of the gradients. Finally, the confidence intervals in Figure 5 are computed

by performing 10 independent repetitions of the experiment, and reporting the largest and lowest metrics across the 10
repetitions, at each time step. For readability, Figure 9 shows the same plot with confidence intervals only (without plotting

the average value).

Training from scratch. We present in Figure A.1 a variant of this experiment where we start from a model generating a

standard Gaussian, and our goal is to learn to generate a mixture of several Gaussians. For this, comparing with the setup

presented above, we add a 7th potential well at the origin, and choose at initialization θ0 = (−7,−7,−7,−7,−7,−7, 11).
This means that the distribution at initialization is extremely close to being a standard Gaussian, as can be seen in the

top-right plot of Figure 11. The target is θ∗ = (1.5, 0, 1.5, 0, 1.5, 0, 0). We use Implicit Diffusion where the reward is the

KL between the target distribution and the current one. This KL admits explicit gradients (see Section 3.2) which can be

evaluated with samples of the target distribution. We train for T = 40, 000 steps with a batch of size 1, 000.

A.2. Denoising diffusion models

We start by giving additional experimental configurations that are common between both datasets before explaining details

specific to each one.

Common details. The KL term in the reward is computed using Girsanov’s theorem. We use the Adam optimizer [16],

with various values for the learning rate (see e.g. Figure 6). The code was implemented in JAX [17]. As mentioned in the

main text, we use a U-Net model [18].

MNIST. We use an Ornstein-Uhlenbeck noise schedule, meaning that the forward diffusion is dXt = −Xtdt+
√
2dBt

(as presented in Section 2.2). We pretrain for 18k steps in 7 minutes on 4 TPUv2. For reward training, we train on a TPUv2

for 4 hours with a queue of size M = 4, T = 64 steps, and a batch size of 32. Further hyperparameters for pretraining and

reward training are given respectively in Tables 1 and 2.

Name Value

Noise schedule Ornstein-Uhlenbeck

Optimizer Adam with standard hyperparameters

EMA decay 0.995
Learning rate 10−3

Batch size 32

Table 1. Hyperparameters for pretraining of denoising diffusion models on MNIST.

Name Value

Number of sampling steps 256
Sampler Euler

Noise schedule Ornstein-Uhlenbeck

Optimizer Adam with standard hyperparameters

Table 2. Hyperparameters for reward training of denoising diffusion models pretrained on MNIST.

CIFAR-10 and LSUN. For CIFAR-10, we pretrain for 500k steps in 30 hours on 16 TPUv2, reaching an FID score [19]

of 2.5. For reward training, we train on a TPUv3 for 9 hours with a queue of size M = 4 and T = 64 steps, and a batch

size of 32. For LSUN, we pretrain for 13 hours, reaching a FID score of 2.26. For reward training, we train on a TPUv3

9

Implicit Diffusion

for 9 hours with a queue of size M = 2, T = 64 steps, and a batch size of 16. Further hyperparameters for pretraining and

reward training are given respectively in Tables 3 and 4.

Name Value

Number of sampling steps 1, 024
Sampler DDPM

Noise schedule Cosine [20]

Optimizer Adam with β1 = 0.9, β2 = 0.99, ε = 10−12

EMA decay 0.9999
Learning rate 2 · 10−4

Batch size 2048
Number of samples for FID evaluation 50k

Table 3. Hyperparameters for pretraining of denoising diffusion models on CIFAR-10 and LSUN.

Name Value

Number of sampling steps 1, 024
Sampler Euler

Noise schedule Cosine [20]

Optimizer Adam with standard hyperparameters

Table 4. Hyperparameters for reward training of denoising diffusion models pretrained on CIFAR-10 and LSUN.

Additional figures for MNIST. We report in Figure 15 metrics on the rewards and KL divergence with respect to the

original distribution, in the case where λ > 0. As in Figure 6, we observe the competition between the reward and the

divergence with respect to the distribution after pretraining. We also display in Figures 13 and 14 some selected examples of

samples generated by our denoising diffusion model with parameters θk, at several steps k of our algorithm. Note that the

random number generator system of JAX allows us, for illustration purposes, to sample for different parameters from the

same seed. We take advantage of this feature to visualize the evolution of a given realization of the stochastic denoising

process depending on θ.

Recall that we consider

F(p) := −λEx∼p[R(x)] + βKL(p ||π⋆(θ0)) ,

where R(x) is the average value of all the pixels in x. The figures present samples for negative and positive λ, rewarding

respectively darker and brighter images. We emphasize that these samples are realized at different steps of our algorithm

for evaluation purposes. To generate the samples, at various steps of the optimization procedure, we run the full denoising

process for the current value of the parameters. In particular, these samples are different from the ones used to perform the

joint sampling and parameter updates in Implicit Diffusion.

We have purposefully chosen, for illustration purposes, samples for experiments with the highest magnitude of λ/β, i.e. those

that favor reward optimization over proximity to the original distribution. As noted in Section 5, we observe qualitatively that

reward training, while shifting some aspects of the distribution (here the average brightness), and necessarily diverging from

the original pretrained model, manages to do so while retaining some important global characteristics of the dataset–even

though the pretraining dataset is never observed during reward training. Since we chose to display samples from experiments

with the most extreme incentives towards the reward, we observe that the similarity with the pretraining dataset can be

forced to break down after a certain number of reward training steps. We also observe some mode collapse; we comment

further on this point below.

10

Implicit Diffusion

Additional figures for CIFAR-10. We recall that we consider, for a model with weights θ0 pretrained on CIFAR-10, the

objective function

F(p) := −λEx∼p[R(x)] + βKL(p ||π⋆(θ0)) ,

where R(x) is the average over the red channel, minus the average of the other channels. We show in Figure 16, akin to

Figures 13 and 14, the result of the denoising process for some fixed samples and various steps of the reward training, for

the experiment with the most extreme incentive towards the reward.

We observe as for MNIST some mode collapse, although less pronounced here. Since the pretrained model has been trained

with label conditioning for CIFAR-10, it is possible that this phenomenon could be a byproduct of this pretraining feature.

Additional figures for LSUN. As for other datasets, we report in Figure 17 metrics on the rewards and KL divergence

with respect to the original distribution.

B. Additional related work

Reward finetuning of denoising diffusion models. A large body of work has recently tackled the task of finetuning

denoising diffusion models, with various point of views. [21] update weight parameters in a supervised fashion by building

a high-reward dataset, then using score matching. Other papers use reinforcement learning approaches to finetune the

parameters of the model [22]–[24]. Closer to our approach are works that propose finetuning of denoising diffusion

models by backpropagating through sampling [14], [25]–[27]. However, they sample only once [28], or use a nested loop

approach (described in Section 3.1) and resort to implementation techniques such as gradient checkpointing or gradient

rematerialization to limit the memory burden. We instead depart from this point of view and propose a single-loop approach.

Furthermore, our approach is much more general than denoising diffusion models and includes any iterative sampling

algorithm such as Langevin sampling.

We emphasize that the finetuning approach differs from guidance of diffusion models (see, e.g., [15], [29]–[33]). In the

latter case, the sampling scheme is modified to bias sampling towards maximizing the reward. On the contrary, finetuning

directly modifies the weights of the model without changing the sampling scheme. Both approaches are complementary, and

it can happen that in practice people prefer to modify the weights of the model rather than the sampling scheme: e.g., to

distribute weights that take into account the reward and that can be used with any standard sampling scheme, without asking

downstream users to modify their sampling method or requiring them to share the reward mechanism.

Single-loop approaches for bilevel optimization. Our single-loop approach for differentiating through sampling processes

is inspired by recently-proposed single-loop approaches for bilevel optimization problems [34]–[38]. Closest to our setting is

[37], where strong convexity assumptions are made on the inner problem while gradients for the outer problem are assumed

to be Lipschitz and bounded. They also show convergence of the average of the objective gradients, akin to on of our

theoretical results. However, contrarily to their analysis, we study the case where the inner problem is a sampling problem

(or infinite-dimensional optimization problem). Our methodology also extends to the non-stationary case, e.g. encompassing

denoising diffusion models.

Study of optimization through Langevin dynamics in the linear case. In the case where the operator Γ can be written

as an expectation w.r.t. pt then the dynamics of θ can be seen as a McKean-Vlasov process. [39] and [40] propose efficient

algorithms to approximate this process using the convergence of interacting particle systems to McKean-Vlasov process

when the number of particles is large. In the same setting, where Γ can be written as an expectation w.r.t. pt, discretization of

such dynamics have been extensively studied [41]–[46]. In that setting, one can leverage convergence results of the Langevin

algorithm under mild assumption such as [47] to prove the convergence of a sequence (θk)k∈N to a local minimizer such

that ∇ℓ(θ⋆) = 0, see [42], Appendix B for instance. Finally, [48] and [49] propose and analyze a single-loop algorithm to

differentiate through solutions of SDEs. Their algorithm uses forward-mode differentiation, which does not scale well to

large-scale machine learning problems.

11

Implicit Diffusion

Figure 10. Dynamics of samples for four sampling algorithms after different time steps (for instance, the first column is after one step).

First row: Langevin θ0 () with π⋆(θ0) contour lines. Second: Implicit Diffusion () with π⋆(θopt) contour lines. Third: Nested loop

algorithm with T = 100 (). Fourth: Unrolling through the last step of sampling with T = 100 (). Fifth: Langevin θ0 + smoothed

Reward (). Sixth: Langevin θopt ().

12

Implicit Diffusion

Target distribution Langevin 0

Implicit Diffusion * Langevin opt *

Figure 11. Contour lines and samples from sampling algorithms. We start from a model generating a standard Gaussian (top-right figure),

and our goal is to learn to generate a mixture of several Gaussians (top-left figure). We use Implicit Diffusion where the reward is the KL

between the target distribution and the current one. We observe that Implicit Diffusion is able to learn the target distribution (bottom-left

figure). After running Implicit Diffusion, it is easy to generate new samples that are close to the target distribution (bottom-right figure).

13

Implicit Diffusion

0 10000 20000 30000 40000
6

5

4

3

2

1

0
Reward

L. 0
L. opt *
Implicit Diff. *

0 10000 20000 30000 40000
3.4

3.2

3.0

2.8

2.6

log-likelihood E[V(X, opt)]

Figure 12. Evolution of the reward and of the log-likelihood of the samples for the initial model, for the Implicit Diffusion algorithm, and

for the trained model after Implicit Diffusion. The reward is the (opposite of the) KL between the target distribution and the current one,

so a reward equal to zero means we learnt to reproduce the target distribution.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 0

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 14

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 17

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 24

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 27

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 31

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 39

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 53

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 59

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

Figure 13. Reward training for a model pretrained on MNIST. The reward favors darker images (λ < 0, β > 0). Selected examples are

shown coming from a single experiment with λ/β = −30. All digits are re-sampled at the same selected steps of the Implicit Diffusion

algorithm.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 0

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 7

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 13

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 15

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 17

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 22

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 35

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 43

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 59

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

Figure 14. Reward training for a model pretrained on MNIST. The reward favors brighter images (λ > 0, β > 0). Selected examples are

shown coming from a single experiment with λ/β = 30. All digits are re-sampled at the same selected steps of the Implicit Diffusion

algorithm.

14

Implicit Diffusion

0 10 20 30 40 50 60
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Reward: Light (> 0)

0 10 20 30 40 50 60

250

200

150

100

50

0
-KL(| (0)) : MNIST

 = 1e-04, / = 30
 = 1e-04, / = 10
 = 1e-04, / = 5
 = 1e-04, / = 1

Figure 15. Score function reward training with Implicit Diffusion pretrained on MNIST for various λ > 0 (brighter). Left: Reward,

average brightness of image. Right: Divergence w.r.t. the original pretrained distribution.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 0

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 24

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 27

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 31

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 35

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 42

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 49

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 55

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

step 59

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

Figure 16. Reward training for a model pretrained on CIFAR-10. The reward favors redder images (λ > 0, β > 0). Selected examples

are shown coming from a single experiment with λ/β = 1, 000. All images are re-sampled at the same selected steps of the Implicit

Diffusion algorithm, as explained in Appendix A.2.

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

Reward: Red

0 10 20 30 40 50 60

2000

1500

1000

500

0

-KL(| (0)) : LSUN

 = 1e-07, / = 10
 = 1e-06, / = 10
 = 1e-05, / = 1
 = 1e-05, / = 2
 = 1e-05, / = 10

Figure 17. Score function reward training with Implicit Diffusion pretrained on LSUN for various λ > 0 (brighter). Left: Reward,

average brightness of image. Right: Divergence w.r.t. the original pretrained distribution.

15

	Introduction
	Problem presentation
	Sampling and optimization perspectives
	Examples

	Methods
	Overview
	Methods for gradient estimation through sampling
	Implicit Diffusion optimization algorithm

	Theoretical analysis
	Experiments
	Reward training of Langevin processes
	Reward training of denoising diffusion models

	Experimental details
	Langevin processes
	Denoising diffusion models

	Additional related work

