
MAGNOLIA:

Matching Algorithms via GNNs for Online Value-to-go Approximation

Alexandre Hayderi 1 Amin Saberi 1 Ellen Vitercik 1 Anders Wikum 1

Abstract

Online Bayesian bipartite matching is a central

problem in digital marketplaces and exchanges,

including advertising, crowdsourcing, rideshar-

ing, and kidney donor matching. We introduce a

graph neural network (GNN) approach that acts as

a continuous approximation to the intractable op-

timal online algorithm, which selects actions (e.g.,

which nodes to match) by computing each action’s

value-to-go (VTG)—the expected weight of the

matching if the algorithm takes that action, then

acts optimally in the future. We train a GNN to es-

timate VTG and show empirically that our method

returns high-weight matchings across a variety of

tasks. Moreover, we identify a common family

of graph distributions in spatial crowdsourcing

applications, such as rideshare, under which VTG

can be efficiently approximated by aggregating

information locally within graphs. This structure

matches the local behavior of GNNs, providing

theoretical justification for our approach.

1. Introduction

Online matching is a central problem in many digital mar-

ketplaces. In advertising, website visitors are matched to

ads [Mehta et al., 2013], and on crowdsourcing platforms,

crowdworkers are matched to appropriate tasks [Tong et al.,

2020]. The rideshare industry faces the complex task of

matching riders with drivers [Zhao et al., 2019], while in

medical fields such as kidney exchange, donors must be effi-

ciently matched to patients [Ezra et al., 2020]. The challenge

is that irrevocable matching decisions must be made online

without precise knowledge of how demand will evolve.

In the Online Bayesian Bipartite Matching (OBBM) prob-

lem, there is a weighted bipartite graph with online and

1Stanford University, CA, USA. Correspondence to: Anders
Wikum <wikum@stanford.edu>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

offline nodes. Matching occurs in rounds, with one on-

line node arriving with known probability in each round.

The goal is to compute a high-weight matching despite not

knowing which online nodes will arrive a priori.

The online optimal algorithm for OBBM, OPTon, only has

access to the distribution over online node arrivals. Upon

the arrival of an online node, OPTon takes the action (i.e.,

the choice of the matching edge or the decision to skip)

that maximizes the weight of the final matching in expec-

tation over future arrivals. This can be formulated as an

exponential-sized dynamic programming routine which, in

each timestep, computes the value-to-go (VTG) of each

action—the expected final matching weight if OPTon takes

that action and then acts optimally in the future.

1.1. Our contributions

We present a continuous approximation to OPTon that uses

a graph neural network (GNN) to estimate the VTG of

actions. Moreover, we provide theoretical guarantees that

justify this architecture’s suitability for the OBBM problem.

Key challenges. The primary obstacle we face is the sheer

complexity of OBBM: for some constant α < 1, it is

PSPACE-hard to approximate the value of OPTon within a

factor of α [Papadimitriou et al., 2021]. Nonetheless, our

approach competes with OPTon across many tasks empiri-

cally, and while deep learning architectures are notoriously

difficult to analyze, we prove a correspondence between the

functions computable by GNNs and the VTG function.

Theoretical guarantees. We prove that VTG can be ef-

ficiently approximated by a “local” function in bipartite

random geometric graphs (b-RGGs). Edges in b-RGGs rely

on node similarity within a latent space, so b-RGGs often

arise in spatial crowdsourcing tasks like ridesharing, which

necessitates physical proximity between drivers and riders.

Empirical analysis. We present MAGNOLIA, a GNN-

based framework for online matching that mimics OPTon

by using predictions of VTG. While MAGNOLIA is only

trained on small graphs for which VTG is computable, it

still beats state-of-the-art baselines across a range of inputs.

1

MAGNOLIA

1.2. Related work

Online Bayesian bipartite matching. OBBM is con-

nected to the literature on online Bayesian selection prob-

lems, where a seminal result by Krengel and Sucheston

[1978] implies that no algorithm can provide better than a

0.5-approximation to the offline optimal in hindsight. How-

ever, better approximation ratios are possible when com-

peting with the optimal online algorithm OPTon [Papadim-

itriou et al., 2021, Braverman et al., 2022, Naor et al., 2023].

ML for combinatorial optimization. There has been sig-

nificant recent interest in integrating ML with combinatorial

optimization (see, e.g., the survey by Bengio et al. [2021]).

Applications of ML to online NP-hard problems have pri-

marily aimed to learn algorithms with good worst-case guar-

antees e.g. [Kong et al., 2018, Zuzic et al., 2020, Du et al.,

2022]. Recent work by Alomrani et al. [2022] has consid-

ered average-case performance but is entirely empirical.

2. Notation and background

Let G = (L,R,E) be a bipartite graph on a set L of n
offline nodes and a set R = {1, . . . ,m} of m online nodes,

with undirected edges E ⊆ L×R. Further, let N = m+ n
and NG(t) denote the neighbors of online node t in G.

2.1. Online Bayesian bipartite matching (OBBM)

An input to the OBBM problem is a bipartite graph G at-

tributed with edge weights {wij}(i,j)∈E and online node

arrival probabilities {pt}t∈R. Matching in G occurs over

m timesteps. At time t ∈ [m], online node t appears inde-

pendently with probability pt. If node t appears, one must

decide to match t with an unmatched neighbor or skip t.
The goal is to maximize the weight of the final matching.

An algorithm for OBBM knows the input graph G but does

not know a priori which online nodes will arrive. Thus, in

timestep t, if online node t arrives and S ⊆ L is the set of of-

fline nodes that have not yet been matched, the algorithm’s

choice of which node to match t to—or whether to skip

t—is a function of S, t, and G. The optimal online algo-

rithm OPTon computes the value-to-go function VG(S, t) to

inform its decisions. This is the maximum expected match-

ing weight achievable in G over arrivals {t, . . . ,m}, with

matchings restricted to the set of remaining offline nodes S.

Additional matches require available nodes, so VG(∅, t) = 0
for all t ∈ R and VG(S,m+ 1) = 0 for all S ⊆ L. Further,

the values of VG(·) are related by the recurrence

VG(S, t) = (1− pt) · VG(S, t+ 1)

+ pt ·max

{

VG(S, t+ 1), max
u∈NG(t)∩S

VG(S, t, u)

}

where VG(S, t, u) = wtu +VG(S \ {u}, t+1) is the utility

of adding the edge (t, u) to the matching and making u
unavailable. We will refer to V(G) := VG(L(G), 1) as the

full value-to-go computation on the input graph G.

2.2. Graph neural networks

Let G = (V,E,X) be a graph with node attributes h
(0)
v ∈

X . A Graph Neural Network (GNN) of depth k iteratively

computes a sequence of embeddings h
(1)
v , . . . ,h

(k)
v for each

node v ∈ V . In layer i, the GNN first computes a message

m
(i)
v for each node v from its previous embedding h

(i−1)
v .

Then, the next embedding h
(i)
v is computed by aggregating

the messages m
(i)
u from each of v’s neighbors:

m(i)
v = MSG(i)

(

h(i−1)
v

)

for all v ∈ V

h(i)
v = AGGREGATE(i)

(

m(i)
v , {m(i)

u : u ∈ N (v)}
)

.

Note that a GNN can act on graphs with any number of

nodes, and that the embedding h
(k)
v is a function only of the

embeddings within a k-hop neighborhood of node v.

3. Theoretical guarantees

In this section, we identify conditions on the generating

parameters of bipartite random geometric graphs (b-RGGs)

for which VTG can be approximated by aggregating infor-

mation over local neighborhoods. This result aligns with

the inherent processing capabilities of GNNs.

3.1. Local graph decomposition

We begin by showing that, under certain conditions, b-RGGs

admit a local decomposition. Informally, this means that:

1. (Decomposable) b-RGGs can be partitioned into sub-

graphs such that few edges cross between subgraphs.

2. (Local) Under mild assumptions, the number of nodes

in each resulting subgraph is relatively small.

Bipartite random geometric graphs. In b-RGGs, nodes

are connected when their embeddings are sufficiently close

in some metric. Our results generalize to any p-norm.

Definition 3.1. Given a distribution D over [0, 1]d, a bi-

partite random geometric graph G(m,n,D,∆) is a distri-

bution over graphs on m online and n offline nodes where

each node has an embedding xi ∼ D. There is an edge

between online node i and offline node j if and only if

∥xi − xj∥∞ ≤ ∆.

A partition π of [0, 1]d induces a partition of b-RGGs into

subgraphs: let G(π) be formed by removing edges (i, j) in

G with embeddings xi and xj in different cells of π. We

can map properties of the partition π to properties of G(π).

2

MAGNOLIA

Random k-partitions. We introduce a random partition-

ing scheme that splits [0, 1]d into cells of equal volume and

applies a random “shift” to these cells in each dimension.

Definition 3.2. For k ∈ Z≥1, a (k, s)-partition of [0, 1]d is

the partition si + {0, 1
k , . . . ,

k−1
k } along each dimension i,

where si ∈ [0, 1
k].

b-RGG decomposition. Let Πk denote a uniform distri-

bution over (k, s)-partitions with s ∼ U(0, 1/k)d and call

π ∼ Πk a random k-partition. For carefully chosen k,

nearby vectors are likely to lie in the same cell of π. So,

edges in G are unlikely to be removed when forming G(π).

Lemma 3.3. Let x1, . . . ,xN ∈ [0, 1]d, ε > 0, ∆ ≤ ε
2d ,

and k = ⌈ ε
2d∆⌉. If ∥xi −xj∥∞ ≤ ∆, then with probability

at most ε over π ∼ Πk, xi and xj lie in different cells of π.

Moreover, the number of b-RGG latent embeddings in any

cell of a random k-partition with Ω(N) cells is likely to be

sublinear in N . We avoid the pathological case where D is

a point mass using a concept from smoothed analysis.

Definition 3.4 (Haghtalab et al. [2022]). A distribution over

[0, 1]d with density function f is β-smooth if sup f(x) ≤ β.

Now, treat sampling N vectors from D as a balls-into-bins

process: balls are vectors, and bins are cells of a k-partition.

Corollary 3.5. Suppose N vectors are sampled from a β-

smooth distribution over [0, 1]d. For all π ∈ supp(Πk)
where kd = Ω(N), every cell of π contains O(β logN)
vectors with probability 1−O(1

N) for N sufficiently large.

Lemma 3.3 and Corollary 3.5 give the following theorem.

Theorem 3.6. Let D be a β-smooth distribution, ∆ =
O(N−1/d), ε > 0, and k = ⌈ ε

2d∆⌉. Then,

1. (Decomposable) For any G ∈ supp(G(m,n,D,∆)),
each edge e ∈ E(G) appears in G(π) with probability

at least 1− ε over the draw of π ∼ Πk.

2. (Local) For any π ∈ supp(Πk) and N sufficiently

large, the connected components of G(π) are of size

O(β logN) with probability 1 − O(1/N) over the

draw of G ∼ G(m,n,D,∆).

3.2. Local approximation of value-to-go

This section shows that the local decomposability of b-

RGGs means VTG can be approximated using local graph

functions, which are computed on small substructures.

Definition 3.7 (Tahmasebi et al. [2023]). A function f
over graphs is r-local if there is a function φ such that

f(G) = φ({Nr(v)}v∈V (G)) where Nr(v) is the r-hop

neighborhood of node v in G.

We prove that with high probability, VTG is approximated

by a O(β logN)-local function, formalized as follows.

Definition 3.8. A function f on graphs is (r, ε, δ)-locally

approximable over a random graph family G if there is an

r-local, polynomial time-computable function h such that

|f(G)−h(G)| ≤ εf(G) with probability 1−δ over G ∼ G
and any randomness in h.

Local approximation for b-RGGs. The VTG of an

OBBM instance can only decrease after removing edges

to form G(π). Moreover, because each edge of G exists

in G(π) for a 1− ε fraction of random ⌈ ε
2d∆⌉-partitions π,

V(G(π)) is at least (1− ε)V(G) in expectation.

Lemma 3.9. For G ∈ supp(G(m,n,D,∆)), ε > 0, and

k = ⌈ ε
2d∆⌉, V(G) ≥ Eπ∼Πk

[

V(G(π))
]

≥ (1− ε)V(G).

While Ṽ(G) = Eπ∼Πk

[

V(G(π))
]

can approximate V(G)
to high accuracy over b-RGGs, it may not be r-local for

small r. This requires the connected components of G(π) to

be of size at most r under all partitions π ∈ supp(Πk). Un-

like Ṽ(·), a random function that outputs a sample estimate
1
ℓ

∑ℓ
i=1 V(G(πi)) achieves r-locality when the connected

components of G(π1), . . . , G(πℓ) are of size at most r.

Lemma 3.10. Let D be β-smooth and ∆ = O(N−1/d) for

N sufficiently large. For ε ∈ (0, 1/2], let k = ⌈ ε
2d∆⌉. With

probability 1− δ over the draw of G ∼ G(m,n,D,∆) and

ℓ ≥ 2
ε2 log

4
δ partitions π1, . . . , πℓ ∼ Πk, each V(G(πi))

can be computed by a O(β logN)-local function and

1

ℓ

ℓ
∑

i=1

V(G(πi)) ≥ (1− ε) E
π∼Πk

[V(G(π))].

Finally, we give our main theorem.

Theorem 3.11. Given a β-smooth distribution D over

[0, 1]d and ∆ = O(N−1/d), for sufficiently large N , the

VTG function V is
(

O(β logN
)

, ε, δ)-locally approximable

over G(m,n,D,∆) for all ε ∈ (0, 1
2] and δ ∈ (0, 1].

4. Experiments

Additional details on our setup can be found in Appendix B,

with comprehensive experimental results in Appendix B.8.

4.1. Experimental setup

Learned matching model. MAGNOLIA replaces the VTG

computations in OPTon with predictions from a GNN (see

Figure 1). To start, the matching state is encoded as an

attributed graph consisting of the graph G, arriving online

node t, and set of available offline nodes S. This attributed

graph is fed into a GNN, which predicts the VTG associated

with each feasible action. The decision with the highest

predicted VTG is chosen, and the process repeats until no

online nodes remain. The GNN is trained using supervised

learning with teacher forcing on the decisions of OPTon.

3

MAGNOLIA

0.87

0

0.24

Figure 1. MAGNOLIA’s GNN-based matching subroutine. Blue edges are in the matching at time t, the arriving node is highlighted green,

and the green edge shows MAGNOLIA’s selected action. A virtual node with zero utility (colored black) is added to allow skipping.

50 100 150 200 250
0.86

0.88

0.90

0.92

0.94

0.96

ER, p=0.5

50 100 150 200 250

b-RGG, q=0.25

0.0 0.2 0.4 0.6 0.8 1.0

Total number of nodes N

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e c

om
pe

tit
iv

e r
ati

o

MAGNOLIA
greedy
greedy-t
LP-rounding

Figure 2. Evolution of average CR over ER and b-RGG graphs of

increasing size with a 2:1 ratio of online to offline nodes.

Instance generation. Training and testing are done on

synthetic and semi-synthetic weighted bipartite graphs with

arrival probabilities pt ∼ U(0, 1). Synthetic inputs are

drawn from the Erdős-Rényi (ER) [Erdős and Rényi, 1960],

Barabási-Albert (BA) [Albert and Barabási, 2002], and geo-

metric (b-RGG) random graph families. We generate semi-

synthetic graphs from OSMnx [Boeing, 2017], a library that

encodes road networks used in ride-sharing applications,

and the gMission dataset [Chen et al., 2014], whose base

graph comes from crowdsourcing data for assigning work-

ers to tasks. We say a bipartite graph has shape (|L|×|R|) if

it has |L| offline nodes and |R| online nodes.

Baselines. We compare MAGNOLIA to several strong

baselines using average competitive ratio (CR):

CR(M) =
1

k · ℓ
k
∑

i=1

ℓ
∑

j=1

M(Gi,aij)

OPT(Gi,aij)
.

M(G,a) is the matching weight returned by method M on

graph G with realized online node arrivals a, OPT(G,a) is

the max matching weight in G based on a priori knowledge

of a, and we average over k graphs with ℓ realizations of

the online node arrivals per graph.

When an online node arrives, greedy picks the maximum

weight available edge. To trade off between short and long-

term rewards, greedy-t [Alomrani et al., 2022], makes

the same decision as greedy if the edge weight is above

some learned threshold t, and skips otherwise. Finally,

LP-rounding is a 0.632-approximation to OPTon by

Braverman et al. [2022], which is strong in practice.

0.5 1.0 1.5 2.0 2.5

0.85

0.90

0.95

1.00
ER, p=0.5

0.5 1.0 1.5 2.0 2.5

Rideshare, Fremont

0.0 0.2 0.4 0.6 0.8 1.0

|R| / |L| regime

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e c

om
pe

tit
iv

e r
ati

o

MAGNOLIA
greedy
greedy-t
LP-rounding

Figure 3. Average CR for different regimes of ER and OSMNX

graphs. |L| = 16 is fixed and |R| varies from 8 to 45 online nodes.

4.2. Results

We train MAGNOLIA’s GNN on 2000 OBBM instances

from 3 graph configurations, then evaluate performance on

6000 unseen instances from a broader set of 12 configura-

tions. A key characteristic of GNNs trained for combina-

torial tasks is the extent to which they generalize to graphs

of larger size. Despite being trained on 16-node graphs,

we see in Figure 2 that MAGNOLIA’s performance remains

consistent even for inputs up to 20 times larger.

Further, we observe that the ratio of online to offline nodes

in an input has a big impact on the performance of OBBM

algorithms. In light of this, we replace MAGNOLIA’s GNN

with a meta-model that selects between two GNNs—one

trained on graphs of size (10×6) and the other (6×10)—on

an instance-by-instance basis. Figure 3 gives generalization

results for MAGNOLIA with this meta-model. It consistently

outperforms greedy baselines and performs especially well

for ratios where LP-rounding is worst.

5. Conclusions

In this paper, we studied Online Bayesian Bipartite Match-

ing, a central problem in digital marketplaces. We intro-

duced MAGNOLIA, a novel approximation to the intractable

optimal online algorithm. Theoretically, we showed that

value-to-go can be efficiently approximated in random geo-

metric graphs using local functions—a process well-suited

to GNNs. Empirically, MAGNOLIA beats state-of-the-art

baselines, showing strong out-of-distribution generalization.

4

MAGNOLIA

References

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. Optuna: A next-generation

hyperparameter optimization framework. In International

Conference on Knowledge Discovery and Data Mining

(KDD), page 2623–2631, 2019. B.6

Réka Albert and Albert-László Barabási. Statistical mechan-

ics of complex networks. Reviews of Modern Physics,

2002. 4.1, B.2.1

Mohammad Ali Alomrani, Reza Moravej, and Elias Boutros

Khalil. Deep policies for online bipartite matching: A re-

inforcement learning approach. Transactions on Machine

Learning Research (TMLR), 2022. 1.2, 4.1, B.2.2

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Ma-

chine learning for combinatorial optimization: a method-

ological tour d’horizon. European Journal of Operational

Research, 290(2):405–421, 2021. 1.2

Geoff Boeing. OSMnx: New methods for acquiring, con-

structing, analyzing, and visualizing complex street net-

works. Computers, Environment and Urban Systems, 65:

126–139, 2017. 4.1, B.2.2

Allan Borodin, Christodoulos Karavasilis, and Denis Pankra-

tov. An experimental study of algorithms for online bi-

partite matching. Journal of Experimental Algorithmics

(JEA), 2020. B.2.1

Mark Braverman, Mahsa Derakhshan, and Antonio

Molina Lovett. Max-weight online stochastic match-

ing: Improved approximations against the online bench-

mark. In ACM Conference on Economics and Computa-

tion (EC), page 967–985, 2022. 1.2, 4.1

Shaked Brody, Uri Alon, and Eran Yahav. How attentive

are graph attention networks? In Proceedings of the

International Conference on Learning Representations

(ICLR), 2022. B.7

Zhao Chen, Rui Fu, Ziyuan Zhao, Zheng Liu, Leihao Xia,

Lei Chen, Peng Cheng, Caleb Chen Cao, Yongxin Tong,

and Chen Jason Zhang. gmission: A general spatial

crowdsourcing platform. Proceedings of the VLDB En-

dowment, 7(13):1629–1632, 2014. 4.1

Bingqian Du, Zhiyi Huang, and Chuan Wu. Adversar-

ial deep learning for online resource allocation. ACM

Transactions on Modeling and Performance Evaluation

of Computing Systems, 6(4):1–25, 2022. 1.2

Paul Erdős and Alfréd Rényi. On the evolution of random

graphs. Publications of the Mathematical Institute of the

Hungarian Academy of Sciences, 5:17–61, 1960. 4.1,

B.2.1

Tomer Ezra, Michal Feldman, Nick Gravin, and Zhi-

hao Gavin Tang. Online stochastic max-weight matching:

prophet inequality for vertex and edge arrival models. In

ACM Conference on Economics and Computation (EC),

pages 769–787, 2020. 1

Matthias Fey and Jan Eric Lenssen. Fast graph rep-

resentation learning with pytorch geometric. CoRR,

abs/1903.02428, 2019. B.4

Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty.

Smoothed analysis with adaptive adversaries. In Sympo-

sium on Foundations of Computer Science (FOCS), pages

942–953. IEEE, 2022. 3.4

Weiwei Kong, Christopher Liaw, Aranyak Mehta, and

D Sivakumar. A new dog learns old tricks: RL finds

classic optimization algorithms. In Proceedings of the

International Conference on Learning Representations

(ICLR), 2018. 1.2

Ulrich Krengel and Louis Sucheston. On semiamarts,

amarts, and processes with finite value. Probability on

Banach Spaces, 4:197–266, 1978. 1.2

Guohao Li, Chenxin Xiong, Ali K. Thabet, and Bernard

Ghanem. DeeperGCN: All you need to train deeper

GCNs. CoRR, abs/2006.07739, 2020. B.4, B.7

Aranyak Mehta et al. Online matching and ad allocation.

Foundations and Trends® in Theoretical Computer Sci-

ence, 8(4):265–368, 2013. 1

Michael Mitzenmacher and Eli Upfal. Probability and Com-

puting: Randomized Algorithms and Probabilistic Analy-

sis. Cambridge University Press, 2005. A

Christopher Morris, Martin Ritzert, Matthias Fey, William L.

Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin

Grohe. Weisfeiler and leman go neural: Higher-order

graph neural networks. In AAAI Conference on Artificial

Intelligence, 2019. B.7

Joseph Naor, Aravind Srinivasan, and David Wajc. Online

dependent rounding schemes. ArXiv, abs/2301.08680,

2023. 1.2

Christos Papadimitriou, Tristan Pollner, Amin Saberi, and

David Wajc. Online stochastic max-weight bipartite

matching: Beyond prophet inequalities. In ACM Con-

ference on Economics and Computation (EC), page

763–764, 2021. 1.1, 1.2

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practi-

cal Bayesian optimization of machine learning algorithms.

In Conference on Neural Information Processing Systems

(NeurIPS), pages 2951–2959, 2012. B.6

5

MAGNOLIA

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. The

power of recursion in graph neural networks for count-

ing substructures. In International Conference on Artifi-

cial Intelligence and Statistics (AISTATS), pages 11023–

11042, 2023. 3.7

Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and

Cyrus Shahabi. Spatial crowdsourcing: a survey. The

VLDB Journal, 29:217–250, 2020. 1

Boming Zhao, Pan Xu, Yexuan Shi, Yongxin Tong, Zimu

Zhou, and Yuxiang Zeng. Preference-aware task assign-

ment in on-demand taxi dispatching: An online stable

matching approach. In AAAI Conference on Artificial

Intelligence, volume 33, pages 2245–2252, 2019. 1

Goran Zuzic, Di Wang, Aranyak Mehta, and D Sivaku-

mar. Learning robust algorithms for online allocation

problems using adversarial training. arXiv preprint

arXiv:2010.08418, 2020. 1.2

6

MAGNOLIA

A. Proofs

Lemma 3.3. Let x1, . . . ,xN ∈ [0, 1]d, ε > 0, ∆ ≤ ε
2d , and k = ⌈ ε

2d∆⌉. If ∥xi − xj∥∞ ≤ ∆, then with probability at

most ε over π ∼ Πk, xi and xj lie in different cells of π.

Proof. Consider π ∼ Πk, and let πℓ be the boundaries of π along dimension ℓ for ℓ ∈ [d]. For i, j ∈ [N] such that

||xi − xj ||∞ ≤ ∆, notice that xi and xj lie in different cells of π precisely when in at least one dimension ℓ, some point

in πℓ falls in the interval [(xi)ℓ, (xj)ℓ]. By symmetry, the probability that this occurs is equal to the length of the interval

[(xi)ℓ, (xj)ℓ] over the measure of possible shifts 1/k. Moreover,
|(xi)ℓ−(xj)ℓ|

1/k ≤ k∆, so

Pr
π∼Πk

[xi and xj lie in different cells of π] ≤ 1− (1− k∆)
d

≤ 1−
(

1−
(

ε

2d∆
+ 1

)

∆

)d

≤ 1−
(

1− ε

d

)d

≤ 1− (1− ε)

= ε.

Lemma A.1. For β ≥ 1, when N balls are dropped independently into K = Ω(N) bins and the probability a particular

ball lands in each bin is at most
β
K , the probability the maximum load is more than

3β lnN
ln lnN is O(1

N) for N sufficiently large.

Proof. Let c be a constant such that K ≥ cN for N sufficiently large. Following Lemma 5.1 from [Mitzenmacher and

Upfal, 2005], the probability that at least M balls are dropped in bin 1 is at most

(

N

M

)(

β

K

)M

by a union bound over the probability of each subset of M balls being dropped in bin 1. In particular, there are
(

N
M

)

possible

subsets of balls, and the probability of selecting bin 1 for each of M chosen balls is bounded above by
(

β/K
)M

. By another

union bound over the K bins, the probability that any bin has a load of at least M balls is at most

K

(

N

M

)(

β

K

)M

.

We use the fact that f(x) = x
(

N
M

)

(

β
x

)M

is decreasing for x > 0 and the inequalities

(

N

M

)(

1

N

)M

≤ 1

M !
≤
(

e

M

)M

to conclude that

K

(

N

M

)(

β

K

)M

≤ cN

(

N

M

)(

β

cN

)M

= cN

(

β

c

)M

·
(

N

M

)(

1

N

)M

≤ cN

(

βe

cM

)M

.

7

MAGNOLIA

For M ≥ 3β lnN/ ln lnN , the probability that any bin receives more than M balls in bounded above by

cN

(

βe

cM

)M

≤ cN

(

e ln lnN

3c lnN

)3β lnN/ ln lnN

≤ cN

(

ln lnN

c lnN

)3β lnN/ ln lnN

= eln c+lnN
(

eln ln lnN−ln lnN−ln c
)3β lnN/ ln lnN

= eln c+(1−3β) lnN+3β lnN(ln ln lnN−ln c

ln lnN)

≤ ce−2 lnN+3β lnN(ln ln lnN−ln c

ln lnN)

≤ c

N

= O
(

1/N
)

for N sufficiently large.

Corollary 3.5. Suppose N vectors are sampled from a β-smooth distribution over [0, 1]d. For all π ∈ supp(Πk) where

kd = Ω(N), every cell of π contains O(β logN) vectors with probability 1−O(1
N) for N sufficiently large.

Proof. There are kd = Ω(N) cells of π, each of volume 1
kd . Since D is β-smooth, the total density of D in each cell is at

most β
kd . Treating the sampling of vectors from D as a balls-into-bins process where balls are the N vectors, and bins are

the Ω(N) cells of π, the result follows from Lemma A. We note that logN
log logN = O(logN).

Theorem 3.6. Let D be a β-smooth distribution, ∆ = O(N−1/d), ε > 0, and k = ⌈ ε
2d∆⌉. Then,

1. (Decomposable) For any G ∈ supp(G(m,n,D,∆)), each edge e ∈ E(G) appears in G(π) with probability at least

1− ε over the draw of π ∼ Πk.

2. (Local) For any π ∈ supp(Πk) and N sufficiently large, the connected components of G(π) are of size O(β logN)
with probability 1−O(1/N) over the draw of G ∼ G(m,n,D,∆).

Proof. (1) The definition of a b-RGG ensures that for G ∈ support(G(m,n,D,∆)) an edge (i, j) can only exist if

||xi − xj ||∞ ≤ ∆. By Lemma 3.3, xi and xj belong to the same cell of π ∼ Πk with probability at least 1 − ε.

Equivalently, i and j belong to the same subgraph of G(π) with probability at least 1− ε.

(2) Corollary 3.5 implies that for π ∈ support(Πk), the maximum number of latent embeddings of G ∼ G(m,n,D,∆) in

any cell of π is O(β logN) with probability at least 1−O(1/N). The result follows from the observation that nodes in the

same subgraph of G(π) must have latent embeddings in the same cell of π.

Lemma 3.9. For G ∈ supp(G(m,n,D,∆)), ε > 0, and k = ⌈ ε
2d∆⌉, V(G) ≥ Eπ∼Πk

[

V(G(π))
]

≥ (1− ε)V(G).

Proof. For the upper bound, we will use an inductive argument on the number of online nodes in G. It is clear that

V(G(π)) = V(G) = 0 for any partition π when G has no online nodes since there is nothing to match. Now, assume that

V(G(π)) ≤ V(G) for all graphs G ∈ support(G(m,n,D,∆)) with at most t− 1 online nodes for some t ≥ 1 and for all

8

MAGNOLIA

partitions π. Let G ∈ support(G(m,n,D,∆)) be a graph on t online nodes and let π be any hypercube partition. Then,

V(G) = VG(L, 1)

= (1− p1) · VG(L, 2) + p1 ·max

{

VG(L, 2), max
u∈NG(1)

{w1u + VG(L \ {u}, 2)}
}

≥ (1− p1) · VG(π)(L, 2) + p1 ·max

{

VG(π)(L, 2), max
u∈NG(1)

{w1u + VG(π)(L \ {u}, 2)}
}

≥ (1− p1) · VG(π)(L, 2) + p1 ·max

{

VG(π)(L, 2), max
u∈NG(π)(1)

{w1u + VG(π)(L \ {u}, 2)}
}

= VG(π)(L, 1)

= V(G(π)).

The first inequality is an application of the inductive hypothesis, since VG(L, 2) and VG(L\{u}, 2) are both full value-to-go

computations on a subgraph of G with t− 1 nodes. The second follows from the fact that NG(π)(1) ⊆ NG(1), as G(π) is

formed from G by removing edges.

For the lower bound, it is helpful to first decompose the value-to-go V(G) into a contribution from each edge e ∈ E(G). To

do so, we make use of the fact that V(G) is the expected value of the matching returned by OPTon. In greater detail, let

a ∈ {0, 1}m represent an arrival sequence of online nodes where node t arrives if at = 1 and does not arrive if at = 0. The

likelihood of observing different arrival sequences is governed by the arrival probability vector p. Namely, for a ∈ {0, 1}m,

Pr[a] =

m
∏

t=1

(

pt · at + (1− pt) · (1− at)
)

.

Notice that all randomness in the output of OPTon comes from the random arrivals, so given a fixed arrival sequence a,

OPTon returns a deterministic matching M(a). Then, we can write

V(G) =
∑

a∈{0,1}m



Pr[a] ·
∑

e∈M(a)

we



 =
∑

e∈E(G)

we ·





∑

a∈{0,1}m : e∈M(a)

Pr[a]



 =
∑

e∈E(G)

αewe,

where

αe =
∑

a∈{0,1}m : e∈M(a)

Pr[a].

Crucially, notice that for any partition π,

V(G(π)) ≥
∑

e∈E(G)

αewe · 1{e ∈ E(G(π))}.

The right-hand side is the expected value of the matching returned by an online algorithm on G(π) which, for any arrival

sequence a, outputs M(a) ∩ E(G(π)). The left-hand side is the expected value of the matching returned by OPTon on

G(π). It follows immediately from these facts and Lemma 3.3 that

E
π∼Πk

[

V(G(π))
]

≥ E
π∼Πk





∑

e∈E(G)

αewe · 1{e ∈ E(G(π))}



 ≥ (1− ε)
∑

e∈E(G)

αewe = (1− ε) · V(G).

9

MAGNOLIA

Lemma 3.10. Let D be β-smooth and ∆ = O(N−1/d) for N sufficiently large. For ε ∈ (0, 1/2], let k = ⌈ ε
2d∆⌉. With

probability 1− δ over the draw of G ∼ G(m,n,D,∆) and ℓ ≥ 2
ε2 log

4
δ partitions π1, . . . , πℓ ∼ Πk, each V(G(πi)) can

be computed by a O(β logN)-local function and

1

ℓ

ℓ
∑

i=1

V(G(πi)) ≥ (1− ε) E
π∼Πk

[V(G(π))].

Proof. To simplify notation, we refer to the sample mean 1
ℓ

∑ℓ
i=1 V(G(πi)) and true mean E

π∼Πk

[V(G(π))] as Sℓ and E[Sℓ],

respectively. Also let π = {π1, . . . , πℓ} be shorthand for an i.i.d. sample of ℓ partitions from Πk, and let G be shorthand for

G(m,n,D,∆).

Consider the following events. For G ∈ support(G) and π ∈ support(Πk),

• A(G,π) is the event that the approximation (1− ε) · E[Sℓ] ≤ Sℓ ≤ (1 + ε) · E[Sℓ] holds on G for partitions π.

• B(G,π) is the event the connected components of G(πi) are of size O(β logN) for each partition πi ∈ π. When

this is the case, V(G(πi)) can be computed exactly by a O(β logN)-local function that simply computes VTG over a

O(β logN)-hop neighborhood.

We need to show that for N sufficiently large, the event A(G,π) ∧B(G,π) occurs with probability at least 1− δ over the

random draws of G ∼ G and π ∼ Πk. Toward that end, notice that

Pr
G∼G,π∼Πk

[

A(G,π) ∧B(G,π)
]

= 1− Pr
G∼G,π∼Πk

[

A(G,π)∁ ∨B(G,π)∁
]

≥ 1− Pr
G∼G,π∼Πk

[

A(G,π)∁
]

− Pr
G∼G,π∼Πk

[

B(G,π)∁
]

.

We have from the tower property of conditional expectation that

Pr
G∼G,π∼Πk

[

A(G,π)∁
]

= E
G∼G

[

Pr
π∼Πk

[A(G,π)∁ | G]

]

and

Pr
G∼G,π∼Πk

[

B(G,π)∁
]

= E
π∼Πk

[

Pr
G∼G

[B(G,π)∁ | π]
]

.

By Theorem 3.6 and a union bound over the ℓ drawn partitions, we have that

Pr
G∼G

[

B(G,π)∁ | π
]

≤ O(ℓ/N) ≤ δ/2

for N sufficiently large.

To bound Pr
π∼Πk

[A(G,π)∁ | G], first notice that for fixed G ∈ support(G) and π ∼ Πk, the V(G(πi))’s are i.i.d. random

variables which take values in the interval [0,V(G)] by Lemma 3.9. Applying a standard Hoeffding bound, for ℓ ≥ 2
ε2 log(

4
δ)

sampled partitions the probability of a bad approximation is

Pr
[

∣

∣Sℓ − E[Sℓ]
∣

∣ ≥ εE[Sℓ]
]

≤ Pr
[

∣

∣Sℓ − E[Sℓ]
∣

∣ ≥ ε(1− ε)V(G)]
]

Lemma 3.9

≤ 2 exp

(

−2ε2(1− ε)2V(G)2

ℓ · V(G)2/ℓ2

)

≤ 2 exp
(

−ℓε2/2
)

≤ δ/2.

10

MAGNOLIA

Thus for sufficiently large N , we’ve shown that

Pr
G∼G,π∼Πk

[

A(G,π) ∧B(G,π)
]

≥ 1− E
G∼G

[

Pr
π∼Πk

[A(G,π)∁ | G]

]

− E
π∼Πk

[

Pr
G∼G

[B(G,π)∁ | π]
]

≥ 1− E
G∼G

[

δ/2
]

− E
π∼Πk

[

δ/2]
]

= 1− δ.

Theorem 3.11. Given a β-smooth distribution D over [0, 1]d and ∆ = O(N−1/d), for sufficiently large N , the VTG

function V is
(

O(β logN
)

, ε, δ)-locally approximable over G(m,n,D,∆) for all ε ∈ (0, 1
2] and δ ∈ (0, 1].

Proof. Let k = ⌈ ε
2d∆⌉ and let ε′ = 1 −

√
1− ε so that (1 − ε′)2 = 1 − ε. By Lemma 3.9 with ε = ε′, we have that

Eπ∼Πk
[V(G(π))] ≥ (1 − ε′) · V(G) for all G ∈ supp(G(m,n,D,∆). Now, consider the random function h(G) which

samples ℓ = 2
ε′2 log(

4
δ) partitions π1, . . . , πℓ from Πk then outputs 1

|I|

∑

i∈I V(G(πi)), where I ⊆ [ℓ] is the set of indices

for which V(G(πi)) is O(β logN)-local. For sufficiently large N , it follows from Lemma 3.10 for ε = ε′ that with

probability 1− δ over the draw of G from G(m,n,D,∆) and the randomness of h, both

1

ℓ

ℓ
∑

i=1

V(G(πi)) ≥ (1− ε′) E
π∼Πk

[V(G(π))] ≥ (1− ε) · V(G)

and h(G) = 1
ℓ

∑ℓ
i=1 V(G(πi)).

B. Experimental Details

B.1. Value-to-go computation

We provide pseudo-code for computing value-to-go:

Algorithm 1 V(S, t)
Input: Unmatched offline node set S, timestep t, map M for memoizing intermediate computation, probability vector p

if |S| = 0 or t = m+ 1 then

return 0

end if

if (S, t+ 1) /∈ M then

M [(S, t+ 1)] = V(S, t+ 1)
for u ∈ N (t) ∩ S do

if (S \ {u}, t+ 1) /∈ M then

M [(S \ {u}, t+ 1)] = V(S \ {u}, t+ 1)
end if

end for

end if

vmax = maxu∈N(t)∩S M [(S \ {u}, t+ 1)]
return (1− pt) ·M [(S, t+ 1)] + pt ·max{M [(S, t+ 1)], vmax}

B.2. Graph generation

B.2.1. RANDOM GRAPH FAMILIES

Erdős-Rényi (ER) [Erdős and Rényi, 1960]. Given parameters (m, n, p), we generate a bipartite graph G on m online

and n offline nodes where the edge between each (online, offline) node pair appears independently with probability p. Edge

weights are sampled from the uniform distribution U(0, 1).

11

MAGNOLIA

Barabási-Albert (BA) [Albert and Barabási, 2002]. We use a process similar to the one described in [Borodin et al.,

2020] to generate scale-free bipartite graphs. Given parameters (m, n, b), we generate a bipartite graph G on m online and

n offline nodes via a preferential attachment scheme:

1. Start with all n offline nodes.

2. For each online node, attach it to b offline nodes sampled without replacement, where the probability of selecting

offline node u is proportional to

Pr[u] =
degree(u)

∑

u′ degree(u′)
.

Similarly, to ER, edge weights are sampled from the uniform distribution U(0, 1).

Geometric (b-RGG). Given parameters (m, n, q) with q ∈ [0, 1], we generate a bipartite graph G on m online and n by

doing the following:

1. Assign each online and offline node u to a uniform random position pu in [0, 1]2.

2. Connect online node v to offline node w such that

wvw ∝ −∥pv − pw∥2.

3. Only keep the q fraction of edges with the largest weight.

B.2.2. SEMI-SYNTHETIC AND REAL-WORD GRAPHS

OSMnx rideshare (Rideshare). We generate a semi-synthetic ridesharing dataset using the OSMnx library [Boeing,

2017]. This dataset generation process is very similar to the one for b-RGG. To make it closer to a real-world application,

we replace distances between random points with the time to drive between intersections in a city.

For a given city and parameters (m, n, t), we uniformly sample intersections from a street map layout to generate locations

for n drivers and m riders. There is an edge between driver i and rider j if the drive time from i to j is below some threshold

t (in practice, t is set to 15 minutes). Approximate drive times are computed using the OSMnx library. Finally, edge weights

wij are generated such that

wij ∝ −(drive time from i to j).

This dataset can be thought of as a simple ridesharing application in a city. Drivers are idling, waiting to be matched to riders

who arrive online at known locations. The application’s goal is to minimize the sum travel time between all driver-rider

pairs or, equivalently, to maximize
∑

e∈M we where M is the online matching created by the algorithm. The threshold t is

set to avoid riders having to wait too long for a car.

In practice, we use cities of varying sizes, from several thousands of inhabitants (e.g. Piedmont, California) to several

hundreds of thousands of inhabitants (e.g. Fremont, California).

gMission. gMission is a spatial crowdsourcing dataset where offline workers are matched to tasks that arrive online. There

is an edge between a worker u and a task v if the worker can perform that task. The associated weight wuv is the expected

payoff the worker will get from that task, computed based on some distance metric between the task’s and the worker’s

feature vectors. We note that this setting is very similar to the Random Geometric Graphs we prove results for. Inputs are

random node-induced subgraphs of the gMission base graph, which is made available by Alomrani et al. [2022].

B.3. Node, edge, and graph features

We augment our graphs with several node-level and graph-level features that the GNN can leverage to improve its predictions.

12

MAGNOLIA

Node features. On a particular instance, the GNN underlying MAGNOLIA makes a decision for each arrival of a new

online node. As the current “matching state” evolves over time, some node features remain unchanged while others are

dynamic. Static node features include a positional encoder for the nodes, a one-hot encoding for the skip node, and a binary

mask for the offline nodes. In this way, the GNN can (1) differentiate each node from all others, (2) recognize the skip

node as being different from other offline nodes, and (3) discriminate online from offline nodes. Dynamic node features

include a one-hot encoding for the node the GNN is currently matching, and an arrival probability vector that is updated to 1
(respectively, 0) for nodes that have already arrived (respectively, not arrived) in the run of the algorithm.

Edge features. The weight wij of each edge (i, j) is encoded as a 1-dimensional edge feature.

Graph features. We use a single graph-level feature: the ratio of remaining unmatched online nodes to offline nodes.

Intuitively, an algorithm for online bipartite matching should get more greedy as this ratio goes down since greedy decisions

are unlikely to lead to later conflicts.

B.4. Architecture

The convolutional layers of our GNN follow a GENConv architecture [Li et al., 2020] and its implementation in PyTorch

Geometric [Fey and Lenssen, 2019]. The embedding update rule for this architecture mirrors the functional form of the

dynamic program representation of value-to-go:

h(k)
v = MLP

(

h(k−1)
v + max

u∈N (v)

{

ReLU(h(k−1)
u + wvu)

}

)

.

We compare different GNN architectures for VTG approximation in Appendix B.7.

B.5. Training error and model accuracy

We train our model using mean squared error. On each training sample, the model is given a graph instance and the current

online node t. It then tries to predict the value-to-go of all nodes in the graph. The only valid actions on step t are to either

match t to one of its neighbors or not to match t which is represented by matching t to the skip node. Hence, the model’s

prediction is masked to only consider the neighbors of t (which include the skip node) and we compute the mean squared

error between those predictions and the actual value-to-go values given by the online optimal algorithm.

Model accuracy is used for hyperparameter tuning and is a good metric for the empirical performance of the GNN when

used as an online matching algorithm. It is simply computed as the percentage of times the GNN chooses the same action

as the online optimal algorithm. Here, choosing the same action could either mean matching to the same offline node or

skipping the online node.

B.6. Hyperparameter tuning

We perform hyperparameter tuning using a validation set of size 300. We perform around 1000 trials, tuning the parameters

as described in Table 1. Each trial is evaluated by its validation set accuracy. The hyperparameters are tuned with Bayesian

search [Snoek et al., 2012] and pruning from the Optuna library [Akiba et al., 2019] to stop unpromising runs early. Similarly

to the training setup, the hyperparameter tuning is done on small graphs (10×6) and (6×10) even though the eventual testing

may be on larger graphs. All the training was done on an NVIDIA GeForce GTX Titan X.

B.7. MAGNOLIA using different architectures

One of MAGNOLIA’s strengths is that it is a modular pipeline that can accept any GNN architecture as a VTG approximator.

In Figure 4, we validate the choice of the GENConv architecture by including a comparison with various state-of-the-art

GNN models [Li et al., 2020, Morris et al., 2019, Brody et al., 2022]. Note that GENConv and DeeperGCN have the same

underlying GNN but use different layers and aggregation functions. We observe that all models achieve similar competitive

ratios, with GENConv and DeeperGCN performing slightly better.

13

MAGNOLIA

Table 1. Hyperparameter ranges

Hyperparameter Values

G
N

N

of message passing layers {1, . . . , 6}
of MLP layers {1, . . . , 5}

Hidden dimension size {2i | i ∈ {1, . . . , 6}}
Dropout [0, 0.5]

T
ra

in
in

g Batch size {2i | i ∈ {1, . . . , 6}}
Epochs {2i | i ∈ {1, . . . , 8}}

Learning rate [1e− 5, 1e− 10]

0.80

0.85

0.90

0.95

1.00
ER, p=0.5 b-RGG, q=0.25 Rideshare, Fremont gMission

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pe
tit

iv
e R

ati
o

GENConv
DeeperGCN
GATv2Conv
GraphConv

Figure 4. Boxplot showing the distribution of competitive ratios for MAGNOLIA with different underlying GNN architectures across graph

configurations. All graphs are of size (10×20).

B.8. Complete results for Section 4.2

For the results in Appendices B.8.1 to B.8.3, the GNN underlying MAGNOLIA is trained on a set of 2000 instances of

graphs from ER with p = 0.75, BA with b = 4, and GEOM with q = 0.25 of size (6×10). Reported results are distributions

and averages of competitive ratios from 6000 OBBM unseen instances of size (10×30) across 12 graph configurations. In

particular, we elected to train on a subset of graph configurations since this considerably improves training time, and in our

experience, leads to similar results.

The results in Appendix B.8.4 come from a GNN-based meta model which is given as input two GNNs trained on graphs of

size (6×10) and (10×6), respectively. The meta-GNN is trained on the competitive ratios achieved by each GNN on 2000

instances of graphs from ER with p = 0.75, BA with b = 4, and GEOM with q = 0.25, each across graph sizes (10×6),

(8×8), and (6×10). Whereas the GNN-based model selects a GNN to run each instance on using predicted competitive ratios,

the threshold-based meta algorithm simply runs on one GNN if the ratio of online nodes to offline nodes exceeds a fixed

threshold t. Empirically, we found that t = 1.5 performs well. Evaluation for both models once again happens over 6000

instances from the 12 graph configurations.

Finally, in Appendix B.8.5, we train MAGNOLIA with a different GNN on each possible noise level ρ. The training and

evaluation specifications for each of these noise-dependent GNNs are the same as those from Appendix B.8.1.

14

MAGNOLIA

B.8.1. MAGNOLIA MAKES GOOD DECISIONS

Table 2. Average competitive ratio by graph configuration with node ratio (10×20).

Parameter GNN Greedy Threshold Greedy LP

ER

p = 0.25 0.945 0.881 0.887 0.929

p = 0.5 0.943 0.883 0.897 0.917

p = 0.75 0.949 0.905 0.914 0.915

BA

b = 4 0.937 0.857 0.875 0.921

b = 6 0.944 0.885 0.896 0.916

b = 8 0.955 0.911 0.922 0.921

GEOM

q = 0.15 0.978 0.938 0.938 0.958

q = 0.25 0.961 0.922 0.922 0.939

q = 0.5 0.950 0.924 0.924 0.921

RIDESHARE
city = Piedmont 0.957 0.935 0.939 0.936

city = Fremont 0.957 0.929 0.933 0.930

GMISSION - 0.951 0.929 0.802 0.951

15

MAGNOLIA

B.8.2. MAGNOLIA SHOWS SIZE GENERALIZATION

0.80

0.85

0.90

0.95

ER, p=0.25 ER, p=0.5 ER, p=0.75

0.80

0.85

0.90

0.95

BA, b=4 BA, b=6 BA, b=8

0.80

0.85

0.90

0.95

b-RGG, q=0.15 b-RGG, q=0.25 b-RGG, q=0.5

50 100 150 200 250

0.80

0.85

0.90

0.95

Rideshare, Piedmont

50 100 150 200 250

Rideshare, Fremont

50 100 150 200 250

gMission

0.0 0.2 0.4 0.6 0.8 1.0
Total number of nodes N

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e c

om
pe

tit
iv

e r
ati

o

MAGNOLIA
greedy
greedy-t
LP-rounding

Figure 5. Evolution of competitive ratio over graphs of increasing size for a GNN trained on graphs of size (6×10). All test graphs have a

2:1 ratio of online to offline nodes.

16

MAGNOLIA

B.8.3. REQUIREMENTS FOR SIZE GENERALIZATION

One of the advantages of our approach is that it performs well when trained on small graphs. Indeed, Appendix B.8.2 shows

that MAGNOLIA exhibits size generalization. Two questions remain:

1. Would we observe better performance if MAGNOLIA was trained on larger graphs?

2. How small can the training graphs be while still exhibiting size generalization?

To address these questions, we compare the size generalization of MAGNOLIA when trained on graphs of varying size.

We see in Figure 6 that MAGNOLIA shows strong generalization to graph size, even when trained on very small graphs.

We observe that, surprisingly, the GNN trained on the smallest graphs (5×3) performs the best on gMission. This can be

explained by the fact that (5×3) graphs are more likely to be sparse, making them similar to the very sparse gMission inputs.

50 100 150 200 250
0.850

0.875

0.900

0.925

0.950

0.975
ER, p=0.5

50 100 150 200 250

b-RGG, q=0.25

50 100 150 200 250

Rideshare, Fremont

50 100 150 200 250

gMission

0.0 0.2 0.4 0.6 0.8 1.0

Total number of nodes N

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e c

om
pe

tit
iv

e r
ati

o

(3×5)
(6×10)
(9×15)
(12×20)

Figure 6. Evolution of competitive ratio over graphs of increasing size for GNNs trained on graphs of different sizes with the same (6:10)

ratio. All test graphs have a 1:2 ratio of offline to online nodes.

17

MAGNOLIA

B.8.4. META-MODEL IMPROVES REGIME GENERALIZATION

0.80

0.85

0.90

0.95

1.00
ER, p=0.25 ER, p=0.5 ER, p=0.75

0.80

0.85

0.90

0.95

1.00
BA, b=4 BA, b=6 BA, b=8

0.80

0.85

0.90

0.95

1.00
b-RGG, q=0.15 b-RGG, q=0.25 b-RGG, q=0.5

0.5 1.0 1.5 2.0 2.5

0.80

0.85

0.90

0.95

1.00
Rideshare, Piedmont

0.5 1.0 1.5 2.0 2.5

Rideshare, Fremont

0.5 1.0 1.5 2.0 2.5

gMission

0.0 0.2 0.4 0.6 0.8 1.0

|R| / |L| regime

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e c

om
pe

tit
iv

e r
ati

o

MAGNOLIA (meta)
greedy
greedy-t
LP-rounding

Figure 7. Evolution of competitive ratio over regimes for MAGNOLIA enabled with a meta-GNN. For evaluation, |L| is kept fixed at 16

offline nodes, and |R| varies from 8 to 64 online nodes

18

MAGNOLIA

0.90

0.92

0.94

0.96

0.98

1.00
ER, p=0.25 ER, p=0.5 ER, p=0.75

0.90

0.92

0.94

0.96

0.98

1.00
BA, b=4 BA, b=6 BA, b=8

0.90

0.92

0.94

0.96

0.98

1.00
b-RGG, q=0.15 b-RGG, q=0.25 b-RGG, q=0.5

1 2 3 4

0.90

0.92

0.94

0.96

0.98

1.00
Rideshare, Piedmont

1 2 3 4

Rideshare, Fremont

1 2 3 4

gMission

0.0 0.2 0.4 0.6 0.8 1.0

|R| / |L| regime

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e c
om

pe
tit

iv
e r

ati
o

MAGNOLIA (meta)
threshold (meta)

Figure 8. Evolution of competitive ratio over regimes for MAGNOLIA enabled with a meta-GNN against simple threshold model. For

evaluation, |L| is kept fixed at 16 offline nodes, and |R| varies from 8 to 64 online nodes

19

MAGNOLIA

B.8.5. MAGNOLIA IS ROBUST TO NOISY INPUTS

0.4

0.5

0.6

0.7

0.8

0.9

ER, p=0.25 ER, p=0.5 ER, p=0.75

0.4

0.5

0.6

0.7

0.8

0.9

BA, b=4 BA, b=6 BA, b=8

0.4

0.5

0.6

0.7

0.8

0.9

b-RGG, q=0.15 b-RGG, q=0.25 b-RGG, q=0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

Rideshare, Piedmont

0.0 0.2 0.4 0.6 0.8 1.0

Rideshare, Fremont

0.0 0.2 0.4 0.6 0.8 1.0

gMission

0.0 0.2 0.4 0.6 0.8 1.0
Noise standard deviation

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e c

om
pe

tit
iv

e r
ati

o

MAGNOLIA
greedy
greedy-t
LP-rounding

Figure 9. Evolution of competitive ratio as a function of noise level ρ for graphs of size (10×30). A N (0, ρ2) noise is added independently

to each edge weight and arrival probability.

20

	Introduction
	Our contributions
	Related work

	Notation and background
	Online Bayesian bipartite matching (OBBM)
	Graph neural networks

	Theoretical guarantees
	Local graph decomposition
	Local approximation of value-to-go

	Experiments
	Experimental setup
	Results

	Conclusions
	Proofs
	Experimental Details
	Value-to-go computation
	Graph generation
	Random graph families
	Semi-synthetic and real-word graphs

	Node, edge, and graph features
	Architecture
	Training error and model accuracy
	Hyperparameter tuning
	Magnolia using different architectures
	Complete results for section:results
	Magnolia makes good decisions
	Magnolia shows size generalization
	Requirements for size generalization
	Meta-model improves regime generalization
	Magnolia is robust to noisy inputs

