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Abstract

We provide a novel analytical perspective on the

theoretical understanding of gradient-based learn-

ing algorithms by interpreting consensus-based

optimization (CBO), a recently proposed multi-

particle derivative-free optimization method, as a

stochastic relaxation of gradient descent. Remark-

ably, we observe that through communication of

the particles, CBO exhibits a stochastic gradient

descent (SGD)-like behavior despite solely rely-

ing on evaluations of the objective function. The

fundamental value of such link between CBO and

SGD lies in the fact that CBO is provably globally

convergent to global minimizers for ample classes

of nonsmooth and nonconvex objective functions.

Hence, on the one side, we offer a novel expla-

nation for the success of stochastic relaxations

of gradient descent by furnishing useful and pre-

cise insights that explain how problem-tailored

stochastic perturbations of gradient descent (like

the ones induced by CBO) overcome energy barri-

ers and reach deep levels of nonconvex functions.

On the other side, and contrary to the conventional

wisdom for which derivative-free methods ought

to be inefficient or not to possess generalization

abilities, our results unveil an intrinsic gradient

descent nature of heuristics.

1. Introduction

Gradient-based learning algorithms, such as stochastic gra-

dient descent (SGD), AdaGrad (Duchi et al., 2011) and

Adam (Kingma & Ba, 2015), just to name a few, have un-

doubtedly been one of the cornerstones of the astounding

*Equal contribution 1School of Computation, Information
and Technology, Technical University of Munich, Munich, Ger-
many 2Munich Center for Machine Learning, Munich, Germany
3Deeptech Consulting, Oslo, Norway 4Munich Data Science In-
stitute, Munich, Germany. Correspondence to: Konstantin Riedl
<konstantin.riedl@ma.tum.de>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

successes of machine learning (Collobert & Weston, 2008;

Graves et al., 2013; Krizhevsky et al., 2017) in the last

decades. Despite an ever-growing relevance of advancing

our mathematical understanding concerning the behavior of

gradient-based learning algorithms, the fundamental reasons

behind their empirical successes largely defy our theoretical

understanding (Zhang et al., 2021; Mei et al., 2018).

In this work, we consider the more generic, ubiquitous prob-

lem of finding a global minimizer of a potentially nonsmooth

and nonconvex objective function E : Rd → R, i.e., solving

x∗ ∈ argmin
x∈Rd

E(x). (1)

Supported by illustrative numerical experiments, see Fig-

ure 1 below, we shall provide a novel analytical perspective

on the theoretical understanding of gradient-based learning

algorithms for such general global optimization problem by

interpreting a recently proposed multi-particle metaheuris-

tic derivative-free (zero-order) optimization method, called

consensus-based optimization (CBO) (Pinnau et al., 2017;

Bailo et al., 2024), as a stochastic relaxation of gradient de-

scent (GD), see Theorem 3.1 below for the statement of our

main result. The essential benefit of establishing such link

between CBO and (S)GD lies in the fact that CBO is prov-

ably capable of achieving global convergence towards global

minimizers for rich classes of nonsmooth and nonconvex

objective functions (Carrillo et al., 2018, 2021; Fornasier

et al., 2021a,b, 2022, 2023). Hence, such up to now largely

unexplored connection between mathematically explainable

derivative-free optimization methods and gradient-based

learning algorithms discloses, on the one side, a novel and

complementary perspective on why stochastic relaxations of

GD are so successful, and, conversely, but no less surprising,

unveils an intrinsic GD nature of heuristics on the other.

Contributions. In view of the overwhelming empirical

evidence that gradient-based learning algorithms exceed

in a variety of machine learning tasks what is mathemati-

cally rigorously justified, we provide in this work a novel

and surprising analytical perspective on their theoretical

understanding by interpreting consensus-based optimiza-

tion (CBO), which is guaranteed to globally converge to

global minimizers of potentially nonsmooth and nonconvex

loss functions (Fornasier et al., 2021b, 2022), as a stochastic
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relaxation of gradient descent (GD). Specifically, we show

that in suitable scalings of its parameters, CBO — despite

being a derivative-free (zero-order) optimization method —

naturally approximates a stochastic gradient flow dynamics,

hence implicitly behaves like a gradient-based (first-order)

method, see Theorem 3.1 and Figure 1. Our results fur-

nish useful and precise insights that explain the mechanisms

which enable stochastic perturbations of GD to overcome

energy barriers and to reach deep levels of nonconvex objec-

tive functions, even allowing for global optimization. While

the usual approach to a global analysis of (stochastic) GD

requires the loss to be L-smooth and to obey the Polyak-

Łojasiewicz condition, for the global convergence of CBO

merely local Lipschitz continuity and a certain growth con-

dition around the global minimizer are required (Fornasier

et al., 2021b, 2022). By establishing such link between

stochastic GD on the one hand and metaheuristic black-box

optimization algorithms such as CBO on the other, we not

just allow for complementing our theoretical understanding

of successfully deployed optimization algorithms in ma-

chine learning and beyond, but we also widen the scope of

applications of methods which — in one way or another, be

it explicitly or implicitly — estimate and exploit gradients.

2. Characterization of the class of objective

functions

The theoretical findings of this work hold for objectives

satisfying the following conditions.

Assumption 2.1. Throughout we consider E ∈ C(Rd),

A1 for which there exists x∗ ∈ R
d such that E(x∗) =

infx∈Rd E(x) =: E ,

A2 for which there exist C1, C2 > 0 such that

|E(x)−E(x′)| ≤ C1(1+‖x‖2+‖x′‖2) ‖x−x′‖2
for all x, x′ ∈ R

d as well as |E(x)− E| ≤ C2(1 +

‖x‖22) for all x ∈ R
d,

A3 for which either E := supx∈Rd E(x) < ∞, or for

which there exist C3, C4 > 0 such that E(x)−E ≥
C3 ‖x‖22 for all x ∈ R

d with ‖x‖2 ≥ C4,

A4 which are semi-convex (Λ-convex for some Λ ∈
R), i.e., E(•)− Λ

2 ‖•‖22 is convex.

A detailed discussion may be found in Appendix B.

3. Main results

Inspired by particle swarm optimization (PSO) (Kennedy

& Eberhart, 1995), CBO methods employ an interacting

stochastic system of N particles X1, . . . , XN to explore

the domain and to form consensus about the global mini-

mizer x∗ over time. More concretely, given a finite number

of time steps K, a discrete time step size ∆t > 0 and de-

noting the position of the i-th particle at time step k ∈
{0, . . . ,K} by Xi

k, this position is computed for user-

specified parameters α, λ, σ > 0 according to the iterative

update rule

Xi
k = Xi

k−1 −∆tλ
(
Xi

k−1 − xE
α(ρ̂

N
k−1)

)

+ σD
(
Xi

k−1 − xE
α(ρ̂

N
k−1)

)
Bi

k,
(2)

where ρ̂Nk denotes the empirical measure of the particles at

time step k, i.e., ρ̂Nk = 1
N

∑N
i=1 δXi

k
. In the spirit of the

exploration-exploitation philosophy of evolutionary compu-

tation techniques (Holland, 1975; Bäck et al., 1997; Fogel,

2000), the dynamics (2) of each particle is governed by

two competing terms, one being stochastic, the other de-

terministic in nature. The first of the two terms on the

right-hand side of (2) imposes a deterministic drift towards

the so-called consensus point xE
α, which is defined for a

measure % ∈ P(Rd) by

xE
α(%) :=

∫
x

ωE
α(x)

‖ωE
α‖L1(%)

d%(x), (3)

with ωE
α(x) := exp(−αE(x)). Notice that in the case

% = ρ̂Nk , Formula (3) is just a weighted (exploiting the

particles’ knowledge of their objective function values)

convex combination of the positions Xi
k. To be precise,

owed to the particular choice of Gibbs weights ωE
α, larger

mass is attributed to particles with comparably low objective

value, whereas only little mass is given to particles whose

value is undesirably high. This facilitates the interpretation

that xE
α(ρ̂

N
k ) is an approximation to argmini=1,...,N E(Xi

k),
which improves as α → ∞ and which can be regarded as

a proxy for the global minimizer x∗, based on the infor-

mation currently available to the particles. Theoretically,

this is justified by the log-sum-exp trick or the Laplace

principle (Dembo & Zeitouni, 1998; Miller, 2006). Let

us further remark that the particles communicate and ex-

change information amongst each other exclusively through

sharing the consensus point xE
α. The other term in (2) is a

stochastic diffusion injecting randomness into the dynam-

ics, thereby encoding its explorative nature. Given i.i.d.

Gaussian random vectors Bi
k in R

d with zero mean and co-

variance matrix ∆tId, each particle is subject to anisotropic

noise, i.e., D( • ) = diag( • ), which favors exploration the

farther a particle is away from the consensus point in a

certain direction. System (2) is complemented with inde-

pendent initial data xi
0 distributed according to a common

probability measure ρ0 ∈ P(Rd), i.e., Xi
0 = xi

0 ∼ ρ0.

An insightful theoretical understanding of the behavior of

CBO is to be gained, as we are about to show, by tracing

the dynamics of the consensus point xE
α of the CBO algo-

rithm (2). For this purpose, let us introduce the CBO scheme
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(a) A noisy Canyon function E with a valley
shaped as a third degree polynomial.

(b) The CBO scheme (4) (sampled over several
runs) follows on average the valley of E while
passing over local minima.

Figure 1: An illustration of the intuition that the CBO scheme (4) can be regarded as a stochastic derivative-free relaxation

of GD. To find the global minimizer x∗ of the nonconvex objective function E depicted in (a), we run the CBO algorithm (2)

for K = 250 iterations with parameters ∆t = 0.1, α = 100, λ = 1 and σ = 1.6, and N = 200 particles, initialized

i.i.d. according to ρ0 = N
(
(8, 8), 0.5Id

)
. This experiment is performed 50 times. For each run we depict in (b) the positions

of the consensus points computed during the CBO algorithm (2), i.e., the iterates of the CBO scheme (4) for k = 1, . . . ,K.

The color of the individual points corresponds to time, i.e., iterates at the beginning of the scheme are plotted in blue,

whereas later iterates are colored orange. We observe that, after starting close to the initial position, the trajectories of the

consensus points follow the path of the valley leading to the global minimizer x∗, until it is reached. In particular, unlike

GD (cf. Figure C.1b), the scheme (4) has the capability of jumping over locally deeper passages. Such desirable behavior is

observed also for the Langevin dynamics (6) (see Figure C.1c), which can be regarded as a stochastic (noisy) version of GD.

as the iterates (xCBO
k )k=0,...,K defined according to

xCBO
k = xE

α(ρ̂
N
k ), with ρ̂Nk =

1

N

N∑

i=1

δXi
k
,

xCBO
0 = x0 ∼ ρ0,

(4)

where the particles’ positions Xi
k are given by Equation (2).

The main theoretical finding of this work is concerned with

the observation that the iterates of the CBO scheme (4),

i.e., the trajectory of the consensus point xE
α, follow, with

high probability, a stochastically perturbed GD. This is illus-

trated in Figure 1 above and made rigorous in the following

Theorem 3.1, whose proof is deferred to Section C.

Theorem 3.1 (CBO is a stochastic relaxation of GD). Let

E ∈ C1(Rd) be L-smooth and satisfy minimal assump-

tions (summarized in Assumption 2.1 above). Then, for

τ > 0 (satisfying τ < 1/(−2Λ) if Λ < 0) and with pa-

rameters α, λ, σ,∆t > 0 such that α & 1
τ d log d, the it-

erates (xCBO
k )k=0,...,K of the CBO scheme (4) follow a

stochastically perturbed GD, i.e., they obey

xCBO
k = xCBO

k−1 − τ∇E(xCBO
k−1 ) + gk, (5)

where gk is stochastic noise fulfilling for each k = 1, . . . ,K
with high probability the quantitative estimate ‖gk‖2 =

O
(
|λ− 1/∆t|+ σ

√
∆t+

√
τ/α+N−1/2

)
+O(τ).

Let us now comment on technical aspects of Theorem 3.1,

describe its interpretation and discuss its implications.

Concerning the assumptions, it shall be mentioned that,

in particular compared to Polyak-Łojasiewicz-like condi-

tions (Karimi et al., 2016) or certain families of log-Sobolev

inequalities (Chizat & Bach, 2018) that are required to ana-

lyze the dynamics of gradient-based methods such as (S)GD

or the Langevin dynamics, the assumptions under which our

statement holds are rather weak and complementary. Com-

bined with similar assumptions being sufficient to prove

global convergence of CBO, this extends the class of func-

tions, for which SGD-like methods are successful in global

optimization.

The statement of Theorem 3.1 has to be read with a twofold

interpretation. First, in view of the capability of CBO to con-

verge to global minimizers for rich classes of nonsmooth and

nonconvex objectives (Fornasier et al., 2021b, 2022; Riedl,

2023), Theorem 3.1 states that there exist stochastic relax-

ations of GD that are provably able to robustly and reliably

overcome energy barriers and reach deep levels of noncon-

vex functions. Such relaxations may even be derivative-free

and do not require smoothness of the objective, as in CBO.

Second, and conversely, against the common wisdom that

derivative-free optimization heuristics search the domain

mainly by random exploration and therefore ought to be

inefficient, we provide evidence that such heuristics in fact
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work successfully in finding benign optima (Duchi et al.,

2015; Nesterov & Spokoiny, 2017; Chen et al., 2017; Niko-

lakakis et al., 2022), precisely because they are suitable

stochastic relaxations of gradient-based methods.

The interpretation of the CBO scheme (4) as a stochastic

relaxation of GD is substantiated visually, analytically and

numerically as follows.

While the trajectories of (4) are to be seen in Figure 1b, we

depict for comparison in Figure C.1c the discretized dynam-

ics of the annealed Langevin dynamics (Chiang et al., 1987;

Roberts & Tweedie, 1996; Durmus & Moulines, 2017),

dXt = −∇E(Xt) dt+
√

2β−1
t dBt. (6)

Both stochastic methods are capable of global minimization

while overcoming energy barriers and escaping local min-

ima. For analyses of the (annealed) Langevin dynamics we

refer to (Gelfand & Mitter, 1991; Chizat, 2022).

The stochastic perturbations gk in (5) are meaningful and

not generic as they obey precise scalings thanks to the estab-

lished estimate in Theorem 3.1. In particular, as reflected by

the first term of the bound on the error ‖gk‖2, they become

tighter as soon as the discrete CBO time step size ∆t � 1,

the drift parameter λ ≈ 1/∆t, the noise parameter σ be-

comes smaller, the weight parameter α is sufficiently large,

and the number of employed particles N becomes larger.

This behavior is confirmed numerically in Figure 2 by mea-

suring the closeness between the trajectories of the CBO

scheme (4) and GD. More precisely, better approximation is

Figure 2: Numerical analysis of the approximation error

between the trajectories of the CBO scheme (4) and GD, i.e.,

the stochastic noise gk in (5). In the setting of the Canyon

function E from Figure 1a but without a local minimum

in the valley, we measure the distance between the two

trajectories and plot the resulting approximation error for

different values of λ (different colors), σ (horizontal axis),

and N (different line styles). The other parameters of the

CBO scheme (4) are K = 1000, ∆t = 0.1 and α = 1016

with the remaining setting being as in Figure 1.

achieved for the values of λ closer to 1/∆t (compare lines

with different colors but same line style, and notice that

smaller error can be obtained for larger λ), larger choices

of N (compare different line styles within a color), and σ
as small as possible (each line decreases as σ decreases).

For fixed λ and N , however, σ needs to be sufficiently large

(in particular in case of a fixed number of iterates K) to

allow the CBO scheme (4) to iteratively explore the energy

landscape within the time horizon. As visible from Figure 2,

a larger number of particles N is needed to pass to smaller

σ and thus better approximation. Regarding the second term

of the bound on the error ‖gk‖2, we conjecture a potential

amelioration of the estimate by refining the quantitative

Laplace principle from (Fornasier et al., 2021b) involved in

the proof of Proposition C.2, which would allow to remove

the order O(τ) dependence of the bound. Yet, as it stands,

this term is about a deterministic bounded perturbation of

the gradient, which is possibly of smaller magnitude than the

gradient. Such bounded perturbation alone does not allow

to overcome local energy barriers in general (just think of a

local minimizer, around which the magnitude of gradients

grows faster than the displacement: any movement from

the minimizer ought necessarily to get reverted). Hence,

it is the stochastic part of the perturbation that enables the

convergence to global minimizers. In fact, for a moderate

time step size ∆t > 0, a drift parameter λ > 0 relatively

small compared to 1/∆t, a non-insignificant noise parame-

ter σ > 0, a moderate value of the weight parameter α > 0
and a modest number N of particles, CBO is factually a

stochastic relaxation of GD with strong noise.

Apart from gaining primarily theoretical insights from this

link, let us conclude this section by mentioning a further,

more practical aspect of establishing such a connection. In

several real-world applications, including various machine

learning settings, using gradients may be undesirable or

even not feasible. This can be due to the black-box nature

or nonsmoothness of the objective, memory limitations con-

straining the use of automatic differentiation, a substantial

presence of spurious local minima, or the fact that gradients

carry relevant information about data, which one may wish

to keep private. In machine learning, the problems of hyper-

parameter tuning (Bergstra et al., 2011; Rapin & Teytaud,

2018), convex bandits (Agarwal et al., 2011; Shamir, 2017),

reinforcement learning (Sutton & Barto, 1998), the train-

ing of sparse and pruned neural networks (Hoefler et al.,

2021), and federated learning (Shokri & Shmatikov, 2015;

McMahan et al., 2017) stimulate interest in methods alter-

native to gradient-based ones. In such situations, if one still

wishes to rely on a GD-like optimization behavior, Theo-

rem 3.1 suggests the use of CBO (or related methods such as

PSO (Cipriani et al., 2022; Huang et al., 2023)), which will

be reliable and efficient, with linear complexity in the num-

ber of deployed particles. We report, for instance, recent

ideas in the setting of clustered federated learning (Car-

rillo et al., 2023), where CBO is leveraged to avoid reverse

engineering of private data through exchange of gradients.
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Appendices

Appendices for the paper: “How Consensus-Based Optimization can be Interpreted as a Stochastic Relaxation of

Gradient Descent” authored by Konstantin Riedl, Timo Klock, Carina Geldhauser, and Massimo Fornasier.

• Appendix A: Introductory facts

• Appendix B: Discussion of Assumption 2.1

• Appendix C: Consensus-based optimization is a stochastic relaxation of gradient descent

• Appendix D: Boundedness of the numerical schemes

• Appendix E: Proof details for Theorem C.1

• Appendix F: Proof details for Proposition C.2 and Theorem C.3

• Appendix G: Additional numerical experiments

In the GitHub repository CBOGlobalConvergenceAnalysis/CBOstochasticGD, we provide the implementation of the

algorithms analyzed in this work and the code used to create the visualizations.

A. Introductory facts

Notation. To keep the notation concise, we hide generic constants, i.e., we write a . b for a ≤ cb, if c is a constant

independent of problem-dependent constants. Moreover, since we work with random variables in several instances, many

equalities and inequalities hold almost surely without being mentioned explicitly. We abbreviate with i.i.d. independently

and identically distributed.

We write ‖•‖2 and 〈• , •〉 for the Euclidean norm and scalar product on R
d, respectively. Euclidean balls are denoted by

Br(x) := {z ∈ R
d : ‖z − x‖2 ≤ r}. Moreover, we write ‖•‖

∞
for the `∞-norm and denote the associated `∞-balls by

B∞
r (x) := {z ∈ R

d : ‖z − x‖∞ ≤ r}.

For the space of continuous functions f : X → Y we write C(X,Y ), with X ⊂ R
n and a suitable topological space Y . For

an open set X ⊂ R
n and for Y = R

m the space Ck(X,Y ) contains functions f ∈ C(X,Y ) that are k-times continuously

differentiable. We omit Y in the real-valued case, i.e., C(X) = C(X,R) and Ck(X) = Ck(X,R).

A function f ∈ C1(Rd) is L-smooth if ‖∇f(x)−∇f(x′)‖2 ≤ L ‖x− x′‖2 for all x, x′ ∈ R
d.

The operator ∇ denotes the gradient of a function on R
d.

The operator diag : Rd → R
d×d denotes the operator mapping a vector onto a diagonal matrix with the vector as its

diagonal.

Convex analysis. For a convex function f ∈ C(Rd) the subdifferential ∂f(x) at a point x ∈ R
d is the set

∂f(x) =
{
p ∈ R

d : f(y) ≥ f(x) + 〈p, y − x〉 for all y ∈ R
d
}
.

In the setting f ∈ C(Rd), ∂f(x) is closed, convex, nonempty and bounded. If f ∈ C1(Rd), ∂f(x) = {∇f(x)}. Moreover, it

is straightforward to verify that for x1, x2, p1, p2 ∈ R
d with p1 ∈ ∂f(x1) and p2 ∈ ∂f(x2) it holds 〈p1 − p2, x1 − x2〉 ≥ 0.

Probability measures. The set of all Borel probability measures over Rd is denoted by P(Rd). For p > 0, we collect mea-

sures % ∈ P(Rd) with finite p-th moment
∫
‖x‖p2 d%(x) in Pp(R

d). Pp(R
d) is metrized by the Wasserstein-p distance Wp,

see, e.g., (Ambrosio et al., 2008; Villani, 2009) and the subsequent paragraph.

The Dirac delta δx for a point x ∈ R
d is a measure satisfying δ(B) = 1 if x ∈ B and δ(B) = 0 if x 6∈ B for any measurable

set B ⊂ R
d.

N (m,Σ) denotes a Gaussian distribution with mean m and covariance matrix Σ.
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Wasserstein distance. For any 1 ≤ p < ∞, the Wasserstein-p distance between two Borel probability measures %, %′ ∈
Pp(R

d) is defined by

Wp(%, %
′) =

(
inf

γ∈Π(%,%′)

∫
‖x− x′‖p2 dγ(x, x′)

)1/p

, (7)

where Π(%, %′) denotes the set of all couplings of (a.k.a. transport plans between) % and %′, i.e., the collection of all Borel

probability measures over Rd × R
d with marginals % and %′ on the first and second component, respectively, see, e.g.,

(Ambrosio et al., 2008; Villani, 2009). Pp(R
d) endowed with the Wasserstein-p distance Wp is a complete separable metric

space (Ambrosio et al., 2008, Proposition 7.1.5).

A generalized triangle-type inequality. It holds for p, J ∈ N by Hölder’s inequality

∣∣∣∣∣∣

J∑

j=1

aj

∣∣∣∣∣∣

p

≤ Jp−1
J∑

j=1

|aj |p . (8)

A discrete variant of Grönwall’s inequality. If zk ≤ azk−1 + b with a, b ≥ 0 for all k ≥ 1, then

zk ≤ akz0 + b

k−1∑

`=0

a` ≤ akz0 + b

k−1∏

`=1

(1 + a) ≤ akz0 + bea(k−1) (9)

for all k ≥ 1. Notice that, while the first inequality in (9) is as sharp as the initial estimates, the remaining two inequalities

are rather rough upper bounds.

B. Discussion of Assumption 2.1

Assumption A1 requires that the continuous objective function E attains its globally minimal value E at some x∗ ∈ R
d. This

does in particular not exclude objectives with multiple global minimizers.

Remark B.1. For the global convergence results (Fornasier et al., 2021b, 2022) of CBO, however, uniqueness of the global

minimizer x∗ is required and implied by an additional local coercivity condition of the form

‖x− x∗‖
∞

≤ 1

η
(E(x)− E)ν for all x ∈ B∞

R0
(x∗)

E(x)− E > E∞ for all x ∈
(
B∞

R0
(x∗)

)c

with constants η, ν, E∞, R0 > 0. It can be regarded as a tractability condition of the energy landscape of E and is also

known as the inverse continuity property from (Fornasier et al., 2021a) or as the error bound condition from (Anitescu, 2000;

Xu et al., 2017; Bolte et al., 2017; Necoara et al., 2019).

To deploy CBO in the setting of objective functions with several global minima, Bungert et al. (2024) propose a polarized

variant of CBO, which localizes the dynamics by integrating a kernel in the computation of the consensus point (3). This

ensures that each particle is primarily influenced by particles close to it, allowing for the creation of clusters.

Assumptions A2 and A3 can be regarded as regularity conditions on the objective landscape of E . The first part of A2

is a local Lipschitz condition, which ensures that the objective function does not change too quickly, assuring that the

information obtained when evaluating the function is informative within a region around the point of evaluation. The second

part of A2 controls and limits the growth of the objective in the farfield. In combination with the second option in A3 this

forces the objective to grow quadratically in the farfield. However, note that one can always redefine the objective outside a

sufficiently large ball such that both conditions are met while the other assumptions are preserved. Alternatively, the first

option in A3 allows for bounded functions.

Assumption A4 requires the objective E to be semi-convex with parameter Λ ∈ R. For Λ > 0, Λ-convexity is stronger than

convexity (strong convexity with parameter Λ). For Λ < 0, semi-convexity is weaker, i.e., potentially nonconvex functions E
are included in the definition. The class of semi-convex functions is typical in the literature of gradient flows, since their

general theory extends from the convex to this more general setting (Santambrogio, 2017). One particular property, which
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we shall exploit in this work, is that for such functions the time discretization of a gradient flow, potentially for a small step

size, defined through an iterated scheme, called minimizing movement scheme (De Giorgi, 1993), is well-defined. However,

while semi-convexity is useful to ensure the well-posedness of gradient flows, it is not sufficient to obtain convergence

to global minimizers. Other properties such as the Polyak-Łojasiewicz condition (Karimi et al., 2016) or the log-Sobolev

inequalities governing the flow of the Langevin dynamics (Chizat & Bach, 2018) may be necessary.

C. Consensus-based optimization is a stochastic relaxation of gradient descent

In this section we present the technical details behind the main theoretical result of this work, Theorem 3.1, i.e., we explain

how to establish a connection between the CBO scheme (4), which captures the flow of the derivative-free CBO dynamics (2),

and GD.

From CBO to consensus hopping. Let us envision for the moment the movement of the particles during the CBO

dynamics (2). At every time step k, after having computed xE
α(ρ̂

N
k−1), each particle moves a ∆tλ fraction of its distance

towards this consensus point, before being perturbed by stochastic noise. As we let λ → 1/∆t, the particles’ velocities

increase, until, in the case λ = 1/∆t, each of them hops directly to the previously computed consensus point, followed

by a random fluctuation. Put differently, we are left with a numerical scheme, which, at time step k, samples N particles

around the old iterate in order to subsequently compute as new iterate the consensus point (3) of the empirical measure of

the samples. Such algorithm is precisely a Monte Carlo approximation of the consensus hopping (CH) scheme with iterates

(xCH
k )k=0,...,K defined by

xCH
k = xE

α(µk), with

µk = N
(
xCH
k−1, σ̃

2Id
)
,

xCH
0 = x0.

(10)

Theorem C.1 in Appendix C.2 makes this intuition rigorous by quantifying the approximation quality between the CBO

and the CH scheme in terms of the parameters of the two schemes. Sample trajectories of the CH scheme are depicted in

Figure C.1a.

From CH to GD. With the sampling measure µk assigning (in particular for small σ̃) most mass to the region close to the

old iterate, the CH scheme (10) improves at every time step k its objective function value while staying near the previous

iterate. A conceptually analogous behavior to such localized sampling can be achieved through penalizing the length of the

step taken at time step k. This gives rise to an implicit version of the CH scheme with iterates (x̃CH
k )k=0,...,K given as

x̃CH
k = argmin

x∈Rd

Ẽk(x), with

Ẽk(x) :=
1

2τ

∥∥xCH
k−1 − x

∥∥2
2
+ E(x),

x̃CH
0 = x0.

(11)

Actually, the modulated objective Ẽk defined in (11) naturally appears when writing out the expression of xE
α(µk) from

(10) using that µk is a Gaussian. This creates a link between the sampling width σ̃ and the step size τ . The fact that the

parameter τ can be seen as the step size of (11) becomes apparent when observing that the optimality condition of the

k-th iterate of (11) reads x̃CH
k = xCH

k−1 − τ∇E(x̃CH
k ), which is an implicit gradient step. Proposition C.2 in Appendix C.2

estimates the discrepancy between xCH
k and x̃CH

k employing the quantitative Laplace principle (Fornasier et al., 2021b,

Proposition 18).

Let us conclude this discussion by remarking that the scheme (11) itself is not self-consistent but requires the computation

of the iterates of the CH scheme (10). For this reason we introduce the minimizing movement scheme (MMS) (De Giorgi,

1993) as the iterates (xMMS
k )k=0,...,K given according to

xMMS
k = argmin

x∈Rd

Ek(x), with

Ek(x) :=
1

2τ

∥∥xMMS
k−1 − x

∥∥2
2
+ E(x),

xMMS
0 = x0,

(12)
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which is known to be the discrete-time implicit Euler of the gradient flow d
dtx(t) = −∇E(x(t)) (Santambrogio, 2017).

(a) The CH scheme (10) (sampled over sev-
eral runs) follows on average the valley of
E and can occasionally escape local min-
ima.

(b) GD gets stuck in a local minimum of E . (c) The Langevin dynamics (6) (sampled
over several runs) follows on average the
valley of E and escapes local minima.

Figure C.1: An illustrative comparison between the algorithms discussed in this work. While GD (obtained as an explicit

Euler time discretization of d
dtx(t) = −∇E(x(t)) with time step size ∆t = 0.01 and ran for K = 104 iterations) gets

stuck in a local minimum along the valley of E (see (b)), the stochastic algorithms in (a) and (c) as well as Figure 1b

have the capability of escaping local minima. In (a) we depict the positions of the consensus hopping scheme (10) for

K = 250 iterations with parameters α = 100 and σ̃ = 0.6, and where we approximate the underlying measure µk at each

step k using 200 samples. The ability of the CH scheme to escape local minima improves with larger σ̃, see Figure G.1 in

Appendix G. In (c) we depict the trajectory of the overdamped Langevin dynamics (6) with βt = 0.02 log(t+ 1) (obtained

as an Euler-Maruyama time discretization of (6) with time step size ∆t = 0.001 and ran for K = 104 iterations). The

remaining setting is as in Figure 1, in particular, 50 individual runs of the experiment are plotted in (a) and (c).

C.1. Proof of the main result, Theorem 3.1

Proof of Theorem 3.1. From the optimality condition of the scheme (x̃CH
k )k=1,...,K in (11) and with the iterations

(xCH
k )k=1,...,K as in (10), we get

(
x̃CH
k −xCH

k−1

)
+τ∇E(x̃CH

k )=0. Using this we decompose

xCBO
k = x̃CH

k +
(
xCBO
k − x̃CH

k

)

= xCH
k−1 − τ∇E(x̃CH

k ) +
(
xCBO
k − x̃CH

k

)
.

Since xCH
k−1 = xCBO

k−1 +
(
xCH
k−1 − xCBO

k−1

)
and ∇E(x̃CH

k ) = ∇E(xCBO
k−1 ) +

(
∇E(x̃CH

k )−∇E(xCBO
k−1 )

)
we can continue the

former to obtain

xCBO
k = xCBO

k−1 − τ∇E(xCBO
k−1 ) +

(
xCH
k−1 − xCBO

k−1

)

− τ
(
∇E(x̃CH

k )−∇E(xCBO
k−1 )

)

+
(
xCBO
k −x̃CH

k

)
,

where it remains to control the stochastic error term gk from (5), which is comprised of the terms g1k := xCH
k−1 − xCBO

k−1 ,

g2k := τ
(
∇E(x̃CH

k )−∇E(xCBO
k−1 )

)
and g3k := xCBO

k − x̃CH
k . By Theorem C.1,

∥∥g1k
∥∥
2
= O

(
|λ− 1/∆t|+ σ

√
∆t+ σ̃ +N−1/2

)

with high probability. For g2k, first notice that 1
2τ

∥∥x̃CH
k − xCH

k−1

∥∥2
2
+ E(x̃CH

k ) ≤ E(xCH
k−1) by definition of x̃CH

k , which

facilitates a bound on
∥∥x̃CH

k − xCH
k−1

∥∥
2

of order O(τ) with high probability under A2 and by means of Remark D.7. Since E
is L-smooth, with the latter derivations and Theorem C.1,

∥∥g2k
∥∥
2
≤ τL

∥∥x̃CH
k − xCBO

k−1

∥∥
2

≤ τL
(∥∥x̃CH

k − xCH
k−1

∥∥
2
+
∥∥xCH

k−1 − xCBO
k−1

∥∥
2

)

= O(τ2)+O
(
τ
(
|λ−1/∆t|+σ

√
∆t+σ̃+N−1/2

))
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with high probability. Eventually, by Theorem C.1 and Proposition C.2 (hence, the quantitative Laplace principle (Fornasier

et al., 2021b, Proposition 18), see Proposition F.2), it holds for a sufficiently large choice of α that

∥∥g3k
∥∥
2
≤
∥∥xCBO

k − xCH
k

∥∥
2
+
∥∥xCH

k − x̃CH
k

∥∥
2

= O
(
|λ− 1/∆t|+ σ

√
∆t+ σ̃ +N−1/2

)
+O(τ)

with high probability, which concludes the proof recalling that σ̃2 = τ/(2α) as of Proposition C.2.

C.2. Technical details connecting CBO with GD via the CH scheme (10)

We now make rigorous what was described colloquially at the beginning of Appendix C. The proofs of the results below,

which are the central technical tools that we utilized to prove Theorem 3.1 in Appendix C.1, are presented in Appendices E

and F, respectively. M is the moment bound from Remark D.7.

CBO is a stochastic relaxation of CH. Theorem C.1 explains how the CBO scheme (4) can be interpreted as a stochastic

relaxation of the CH scheme (10).

Theorem C.1 (CBO relaxes CH). Fix ε > 0 and δ ∈ (0, 1/2). Let E ∈ C(Rd) satisfy A1– A3. We denote by (xCBO
k )k=0,...,K

the iterates of the CBO scheme (4) and by (xCH
k )k=0,...,K the ones of the CH scheme (10). Then, with probability larger

than 1− (δ + ε), it holds for all k = 1, . . . ,K that

∥∥xCBO
k −xCH

k

∥∥2
2
≤ ε−1C

(
|λ−1/∆t|2 + σ2∆t+ σ̃2 +N−1

)
(13)

with C = C(δ−1,∆t, d, α, λ, σ, b1, b2, C1, C2,K,M).

The proof of Theorem C.1 is presented in Appendix E.4 with auxiliary results provided in Appendix E.

CH behaves like a gradient-based method. Since by definition of the iterates x̃CH
k in (11), it holds x̃CH

k = xCH
k−1 −

τ∇E(x̃CH
k ), Proposition C.2 constitutes that (granted a sufficiently large choice of α and a suitably small choice of σ̃) the

CH scheme (10) performs a gradient step at every time step k.

Proposition C.2 (CH performs gradient steps). Fix ε > 0 and δ ∈ (0, 1/2). Let E ∈ C(Rd) satisfy A1– A4. We denote by

(xCH
k )k=0,...,K the iterations of the CH scheme (10) and by (x̃CH

k )k=0,...,K the ones of the scheme (11). Moreover, assume

that the parameters α, τ and σ̃ are such that τ < 1/(−2Λ) if Λ < 0, α & 1
τ d log d is sufficiently large and σ̃2 = τ/(2α).

Then, with probability larger than 1− (δ + ε), it holds for all k = 1, . . . ,K that

∥∥xCH
k −x̃CH

k

∥∥2
2
≤ ε−1cτ2 (14)

with c = c(δ−1, C1,M).

The proof of Proposition C.2 is based on the quantitative Laplace principle (Fornasier et al., 2021b, Proposition 18) (see also

Proposition F.2). We conjecture that a refinement thereof may allow to control the error in (14) just through α and σ̃ without

creating a dependence on τ . Nevertheless, the bound is sufficient to suggest a gradient-like behavior of the CH scheme (10)

(see the discussion after Theorem 3.1).

Combining Proposition C.2 with a stability argument for the MMS and applying Grönwall’s inequality allows to control in

Theorem C.3 the divergence between the CH scheme (10) and the MMS (12).

Theorem C.3 (CH relaxes a gradient flow). Fix ε > 0 and δ ∈ (0, 1/2). Let E ∈ C(Rd) satisfy A1– A4. We denote by

(xCH
k )k=0,...,K the iterations of the CH scheme (10) and by (xMMS

k )k=0,...,K the ones of the MMS (12). Moreover, assume

that the parameters α, τ and σ̃ are such that τ < 1/(−2Λ) if Λ < 0, α & 1
τ d log d is sufficiently large and σ̃2 = τ/(2α).

Then, with probability larger than 1− (δ + ε), it holds for all k = 1, . . . ,K that

∥∥xCH
k −xMMS

k

∥∥2
2
≤ ε−1c(1+ϑ−1) τ2

k−1∑

`=0

(
1+ϑ

(1+τΛ)
2

)`

(15)

for any ϑ ∈ (0, 1) and with c = c(δ−1, C1,M).
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Corollary C.4. Fix ε > 0 and δ ∈ (0, 1/2). Let E ∈ C(Rd) satisfy A1– A4 with Λ > 0. Then, in the setting of Theorem C.3

and with probability larger than 1− (δ + ε), it holds for all k = 1, . . . ,K that

∥∥xCH
k −xMMS

k

∥∥2
2
≤ ε−1c(1+ϑ−1)τ2

(1+τΛ)
2

(1+τΛ)
2−(1+ϑ)

. (16)

The proofs of Proposition C.2 and Theorem C.3 are presented in Appendices F.3 and F.4, respectively, with auxiliary results

provided in Appendix F.

D. Boundedness of the numerical schemes

Before showing the boundedness in expectation of the numerical schemes (4), (10), (12) and (11) over time in Sections D.1–

D.4, respectively, let us first recall from (Carrillo et al., 2018, Lemma 3.3) an estimate on the consensus point (3), which

facilitates the subsequent proofs.

Lemma D.1 (Boundedness of consensus point xE
α). Let E ∈ C(Rd) satisfy A1– A3. Moreover, let % ∈ P2(R

d). Then it

holds
∥∥xE

α(%)
∥∥2
2
≤ b1 + b2

∫
‖x‖22 d%(x)

with constants b1 = 0 and b2 = b2(α, E , E) > 0 in case the first condition of A3 holds and with bi = bi(α,C2, C3, C4) > 0
for i = 1, 2 as given in (17) in case of the second condition of A3.

Proof. In case the first condition of A3 holds, we have by definition of the consensus point xE
α in (3) and Jensen’s inequality

∥∥xE
α(%)

∥∥2
2
≤
∫

‖x‖22
ωE
α(x)

‖ωE
α‖L1(%)

d%(x) ≤ eα(E−E)

∫
‖x‖22 d%(x).

In case of the second condition of A3, the statement follows from (Carrillo et al., 2018, Lemma 3.3) with constants

b1 = C2
4 + b2 and b2 = 2

C2

C3

(
1 +

1

αC3

1

C2
4

)
, (17)

which concludes the proof.

With this estimate we have all necessary tools at hand to prove the boundedness of the numerical schemes investigated in

this paper.

D.1. Boundedness of the consensus-based optimization (CBO) dynamics (2) and (4)

Let us remind the reader that the iterates (xCBO
k )k=0,...,K of the consensus-based optimization (CBO) scheme (4) are defined

by

xCBO
k = xE

α(ρ̂
N
k ), with ρ̂Nk =

1

N

N∑

i=1

δXi
k
,

xCBO
0 = x0 ∼ ρ0,

where the iterates
(
(Xi

k)k=0,...,K

)
i=1,...,N

are given as in (2) by

Xi
k = Xi

k−1 −∆tλ
(
Xi

k−1 − xE
α(ρ̂

N
k−1)

)
+ σD

(
Xi

k−1 − xE
α(ρ̂

N
k−1)

)
Bi

k,

Xi
0 = xi

0 ∼ ρ0

with Bi
k being i.i.d. Gaussian random vectors in R

d with zero mean and covariance matrix ∆tId for k = 0, . . . ,K and

i = 1, . . . , N , i.e., Bi
k ∼ N (0,∆tId).

13
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Lemma D.2 (Boundedness of the CBO dynamics (2) and the CBO scheme (4)). Let E ∈ C(Rd) satisfy A1– A3. Moreover,

let ρ0 ∈ P4(R
d). Then, for the empirical random measures (ρ̂Nk )k=0,...,K and the iterates (Xi

k)k=0,...,K of (2) it holds

E max
k=0,...,K

∫
‖x‖42 dρ̂Nk (x) ≤ MCBO and max

i=1,...,N
E max

k=0,...,K

∥∥Xi
k

∥∥4
2
≤ MCBO

with a constant MCBO = MCBO(λ, σ, d, b1, b2,K∆t,K, ρ0) > 0. Moreover, for the iterates (xCBO
k )k=0,...,K of (4) it

holds

E max
k=0,...,K

∥∥xCBO
k

∥∥4
2
≤ MCBO.

Proof. We first note that Xi
k as defined iteratively in (2) satisfies

Xi
k = Xi

0 −∆tλ

k∑

`=1

(
Xi

`−1 − xE
α(ρ̂

N
`−1)

)
+ σ

k∑

`=1

D
(
Xi

`−1 − xE
α(ρ̂

N
`−1)

)
Bi

`

and that for any k = 1, . . . ,K by means of the standard inequality (8) for p = 4 and J = 3 we have

max
`=0,...,k

∥∥Xi
`

∥∥4
2
.
∥∥Xi

0

∥∥4
2
+ (∆tλ)4 max

`=1,...,k

∥∥∥∥∥
∑̀

m=1

(
Xi

m−1 − xE
α(ρ̂

N
m−1)

)
∥∥∥∥∥

4

2

+ σ4 max
`=1,...,k

∥∥∥∥∥
∑̀

m=1

D
(
Xi

m−1 − xE
α(ρ̂

N
m−1)

)
Bi

m

∥∥∥∥∥

4

2

.

(18)

Noticing that the random process Y i
` :=

∑`
m=1 D

(
Xi

m−1 − xE
α(ρ̂

N
m−1)

)
Bi

m, ` = 0, . . . , k is a martingale w.r.t. the

filtration
{
F` = σ

(
{Xi

0} ∪ {Bi
m,m = 1, . . . , `}

)}k−1

`=0
since it satisfies E

[
Y i
` | F`−1

]
= Y i

`−1 for ` = 1, . . . , k, we can

apply a discrete version of the Burkholder-Davis-Gundy inequality (Chow & Teicher, 1997, Corollary 11.2.1) yielding

E max
`=1,...,k

∥∥∥∥∥
∑̀

m=1

D
(
Xi

m−1−xE
α(ρ̂

N
m−1)

)
Bi

m

∥∥∥∥∥

4

2

. dE
d∑

j=1

(
k∑

`=1

(
D
(
Xi

`−1−xE
α(ρ̂

N
`−1)

))2
jj
(Bi

`)
2
j

)2

.

Thus, when taking the expectation on both sides of (18) and employing Jensen’s inequality, we can use the latter to obtain

E max
`=0,...,k

∥∥Xi
`

∥∥4
2
. E

∥∥Xi
0

∥∥4
2
+ (∆tλ)4K3

E

k∑

`=1

∥∥Xi
`−1 − xE

α(ρ̂
N
`−1)

∥∥4
2

+ σ4dK E

d∑

j=1

k∑

`=1

(
D
(
Xi

`−1 − xE
α(ρ̂

N
`−1)

))4
jj
(Bi

`)
4
j

. E
∥∥Xi

0

∥∥4
2
+ (∆tλ)4K3

E

k∑

`=1

(∥∥Xi
`−1

∥∥4
2
+
∥∥xE

α(ρ̂
N
`−1)

∥∥4
2

)

+ (∆t)2σ4dK E

d∑

j=1

k∑

`=1

((
Xi

`−1

)4
j
+
(
xE
α(ρ̂

N
`−1)

)4
j

)

.
(
1 + (∆tλ)4K3 + (∆tσ2d)2K

)
E

k∑

`=1

(∥∥Xi
`−1

∥∥4
2
+
∥∥xE

α(ρ̂
N
`−1)

∥∥4
2

)

.
(
1 + λ4(K∆t)4 + σ4d2(K∆t)2

)
E max

`=1,...,k

(∥∥Xi
`−1

∥∥4
2
+
∥∥xE

α(ρ̂
N
`−1)

∥∥4
2

)

≤ C E max
`=1,...,k

(∥∥Xi
`−1

∥∥4
2
+ b21 + b22

∫
‖x‖42 dρ̂N`−1(x)

)

(19)

with a constant C = C(λ, σ, d,K∆t). In the second step we made use of the standard inequality (8) for p = 4 and J = 2,

exploited that Bi
` is independent from D

(
Xi

`−1 − xE
α(ρ̂

N
`−1)

)
for any ` = 1, . . . , k and used that the fourth moment of a

14



How Consensus-Based Optimization can be Interpreted as a Stochastic Relaxation of Gradient Descent

Gaussian random variable B ∼ N (0, 1) is EB4 = 3 (e.g., by recalling that EB4 = d4

dx4MB(x)
∣∣
x=0

, where MB denotes

the moment-generating function of B). Moreover, recall that K∆t denotes the final time horizon, and note that the last step

is due to Lemma D.1. Averaging (19) over i allows to bound

1

N

N∑

i=1

E max
`=0,...,k

∥∥Xi
`

∥∥4
2
≤ C̃

(
1 +

1

N

N∑

i=1

E max
`=1,...,k

∥∥Xi
`−1

∥∥4
2

)
(20)

with a constant C̃ = C̃(λ, σ, d, b1, b2,K∆t). Since E
∫
‖x‖42 dρ̂N0 (x) = 1

N

∑N
i=1 E ‖xi

0‖42, an application of the discrete

variant of Grönwall’s inequality (9) yields the second inequality in

E max
`=0,...,k

∫
‖x‖42 dρ̂N` (x) ≤ 1

N

N∑

i=1

E max
`=0,...,k

∥∥Xi
`

∥∥4
2

≤ C̃k
E

∫
‖x‖42 dρ̂N0 (x) + C̃eC̃(k−1),

(21)

showing that the left-hand side is bounded independently of N , which gives the first bound in the first part of the statement.

Making use thereof in (19) also yields the second part after another application of Grönwall’s inequality. The second part of

the statement follows by noting that an application of Lemma D.1 gives

E max
`=1,...,k

∥∥xCBO
`

∥∥4
2
= E max

`=1,...,k

∥∥xE
α(ρ̂

N
` )
∥∥4
2

≤ 2b21 + 2b22 E max
`=1,...,k

∫
‖x‖42 dρ̂N` (x),

where the last expression is bounded as in (21). Recalling that xCBO
0 = x0 ∼ ρ0 ∈ P4(R

d) and choosing the constant MCBO

large enough for all three estimates to hold with k = K concludes the proof.

D.2. Boundedness of the consensus hopping scheme (10)

Let us recall that the iterates (xCH
k )k=0,...,K of the consensus hopping (CH) scheme (10) are defined by

xCH
k = xE

α(µk), with µk = N
(
xCH
k−1, σ̃

2Id
)
,

xCH
0 = x0.

Lemma D.3 (Boundedness of the CH scheme (10)). Let E ∈ C(Rd) satisfy A1– A3. Moreover, let ρ0 ∈ P4(R
d). Then, for

the random measures (µk)k=1,...,K in (10) it holds

E max
k=1,...,K

∫
‖x‖42 dµk(x) ≤ MCH

with a constant MCH = MCH(σ̃, d, b1, b2,K, ρ0) > 0. Moreover, for the iterates (xCH
k )k=0,...,K of (10) it holds

E max
k=0,...,K

∥∥xCH
k

∥∥4
2
≤ MCH.

Proof. According to the definition of the scheme (10) and with the standard inequality (8) for p = 4 and J = 2, we observe

that for any k = 2, . . . ,K it holds

∫
‖x‖42 dµk(x) =

∫
‖x‖42 dN

(
xCH
k−1, σ̃

2Id
)
(x)

.
∥∥xCH

k−1

∥∥4
2
+

∫
‖x‖42 dN

(
0, σ̃2Id

)
(x)

=
∥∥xE

α(µk−1)
∥∥4
2
+ (d2 + 2d) σ̃4

. b21 + b22

∫
‖x‖42 dµk−1(x) + d2σ̃4,

15
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where for the third step we explicitly computed that for the fourth moment of a multivariate Gaussian distribution it holds∫
‖x‖42 dN (0, Id) (x) = d2 + 2d. Moreover, in the final step we employed Lemma D.1 together with Jensen’s inequality.

Along the same lines we have
∫
‖x‖42 dµ1(x) . ‖x0‖42 + d2σ̃4. An application of the discrete variant of Grönwall’s

inequality (9) therefore allows to obtain

∫
‖x‖42 dµk(x) . b2k2 ‖x0‖42 +

(
b21 + d2σ̃4

)
ecb

2

2
(k−1)

with a generic constant c > 0. Taking the maximum over the iterations k and the expectation w.r.t. the initial condition ρ0
gives the first part of the statement. Recalling that xCH

0 = x0 ∼ ρ0 ∈ P4(R
d), the second part follows after an application

of Lemma D.1, since

E max
`=1,...,k

∥∥xCH
`

∥∥4
2
= E max

`=1,...,k

∥∥xE
α(µ`)

∥∥4
2

≤ 2b21 + 2b22 E max
`=1,...,k

∫
‖x‖42 dµ`(x).

Choosing the constant MCH large enough for either estimate to hold with k = K concludes the proof.

Lemma D.4. Let Y i
k ∼ µk for i = 1, . . . , N and let µ̂N

k = 1
N

∑N
i=1 δY i

k
. Then, under the assumptions of Lemma D.3, for

the empirical random measures (µ̂N
k )k=1,...,K it holds

E max
k=1,...,K

∫
‖x‖42 dµ̂N

k (x) ≤ M̂CH

with a constant M̂CH = M̂CH(σ̃, d, b1, b2,K, ρ0) > 0.

Proof. By definition of the empirical measure µ̂N
k it holds

E max
k=1,...,K

∫
‖x‖42 dµ̂N

k (x) = E max
k=1,...,K

1

N

N∑

i=1

∥∥Y i
k

∥∥4
2
≤ 1

N

N∑

i=1

E max
k=1,...,K

∥∥Y i
k

∥∥4
2
. (22)

Since Y i
k ∼ µk = N

(
xCH
k−1, σ̃

2Id
)

for any k = 1, . . . ,K and i = 1, . . . , N , we can write Y i
k = xCH

k−1 + σ̃Bi
Y,k, where Bi

Y,k

is a standard Gaussian random vector, i.e., Bi
Y,k ∼ N (0, Id). By means of the standard inequality (8) for p = 4 and J = 2

we thus have

E max
k=1,...,K

∥∥Y i
k

∥∥4
2
. E max

k=1,...,K

∥∥xCH
k−1

∥∥4
2
+ σ̃4

E max
k=1,...,K

∥∥Bi
Y,k

∥∥4
2

≤ MCH +Kσ̃4(d2 + 2d),
(23)

where in the last step we employed Lemma D.3 for the first term and bounded the maximum by the sum in the second term

before using again that E‖B‖42 = d2 + 2d for B ∼ N (0, Id). Inserting (23) into (22) yields the claim.

D.3. Boundedness of the minimizing movement scheme (12)

We recall that the iterates (xMMS
k )k=0,...,K of the minimizing movement scheme (MMS) (12) are defined by

xMMS
k = argmin

x∈Rd

Ek(x), with Ek(x) :=
1

2τ

∥∥xMMS
k−1 − x

∥∥2
2
+ E(x),

xMMS
0 = x0.

Lemma D.5 (Boundedness of the MMS (12)). Let E ∈ C(Rd) satisfy A1– A2. Moreover, let ρ0 ∈ P4(R
d). Then, for the

iterates (xMMS
k )k=0,...,K of (12) it holds

E max
k=0,...,K

∥∥xMMS
k

∥∥4
2
≤ MMMS

with a constant MMMS = MMMS(Kτ,C2, ρ0) > 0.
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Proof. Since xMMS
k is the minimizer of Ek, see (12), a comparison with the old iterate xMMS

k−1 yields

1

2τ

∥∥xMMS
k−1 − xMMS

k

∥∥2
2
+ E(xMMS

k ) ≤ E(xMMS
k−1 )

for any k = 1, . . . ,K. Using the standard inequality (8) for p = 2 and J = k, this can be utilized to obtain

∥∥xMMS
k

∥∥2
2
≤ 2

∥∥xMMS
0

∥∥2
2
+ 2K

k∑

`=1

∥∥xMMS
` − xMMS

`−1

∥∥2
2

≤ 2
∥∥xMMS

0

∥∥2
2
+ 4Kτ

k∑

`=1

(
E(xMMS

`−1 )− E(xMMS
` )

)

= 2
∥∥xMMS

0

∥∥2
2
+ 4Kτ

(
E(xMMS

0 )− E(xMMS
k )

)

≤ 2 ‖x0‖22 + 4Kτ (E(x0)− E)
≤ 2 ‖x0‖22 + 4KτC2(1 + ‖x0‖22)
= 2 (1 + 2KτC2) ‖x0‖22 + 4KτC2,

which trivially also holds for k = 0. Taking the square and expectation w.r.t. the initial condition ρ0 on both sides concludes

the proof.

D.4. Boundedness of the implicit version of the CH scheme (11)

Let us recall that the iterates (x̃CH
k )k=0,...,K of the scheme (11) are defined by

x̃CH
k = argmin

x∈Rd

Ẽk(x), with Ẽk(x) :=
1

2τ

∥∥xCH
k−1 − x

∥∥2
2
+ E(x),

x̃CH
0 = x0.

Lemma D.6 (Boundedness of the implicit version of the CH scheme (11)). Let E ∈ C(Rd) satisfy A1– A3. Moreover, let

ρ0 ∈ P4(R
d). Then, for the iterates (x̃CH

k )k=0,...,K of (11) it holds

E max
k=0,...,K

∥∥x̃CH
k

∥∥4
2
≤ M̃CH

with a constant M̃CH = M̃CH(τ, C2,MCH) > 0.

Proof. Since x̃CH
k is the minimizer of Ẽk, see (11), a comparison with xCH

k−1 yields

1

2τ

∥∥xCH
k−1 − x̃CH

k

∥∥2
2
+ E(x̃CH

k ) ≤ E(xCH
k−1).

This can be utilized to obtain

∥∥x̃CH
k

∥∥2
2
= 2

∥∥x̃CH
k − xCH

k−1

∥∥2
2
+ 2

∥∥xCH
k−1

∥∥2
2

≤ 4τ
(
E(xCH

k−1)− E(x̃CH
k )

)
+ 2

∥∥xCH
k−1

∥∥2
2

≤ 4τ
(
E(xCH

k−1)− E
)
+ 2

∥∥xCH
k−1

∥∥2
2

≤ 4τC2

(
1 +

∥∥xCH
k−1

∥∥2
2

)
+ 2

∥∥xCH
k−1

∥∥2
2

= 2 (1 + 2τC2)
∥∥xCH

k−1

∥∥2
2
+ 4τC2.

Taking the square and expectation w.r.t. the initial condition ρ0 on both sides concludes the proof by virtue of Lemma D.3.
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D.5. Boundedness of all numerical schmemes

Remark D.7 (Boundedness of the schemes (4), (10), (11) and (12)). To keep the notation of the main body of the paper

concise, we denote by M the collective moment bound

M = max
{
MCBO,M̃CBO,MCH,M̂CH,M̂MMS,M̃CH

}
, (24)

where MCBO, MCH, M̂CH,M̂MMS, and M̃CH are as defined in Lemmas D.2, D.3, D.4, D.5, and D.6, respectively.

Moreover, M̃CBO = MCBO(1/∆t, σ, d, b1, b2,K∆t,K, ρ0).

E. Proof details for Theorem C.1

Theorem C.1 is centered around the observation that, as λ → 1/∆t in the CBO dynamics (2), the CBO scheme (4) resembles

an implementation of the CH scheme (10) via sampling from the underlying distribution µk and computing the associated

weighted empirical average. Accordingly, the proof of Theorem C.1 consists of three ingredients. First, a stability estimate

for the CBO dynamics (2) w.r.t. the parameter λ, see Lemma E.2. Second, a quantification of the structural difference in the

noise component between the CBO scheme (4) and the CH scheme (10), and third a large deviation bound to control the

sampling error associated with the Monte Carlo approximation of the CH scheme (10), see Lemma E.3.

E.1. Stability of the consensus point (3) w.r.t. the underlying measure

We first recall from (Carrillo et al., 2018, Lemma 3.2) in a slightly modified form a stability estimate for the consensus

point (3) w.r.t. the measure from which it is computed. Loosely speaking, we show that the mapping xE
α : P(Rd) → R

d is

Lipschitz-continuous in the Wasserstein-2 metric.

Lemma E.1 (Stability of the consensus point xE
α). Let E ∈ C(Rd) satisfy A1– A2. Moreover, let %, %′ ∈ P(Rd) be random

measures and define the cutoff function (random variable)

I1
M =

{
1, if max

{∫
‖•‖42 d%,

∫
‖•‖42 d%′

}
≤ M4,

0, else.

Then it holds ∥∥xE
α(%)− xE

α(%
′)
∥∥
2
I1
M ≤ c0W2(%, %

′)I1
M

with a constant c0 = c0(α,C1, C2,M) > 0.

Proof. To start with, we note that under A2 and with Jensen’s inequality it holds

e−αE I1
M

‖ωE
α‖L1(%)

=
I1
M∫

exp (−α(E(x)− E)) d%(x) ≤ I1
M∫

exp
(
−αC2(1 + ‖x‖22)

)
d%(x)

≤ I1
M

exp
(
−αC2(1 +

∫
‖x‖22 d%(x))

) ≤ exp
(
αC2(1 +M2)

)
=: cM .

(25)

An analogous statement can be obtained for the measure %′.

By definition of the consensus point xE
α in (3), it holds for any coupling γ ∈ Π(%, %′) between % and %′ by Jensen’s inequality

∥∥xE
α(%)− xE

α(%
′)
∥∥
2
I1
M ≤

∫∫ ∥∥∥∥∥x
ωE
α(x)

‖ωE
α‖L1(%)

− x′ ωE
α(x

′)

‖ωE
α‖L1(%′)

∥∥∥∥∥
2

dγ(x, x′) I1
M

≤
∫∫ (

‖T1(x, x
′)‖2 + ‖T2(x, x

′)‖2 + ‖T3(x, x
′)‖2

)
dγ(x, x′) I1

M ,

(26)

where the terms T1, T2 and T3 are defined implicitly and bounded as follows. For the first term T1 we have

‖T1(x, x
′)‖2 I1

M = ‖x− x′‖2
ωE
α(x)

‖ωE
α‖L1(%)

I1
M ≤ cM ‖x− x′‖2 I1

M , (27)
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where we utilized (25) in the last step. For the second term T2, with A2 and again (25) we obtain

‖T2(x, x
′)‖2 I1

M = ‖x′‖2
∣∣ωE

α(x)− ωE
α(x

′)
∣∣

‖ωE
α‖L1(%)

I1
M

≤ ‖x′‖2
αe−αEC1(1 + ‖x‖2 + ‖x′‖2) ‖x− x′‖2

‖ωE
α‖L1(%)

I1
M

≤ αcMC1 ‖x′‖2 (1 + ‖x‖2 + ‖x′‖2) ‖x− x′‖2 I1
M .

(28)

Eventually, for the third therm T3 it holds by following similar steps

‖T3(x, x
′)‖2 I1

M = ‖x′‖2 ωE
α(x

′)

∣∣∣
∥∥ωE

α

∥∥
L1(%′)

−
∥∥ωE

α

∥∥
L1(%)

∣∣∣
‖ωE

α‖L1(%)
‖ωE

α‖L1(%′)

I1
M

≤ cM ‖x′‖2
∫∫

αe−αEC1(1 + ‖x‖2 + ‖x′‖2) ‖x− x′‖2 dπ(x, x′)

‖ωE
α‖L1(%)

I1
M

≤ αc2MC1 ‖x′‖2
∫∫

(1 + ‖x‖2 + ‖x′‖2) ‖x− x′‖2 dπ(x, x′) I1
M .

(29)

Collecting the estimates (27) –(29) in (26), we obtain with Cauchy-Schwarz inequality and by exploiting the definition of

I1
M that

∥∥xE
α(%)− xE

α(%
′)
∥∥
2
I1
M ≤ cM (1 + 3αC1(1 + cM )M(1 + 3M))

√∫∫
‖x− x′‖22 dγ(x, x′) I1

M . (30)

Squaring both sides and optimizing over all couplings γ ∈ Π(%, %′) concludes the proof.

E.2. Stability of the CBO dynamics (2) w.r.t. the parameters λ and σ

Let us now show the stability of the CBO dynamics (2) w.r.t. its parameters, in particular, the drift and noise parameters λ
and σ. For this we control in Lemma E.2 below the mismatch of the iterates of the CBO dynamics (2) for different

parameters, however, provided coinciding initialization and discrete Brownian motion paths.

Lemma E.2 (Stability of the CBO dynamics (2)). Let E ∈ C(Rd) satisfy A1– A3. Moreover, let ρ0 ∈ P4(R
d). We denote

by
(
(Xi,1

k )k=0,...,K

)
i=1,...,N

and
(
(Xi,2

k )k=0,...,K

)
i=1,...,N

solutions to (2) with parameters λ1, σ1 and λ2, σ2, respectively.

Furthermore, we write (ρ̂N,1
k )k=0,...,K and (ρ̂N,2

k )k=0,...,K for the associated empirical measures and introduce the cutoff

function (random variable)

I1
M,k =

{
1, if max

{∫
‖•‖42 dρ̂

N,1
k ,

∫
‖•‖42 dρ̂

N,2
k

}
≤ M4,

0, else.
(31)

Then, under the assumption of coinciding initial conditions Xi,1
0 = Xi,2

0 for all i = 1, . . . , N as well as Gaussian random

vectors Bi
k for all k = 1, . . . ,K and all i = 1, . . . , N , it holds

1

N

N∑

i=1

E
∥∥Xi,1

k −Xi,2
k

∥∥2
2
I1
M,k ≤ c1

(
|λ1 − λ2|2 + |σ1 − σ2|2

)
ec2(k−1)

with constants c1 = c1(∆t, d, b1, b2,M) > 0 and c2 = c2(∆t, d, α, λ2, σ2, C1, C2,M) > 0 for all k ≥ 1.

Proof. Let us first remark that the cutoff function I1
M,k defined in (31) is adapted to the natural filtration {Fk}k=0,...,K ,

where Fk denotes the sigma algebra generated by {Bi
`, ` = 1, . . . , k, i = 1, . . . , N}. Now, using the iterative update rule (2)

for Xi,1
k and Xi,2

k with parameters λ1, σ1 and λ2, σ2, respectively, we obtain, by employing the standard inequality (8) for
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p = 2 and J = 5, for their squared norm difference the upper bound

∥∥Xi,1
k −Xi,2

k

∥∥2
2
.
∥∥Xi,1

k−1 −Xi,2
k−1

∥∥2
2
+ (∆t |λ1−λ2|)2

(∥∥Xi,1
k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)

∥∥2
2

)

+ (∆tλ2)
2
(∥∥Xi,1

k−1 −Xi,2
k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)− xE

α(ρ̂
N,2
k−1)

∥∥2
2

)

+ |σ1−σ2|2
(∥∥Xi,1

k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)

∥∥2
2

)∥∥Bi
k

∥∥2
2

+ σ2
2

(∥∥Xi,1
k−1 −Xi,2

k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)− xE

α(ρ̂
N,2
k−1)

∥∥2
2

)∥∥Bi
k

∥∥2
2

.
(
1+(∆tλ2)

2+σ2
2

∥∥Bi
k

∥∥2
2

)(∥∥Xi,1
k−1−Xi,2

k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)−xE

α(ρ̂
N,2
k−1)

∥∥2
2

)

+
(
(∆t |λ1−λ2|)2 + |σ1−σ2|2

∥∥Bi
k

∥∥2
2

)(∥∥Xi,1
k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)

∥∥2
2

)
.

(32)

Since I1
M,k satisfies I1

M,k = I1
M,kI1

M,` for all ` ≤ k and I1
M,k ≤ 1, we obtain from (32) that

∥∥Xi,1
k −Xi,2

k

∥∥2
2
I1
M,k

.
(
1+(∆tλ2)

2+σ2
2

∥∥Bi
k

∥∥2
2

)(∥∥Xi,1
k−1 −Xi,2

k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)− xE

α(ρ̂
N,2
k−1)

∥∥2
2

)
I1
M,k−1

+
(
(∆t |λ1−λ2|)2 + |σ1−σ2|2

∥∥Bi
k

∥∥2
2

)(∥∥Xi,1
k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)

∥∥2
2

)
I1
M,k−1.

With the random variables Xi,1
k−1, Xi,2

k−1, xE
α(ρ̂

N,1
k−1), x

E
α(ρ̂

N,2
k−1) and I1

M,k−1 being Fk−1-measurable, taking the expectation

w.r.t. the sampling of the random vectors Bi
k, i = 1, . . . , N , i.e., the conditional expectation Ek = E [ • |Fk−1], yields

Ek

∥∥Xi,1
k −Xi,2

k

∥∥2
2
I1
M,k

.
(
1+(∆tλ2)

2+d∆tσ2
2

) (∥∥Xi,1
k−1 −Xi,2

k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)− xE

α(ρ̂
N,2
k−1)

∥∥2
2

)
I1
M,k−1

+
(
(∆t |λ1−λ2|)2 + d∆t |σ1−σ2|2

)(∥∥Xi,1
k−1

∥∥2
2
+
∥∥xE

α(ρ̂
N,1
k−1)

∥∥2
2

)
I1
M,k−1,

where we used the fact that Ek‖Bi
k‖22 = d∆t. Taking now the total expectation E on both sides, we have by tower property

(law of total expectation)

E
∥∥Xi,1

k −Xi,2
k

∥∥2
2
I1
M,k

.
(
1+(∆tλ2)

2+d∆tσ2
2

) (
E
∥∥Xi,1

k−1−Xi,2
k−1

∥∥2
2
I1
M,k−1 + E

∥∥xE
α(ρ̂

N,1
k−1)−xE

α(ρ̂
N,2
k−1)

∥∥2
2
I1
M,k−1

)

+
(
(∆t |λ1−λ2|)2 + d∆t |σ1−σ2|2

)(
E
∥∥Xi,1

k−1

∥∥2
2
I1
M,k−1 + E

∥∥xE
α(ρ̂

N,1
k−1)

∥∥2
2
I1
M,k−1

)
.

(33)

As a consequence of the stability estimate for the consensus point, Lemma E.1, it holds for a constant c0 =
c0(α,C1, C2,M) > 0 that

E
∥∥xE

α(ρ̂
N,1
k−1)− xE

α(ρ̂
N,2
k−1)

∥∥2
2
I1
M,k−1 ≤ c0EW

2
2

(
ρ̂N,1
k−1, ρ̂

N,2
k−1

)
I1
M,k−1

≤ c0
1

N

N∑

i=1

E
∥∥Xi,1

k−1 −Xi,2
k−1

∥∥2
2
I1
M,k−1,

where we chose π = 1
N

∑N
i=1 δXi,1

k−1

⊗ δXi,2

k−1

as viable transportation plan in Definition (7) to upper bound the Wasserstein

distance in the second step. Utilizing this when averaging (33) over i gives

1

N

N∑

i=1

E
∥∥Xi,1

k −Xi,2
k

∥∥2
2
I1
M,k . (1+c0)

(
1+(∆tλ2)

2+d∆tσ2
2

) 1

N

N∑

i=1

E
∥∥Xi,1

k−1−Xi,2
k−1

∥∥2
2
I1
M,k−1

+
(
(∆t |λ1−λ2|)2 + d∆t |σ1−σ2|2

) (
b1 + (1 + b2)M

2
)
,

(34)
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where we employed Lemma D.1 together with the definition of the cutoff function I1
M,k−1 to obtain the bound in the second

line of (34). Exploiting that Xi,1
0 = Xi,2

0 for i = 1, . . . , N by assumption, we conclude the proof by an application of the

discrete variant of Grönwall’s inequality (9), which proves that for all k ≥ 1 it holds

1

N

N∑

i=1

E
∥∥Xi,1

k −Xi,2
k

∥∥2
2
I1
M,k ≤ c1

(
(∆t |λ1 − λ2|)2 + d∆t |σ1 − σ2|2

)
ec2(k−1)

with constants c1 = c1(b1, b2,M) > 0 and c2 = c2(c0,∆t, d, λ2, σ2) > 0.

E.3. A large deviation bound for the consensus point (3)

For a given measure % ∈ P(Rd) and a set of N i.i.d. random variables Y i ∼ % with empirical random measure %̂N =
1
N

∑N
i=1 δY i , one expects that under certain regularity assumptions it holds by the law of large numbers

xE
α(%̂

N )
a.s.−−→ xE

α(%) as N → ∞.

This is made rigorous in the subsequent lemma, which is based on arguments from (Fornasier et al., 2020, Lemma 3.1) and

(Fornasier et al., 2021b, Lemma 23).

Lemma E.3 (Large deviation bound for the consensus point xE
α). Let E ∈ C(Rd) satisfy A1– A2. Moreover, for k =

1, . . . ,K, let µk ∈ P(Rd) be a random measure, let (Y i
k )i=1,...,N be N i.i.d. random variables distributed according to µk,

denote by µ̂N
k the empirical random measure µ̂N

k = 1
N

∑N
i=1 δY i

k
and define the cutoff function (random variable)

I2
M,k =

{
1, if max

{∫
‖•‖42 dµ̂N

k ,
∫
‖•‖42 dµk

}
≤ M4,

0, else.
(35)

Then it holds

max
k=1,...,K

E
∥∥xE

α(µ̂
N
k )− xE

α(µk)
∥∥2
2
I2
M,k ≤ c3N

−1

with a constant c3 = c3(α, b1, b2, C2,M) > 0.

Proof. To start with, we note that under A2 and with Jensen’s inequality it holds

e−αE I2
M,k

1
N

∑N
j=1 ω

E
α(Y

j
k )

=
I2
M,k

1
N

∑N
j=1 exp

(
−α(E(Y j

k )− E)
) ≤

I2
M,k

1
N

∑N
j=1 exp

(
−αC2(1 + ‖Y j

k ‖22)
)

≤
I2
M,k

exp
(
−αC2(1 +

1
N

∑N
j=1 ‖Y

j
k ‖22)

) ≤ exp
(
αC2(1 +M2)

)
=: cM .

(36)

By definition of the consensus point xE
α in (3), it holds

∥∥xE
α(µ̂

N
k )− xE

α(µk)
∥∥
2
I2
M,k =

∥∥∥∥∥
N∑

i=1

Y i
k

ωE
α(Y

i
k )∑N

j=1 ω
E
α(Y

j
k )

−
∫

x
ωE
α(x)

‖ωE
α‖L1(µk)

dµk(x)

∥∥∥∥∥
2

I2
M,k

≤
(
‖T1‖2 + ‖T2‖2

)
I2
M,k,

(37)

where the terms T1 and T2 are defined implicitly and bounded as follows. For the first term T1 we have

‖T1‖2 I2
M,k =

∥∥∥∥∥
N∑

i=1

Y i
k

ωE
α(Y

i
k )∑N

j=1 ω
E
α(Y

j
k )

−
∫

x
ωE
α(x)

1
N

∑N
j=1 ω

E
α(Y

j
k )

dµk(x)

∥∥∥∥∥
2

I2
M,k

=
I2
M,k

1
N

∑N
j=1 ω

E
α(Y

j
k )

∥∥∥∥∥
1

N

N∑

i=1

Y i
kω

E
α(Y

i
k )−

∫
xωE

α(x) dµk(x)

∥∥∥∥∥
2

≤ cMeαE

∥∥∥∥∥
1

N

N∑

i=1

Y i
kω

E
α(Y

i
k )−

∫
xωE

α(x) dµk(x)

∥∥∥∥∥
2

,

(38)
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where we utilized (36) in the last step. Similarly, for the second term T2 we have

‖T2‖2 I2
M,k =

∥∥∥∥∥

∫
x

ωE
α(x)

1
N

∑N
j=1 ω

E
α(Y

j
k )

dµk(x)−
∫

x
ωE
α(x)

‖ωE
α‖L1(µk)

dµk(x)

∥∥∥∥∥
2

I2
M,k

=
I2
M,k

1
N

∑N
j=1 ω

E
α(Y

j
k )

∥∥xE
α(µk)

∥∥
2

∣∣∣∣∣∣
1

N

N∑

j=1

ωE
α(Y

j
k )−

∫
ωE
α(x) dµk(x)

∣∣∣∣∣∣
2

≤ cMeαE (b1 + b2M)

∣∣∣∣∣∣
1

N

N∑

j=1

ωE
α(Y

j
k )−

∫
ωE
α(x) dµk(x)

∣∣∣∣∣∣
2

,

(39)

where the last step involved additionally Lemma D.1. Let us now introduce the random variables

Zi
k := Y i

kω
E
α(Y

i
k )−

∫
xωE

α(x) dµk(x) and zik := ωE
α(Y

i
k )−

∫
ωE
α(x) dµk(x),

respectively, which have zero expectation, and are i.i.d. for i = 1, . . . , N . With these definitions as well as the bounds (38)

and (39) we obtain

E ‖T1‖22 I2
M,k ≤ c2Me2αEE

∥∥∥∥∥
1

N

N∑

i=1

Zi
k

∥∥∥∥∥

2

2

I2
M,k = c2Me2αE

1

N2
E

N∑

i=1

N∑

j=1

〈
Zi
k, Z

j
k

〉
I2
M,k

= c2Me2αE
1

N2
E

N∑

i=1

∥∥Zi
k

∥∥2
2
I2
M,k ≤ 4c2MM2 1

N

(40)

and, analogously,

E ‖T2‖22 I2
M,k ≤ c2Me2αE (b1 + b2M)

2 1

N2
E

N∑

i=1

∥∥zik
∥∥2
2
I2
M,k ≤ 4c2M (b1 + b2M)

2 1

N
. (41)

The last inequalities of (40) and (41) are due to the estimates

E
1

N

N∑

i=1

∥∥Zi
k

∥∥2
2
I2
M,k ≤ 2E

1

N

N∑

i=1

∥∥Y i
kω

E
α(Y

i
k )
∥∥2
2
I2
M,k + 2E

∥∥∥∥
∫

xωE
α(x) dµk(x)

∥∥∥∥
2

2

I2
M,k

≤ 2e−2αE
E
1

N

N∑

i=1

∥∥Y i
k

∥∥2
2
I2
M,k + 2e−2αE

E

∫
‖x‖22 dµk(x) I2

M,k

≤ 4e−2αEM2

and, similarly,

E
∣∣z1k
∣∣2
2
I2
M,k ≤ 4e−2αE .

Combining (40) and (41) concludes the proof.

Remark E.4. Alternatively to the explicit computations of Lemma E.3, the stability estimate for the consensus point,

Lemma E.1, would allow to obtain

max
k=1,...,K

E
∥∥xE

α(µ̂
N
k )− xE

α(µk)
∥∥2
2
I2
M,k ≤ c0 max

k=1,...,K
EW 2

2 (µ̂
N
k , µk) I2

M,k,

where EW 2
2 (µ̂

N
k , µk) can be controlled by employing (Fournier & Guillin, 2015, Theorem 1). This, however, only gives a

quantitative convergence rate of order O(N−2/d), which is affected by the curse of dimensionality. The convergence rate

O(N−1) obtained in Lemma E.3 matches the one to be expected from Monte Carlo sampling.
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E.4. Proof of Theorem C.1

We now have all necessary tools at hand to present the detailed proof of Theorem C.1.

Proof of Theorem C.1. We notice that for the choice λ = 1/∆t the iterative update rule of the particles of the CBO

dynamics (2) becomes

X̃i
k = xE

α(ρ̃
N
k−1) + σD

(
X̃i

k−1 − xE
α(ρ̃

N
k−1)

)
Bi

k, (42)

where ρ̃Nk = 1
N

∑N
i=1 δX̃i

k

. In this case, the associated CBO scheme (4) reads

x̃CBO
k = xE

α(ρ̃
N
k ) with ρ̃Nk =

1

N

N∑

i=1

δX̃i
k

, where X̃i
k ∼ N

(
x̃CBO
k−1 ,∆tσ2D

(
X̃i

k−1 − x̃CBO
k−1

)2)
,

x̃CBO
0 = x0,

(43)

which resembles the CH dynamics (10) with the difference in the underlying measure on which basis the consensus point (3)

is computed. Let us further denote by µ̂N
k the empirical measure µ̂N

k = 1
N

∑N
i=1 δY i

k
, where Y i

k ∼ µk = N
(
xCH
k−1, σ̃

2Id
)

for i = 1, . . . , N , i.e., Y i
k = xCH

k−1 + σ̃Bi
Y,k with Bi

Y,k being a standard Gaussian random vector.

To obtain the probabilistic formulation of the statement, let us denote the underlying probability space over which all

considered random variables get their realizations by (Ω,F ,P) and introduce the subset ΩM of Ω of suitably bounded

random variables according to

ΩM :=

{
ω ∈ Ω : max

k=0,...,K
max

{∫
‖•‖42 dρ̂Nk ,

∫
‖•‖42 dρ̃Nk ,

∫
‖•‖42 dµk,

∫
‖•‖42 dµ̂N

k

}
≤ M4

}
.

For the associated cutoff function (random variable) we write 1ΩM
. Moreover, let us define the cutoff functions

IM,k =

{
1, if max

{∫
‖•‖42 dρ̂Nk ,

∫
‖•‖42 dρ̃Nk ,

∫
‖•‖42 dµk,

∫
‖•‖42 dµ̂N

k

}
≤ M4 for all ` ≤ k,

0, else,
(44)

which are adapted to the natural filtration and satisfy 1ΩM
≤ IM,k as well as IM,k = IM,kIM,` for all ` ≤ k.

We can decompose the expected squared discrepancy E
∥∥xCBO

k − xCH
k

∥∥2
2
1ΩM

between the CBO scheme (4) and the CH

scheme (10) as

E
∥∥xCBO

k − xCH
k

∥∥2
2
IM,k ≤ 2E

∥∥xCBO
k − x̃CBO

k

∥∥2
2
IM,k + 2E

∥∥x̃CBO
k − xCH

k

∥∥2
2
IM,k. (45)

In what follows we individually bound the two terms on the right-hand side of (45).

First term: Let us start with the term E
∥∥xCBO

k − x̃CBO
k

∥∥2
2
IM,k, which we bound by combining the stability estimate

for the consensus point, Lemma E.1, with Lemma E.2, a stability estimate for the underlying CBO dynamics (2) w.r.t. its

parameters λ and σ. Denoting the auxiliary cutoff function defined in (31) in the setting ρ̂N,1
k = ρ̂Nk and ρ̂N,2

k = ρ̃Nk by

I1
M,k, we have due to Lemma E.1 the estimate

E
∥∥xCBO

k − x̃CBO
k

∥∥2
2
IM,k = E

∥∥xE
α(ρ̂

N
k )− xE

α(ρ̃
N
k )
∥∥2
2
IM,k

≤ E
∥∥xE

α(ρ̂
N
k )− xE

α(ρ̃
N
k )
∥∥2
2
I1
M,k ≤ c0EW

2
2 (ρ̂

N
k , ρ̃Nk ) I1

M,k

(46)

with a constant c0 = c0(α,C1, C2,M) > 0. In the first inequality of (46) we exploited IM,k ≤ I1
M,k. The Wasserstein

distance appearing on the right-hand side of (46) can be upper bounded by choosing π = 1
N

∑N
i=1 δXi

k
⊗ δX̃i

k

as viable

transportation plan in Definition (7). This constitutes the first inequality in the estimate

EW 2
2 (ρ̂

N
k , ρ̃Nk ) I1

M,k ≤ 1

N

N∑

i=1

E
∥∥Xi

k − X̃i
k

∥∥2
2
I1
M,k

≤ c1

(
|λ1 − λ2|2 + |σ1 − σ2|2

)
ec2(k−1) ≤ c1

∣∣∣∣λ− 1

∆t

∣∣∣∣
2

ec2(k−1),

(47)
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whereas the second step is a consequence of Lemma E.2 applied with λ1 = λ, σ1 = σ and λ2 = 1/∆t, σ2 = σ as exploited

in the third step. Hence, the constants are c1 = c1(∆t, d, b1, b2,M) > 0 and c2 = c2(∆t, d, α, λ, σ, C1, C2,M) > 0.

Second term: To control the term E
∥∥x̃CBO

k − xCH
k

∥∥2
2
IM,k we start by decomposing it according to

E
∥∥x̃CBO

k − xCH
k

∥∥2
2
IM,k ≤ 2E

∥∥x̃CBO
k − xE

α(µ̂
N
k )
∥∥2
2
IM,k + 2E

∥∥xE
α(µ̂

N
k )− xCH

k

∥∥2
2
IM,k, (48)

where µ̂N
k is as introduced at the beginning of the proof. For the first summand in (48) the stability estimate for the consensus

point, Lemma E.1, gives

E
∥∥x̃CBO

k − xE
α(µ̂

N
k )
∥∥2
2
IM,k = E

∥∥xE
α(ρ̃

N
k )− xE

α(µ̂
N
k )
∥∥2
2
IM,k

≤ c0EW
2
2 (ρ̃

N
k , µ̂N

k ) IM,k

(49)

with a constant c0 = c0(α,C1, C2,M) > 0. By choosing π = 1
N

∑N
i=1 δX̃i

k

⊗ δY i
k

as viable transportation plan in

Definition (7), we can further bound

EW 2
2 (ρ̃

N
k , µ̂N

k ) IM,k ≤ 1

N

N∑

i=1

E
∥∥X̃i

k − Y i
k

∥∥2
2
IM,k (50)

and since X̃i
k ∼ N

(
x̃CBO
k−1 ,∆tσ2D(X̃i

k−1 − x̃CBO
k−1 )2

)
and Y i

k ∼ N
(
xCH
k−1, σ̃

2Id
)

we have

1

N

N∑

i=1

E
∥∥X̃i

k − Y i
k

∥∥2
2
IM,k ≤ 2E

∥∥x̃CBO
k−1 − xCH

k−1

∥∥2
2
IM,k−1

+
4

N

N∑

i=1

(
σ2

E
∥∥D
(
X̃i

k−1 − x̃CBO
k−1

)
Bi

k

∥∥2
2
IM,k−1 + σ̃2

E
∥∥Bi

Y,k

∥∥2
2

)

≤ 2E
∥∥x̃CBO

k−1 − xCH
k−1

∥∥2
2
IM,k−1 + 8σ2∆t

(
b1 + (1 + b2)M

2
)
+ 4σ̃2.

(51)

Note that in the last step we exploited the definition of the cutoff function IM,k, which allowed to derive the bound

1

N

N∑

i=1

E
∥∥D
(
X̃i

k−1 − x̃CBO
k−1

)
Bi

k

∥∥2
2
IM,k−1 ≤ 2

N

N∑

i=1

E

(∥∥X̃i
k−1

∥∥2
2
+
∥∥x̃CBO

k−1

∥∥2
2

)∥∥Bi
k

∥∥2
2
IM,k−1

≤ 2E
∥∥x̃CBO

k−1

∥∥2
2
IM,k−1 +

2

N

N∑

i=1

E
∥∥X̃i

k−1

∥∥2
2
IM,k−1

≤ 2
(
b1 + (1 + b2)M

2
)

by using Lemma D.1 and the fact that Bi
k ∼ N (0,∆tId) is independent from X̃i

k−1 and x̃CBO
k−1 . Inserting (51) into (50) and

this into (49) afterwards, we are left with

E
∥∥x̃CBO

k − xE
α(µ̂

N
k )
∥∥2
2
IM,k ≤ c

(
E
∥∥x̃CBO

k−1 − xCH
k−1

∥∥2
2
IM,k−1 + σ2∆t+ σ̃2

)
(52)

with a constant c = c(c0, b1, b2,M) > 0. For the second summand in (48) we have by Lemma E.3

E
∥∥xE

α(µ̂
N
k )− xCH

k

∥∥2
2
IM,k ≤ E

∥∥xE
α(µ̂

N
k )− xE

α(µk)
∥∥2
2
I2
M,k

≤ c3N
−1,

(53)

with c3 = c3(α, b1, b2, C2,M) > 0 and where I2
M,k is an auxiliary cutoff function as defined in (35). Combining (52) with

(53) we arrive for (48) at

E
∥∥x̃CBO

k − xCH
k

∥∥2
2
IM,k ≤ cE

∥∥x̃CBO
k−1 − xCH

k−1

∥∥2
2
IM,k−1 + cσ2∆t+ cσ̃2 + c3N

−1. (54)
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An application of the discrete variant of Grönwall’s inequality (9) shows that

E
∥∥x̃CBO

k − xCH
k

∥∥2
2
IM,k ≤ ckE

∥∥x̃CBO
0 − xCH

0

∥∥2
2
+
(
cσ2∆t+ cσ̃2 + c3N

−1
)
ec(k−1), (55)

where the first term vanishes as both schemes are initialized with x0.

Concluding step: Collecting the estimates (46) combined with (47), and (55) yields for (45) the bound

E
∥∥xCBO

k − xCH
k

∥∥2
2
1ΩM

. c0c1

∣∣∣∣λ− 1

∆t

∣∣∣∣
2

ec2(k−1) +
(
cσ2∆t+ cσ̃2 + c3N

−1
)
ec(k−1)

≤ C

(∣∣∣∣λ− 1

∆t

∣∣∣∣
2

+ σ2∆t+ σ̃2 + c3N
−1

)
,

(56)

with a constant C = C(∆t, d, α, λ, σ, b1, b2, C1, C2,K,M) > 0. Observe that we additionally used 1ΩM
≤ IM,k as

observed at the beginning.

Probabilistic formulation: We first note that with Markov’s inequality we have the estimate

P
(
Ωc

M

)
= P

(
max

k=0,...,K
max

{∫
‖•‖42 dρ̂Nk ,

∫
‖•‖42 dρ̃Nk ,

∫
‖•‖42 dµk,

∫
‖•‖42 dµ̂N

k

}
> M4

)

≤ 1

M4

(
E max

k=0,...,K

∫
‖•‖42 dρ̂Nk + E max

k=0,...,K

∫
‖•‖42 dρ̃Nk

+ E max
k=0,...,K

∫
‖•‖42 dµk + E max

k=0,...,K

∫
‖•‖42 dµ̂N

k

)

≤ 1

M4

(
MCBO + M̃CBO +MCH + M̂CH

)
,

where the last inequality is due to Lemmas D.2, D.3 and D.4. Here, M̃CBO represents the constant MCBO from Lemma D.2

in the setting where λ = 1/∆t, i.e., M̃CBO = MCBO(1/∆t, σ, d, b1, b2,K∆t,K, ρ0). Thus, for any δ ∈ (0, 1/2), a

sufficiently large choice M = M(δ−1,MCBO,M̃CBO,MCH,M̂CH) allows to ensure P
(
Ωc

M

)
≤ δ. To conclude the

proof, let us denote by Kε ⊂ Ω the set, where (13) does not hold and abbreviate

ε = ε−1C

(∣∣∣∣λ− 1

∆t

∣∣∣∣
2

+ σ2∆t+ σ̃2 + c3N
−1

)
.

For the probability of this set we can estimate

P
(
Kε

)
= P

(
Kε ∩ ΩM

)
+ P

(
Kε ∩ Ωc

M

)
≤ P

(
Kε

∣∣ΩM

)
P
(
ΩM

)
+ P

(
Ωc

M

)

≤ P
(
Kε

∣∣ΩM

)
+ δ ≤ ε−1

E

[∥∥xCBO
k − xCH

k

∥∥2
2

∣∣∣ΩM

]
+ δ,

(57)

where the last step is due to Markov’s inequality. By definition of the conditional expectation we further have

E

[∥∥xCBO
k − xCH

k

∥∥2
2

∣∣∣ΩM

]
≤ 1

P
(
ΩM

)E
∥∥xCBO

k − xCH
k

∥∥2
2
1ΩM

≤ 2E
∥∥xCBO

k − xCH
k

∥∥2
2
1ΩM

.

Inserting now the expression from (56) concludes the proof.

F. Proof details for Proposition C.2 and Theorem C.3

Proposition C.2 and Theorem C.3 are centered around the observation that the CH scheme (10) behaves gradient-like.

To establish this, Proposition C.2 exploits, by using the quantitative nonasymptotic Laplace principle (see Section F.1

and in particular Proposition F.2 for a review of (Fornasier et al., 2021b, Proposition 18)), that one step of the implicit

CH scheme (11) can be recast into the computation of a consensus point xẼ
α for an objective function of the form

Ẽ(x) = 1
2τ ‖ • − x‖22 + E(x). To prove Theorem C.3, this is combined with a stability argument for the MMS (12), which

relies on the Λ-convexity of E (Assumption A4).
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F.1. A quantitative nonasymptotic Laplace principle

The Laplace principle (Dembo & Zeitouni, 1998; Miller, 2006) asserts that for any absolutely continuous probability

measure % ∈ P(Rd) it holds

lim
α→∞

(
− 1

α
log

(∫
exp

(
−αẼ(x)

)
d%(x)

))
= inf

x∈supp(%)
Ẽ(x).

This suggests that, as α → ∞, the Gibbs measure ηẼα = ωẼ
α%/‖ωẼ

α‖L1(%) converges to a discrete probability distribution

(i.e., a convex combination of Dirac measures) supported on the set of global minimizers of Ẽ . However, even in the case

that such minimizer is unique, it does not permit to quantify the proximity of xẼ
α(%) =

∫
x dηẼα (see also Equation (3)) to

the minimizer of Ẽ without the following assumption (see also Remark B.1).

Definition F.1 (Inverse continuity property). A function Ẽ ∈ C(Rd) satisfies the `2-inverse continuity property globally if

there exist constants η, ν > 0 such that

‖x− x̃∗‖2 ≤ 1

η

(
Ẽ(x)− Ẽ

)ν
for all x ∈ R

d, (58)

where x̃∗ ∈ R
d denotes the unique global minimizer of Ẽ with objective value Ẽ := infx∈Rd Ẽ(x).

As elaborated on in Remark B.1 for the (`∞-)inverse continuity property, it is usually sufficient if (58) holds locally around

the global minimizer x̃∗. In the following Proposition F.2, however, we recall the quantitative Laplace principle in the

slightly more specific form, where the `2-inverse continuity property holds globally as required by Definition F.1. For the

general version, namely in the case of functions which satisfy (58) only on an `2-ball around x̃∗ (see (Fornasier et al., 2021b,

Definition 8 (A2)) for the details), we refer to (Fornasier et al., 2021b, Proposition 18).

Proposition F.2 (Quantitative Laplace principle). Let Ẽ ∈ C(Rd) satisfy the `2-inverse continuity property in form of

Definition F.1. Moreover, let % ∈ P(Rd). For any r > 0 define Ẽr := supx∈Br(x̃∗) Ẽ(x)− Ẽ . Then, for fixed α > 0 it holds

for any r, q > 0 that

∥∥xẼ
α(%)− x̃∗

∥∥
2
≤
(
q + Ẽr

)ν

η
+

exp(−αq)

%(Br(x̃∗))

∫
‖x− x̃∗‖2 d%(x). (59)

Proof. W.l.o.g. we may assume Ẽ = 0 since a constant offset to Ẽ neither affects the definition of the consensus point in (3)

nor the quantities appearing on the right-hand side of (59).

By Markov’s inequality it holds ‖exp(−αẼ)‖L1(%) ≥ a%
({

x ∈ R
d : exp(−αẼ(x)) ≥ a

})
for any a > 0. With the choice

a = exp(−αẼr) and noting that

%
({

x ∈ R
d : exp(−αẼ(x)) ≥ exp(−αẼr)

})
= %

({
x ∈ R

d : Ẽ(x) ≤ Ẽr
})

≥ %(Br(x̃
∗)),

we obtain ‖exp(−αẼ)‖L1(%) ≥ exp(−αẼr)%(Br(x̃
∗)). Now let r̃ ≥ r > 0. With the definition of the consensus point

in (3) and by Jensen’s inequality we can decompose

∥∥xẼ
α(%)− x̃∗

∥∥
2
≤
∫

Br̃(x̃∗)

‖x− x̃∗‖2
exp

(
−αẼ(x)

)
∥∥exp(−αẼ)

∥∥
L1(%)

d%(x)

+

∫

(Br̃(x̃∗))c
‖x− x̃∗‖2

exp
(
−αẼ(x)

)
∥∥exp(−αẼ)

∥∥
L1(%)

d%(x).

The first term is bounded by r̃ since ‖x− x̃∗‖2 ≤ r̃ for all x ∈ Br̃(x̃
∗). For the second term we use the formerly derived
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‖exp(−αẼ)‖L1(%) ≥ exp(−αẼr)%(Br(x̃
∗)) to get

∫

(Br̃(x̃∗))c
‖x− x̃∗‖2

exp
(
−αẼ(x)

)
∥∥exp(−αẼ)

∥∥
L1(%)

d%(x)

≤ 1

exp(−αẼr)%(Br(x̃∗))

∫

(Br̃(x̃∗))c
‖x− x̃∗‖2 exp

(
−αẼ(x)

)
d%(x)

≤
exp

(
−α

(
infx∈(Br̃(x̃∗))c Ẽ(x)− Ẽr

))

%(Br(x̃∗))

∫
‖x− x̃∗‖2 d%(x).

Thus, for any r̃ ≥ r > 0 we obtain

∥∥xẼ
α(%)− x̃∗

∥∥
2
≤ r̃ +

exp
(
−α

(
infx∈(Br̃(x̃∗))c Ẽ(x)− Ẽr

))

%(Br(x̃∗))

∫
‖x− x̃∗‖2 d%(x). (60)

We now choose r̃ =
(
q + Ẽr

)ν
/η, which satisfies r̃ ≥ r, since (58) with Ẽ = 0 implies

r̃ =

(
q + Ẽr

)ν

η
≥ Ẽν

r

η
=

(
supx∈Br(x̃∗) Ẽ(x)

)ν

η
≥ sup

x∈Br(x̃∗)

‖x− x̃∗‖2 = r.

Using again (58) with Ẽ = 0 we thus have

inf
x∈(Br̃(x̃∗))c

Ẽ(x)− Ẽr ≥ (ηr̃)1/ν − Ẽr = q + Ẽr − Ẽr = q.

Inserting this and the definition of r̃ into (60) gives the statement.

F.2. The auxiliary function Ẽk
Let us now show that the function Ẽk(x) := 1

2τ

∥∥xCH
k−1 − x

∥∥2
2
+ E(x), which appears later in the proofs of Proposition C.2

and Theorem C.3, satisfies the `2-inverse continuity property in form of Definition F.1 if E is Λ-convex and the parameter τ
sufficiently small. As we discuss in Remark F.4 below, the condition on the parameter τ vanishes if E is convex, i.e., Λ ≥ 0.

Lemma F.3 (Ẽk satisfies the `2-inverse continuity property). Let Ẽk be defined as above with τ > 0 and with E ∈ C(Rd)

satisfying A4. Moreover, if Λ < 0, assume further that τ < 1/(−Λ). Then, Ẽk satisfies the `2-inverse continuity property (58)

with parameters

ν =
1

2
and η =

√
1

2τ
+

Λ

2
.

I.e., denoting the unique global minimizer of Ẽk by x̃CH
k , it holds

∥∥x− x̃CH
k

∥∥
2
≤ 1

η

(
Ẽk(x)− Ẽk(x̃CH

k )
)ν

for all x ∈ R
d. (61)

Proof. We first notice that Ẽk is 2η2=
(
1+Λτ

τ

)
-strongly convex (2η2 > 0 by assumption), since

Ẽk(x)−
1

2

(
1 + Λτ

τ

)
‖x‖22 =

1

2τ

(∥∥xCH
k−1 − x

∥∥2
2
− ‖x‖22

)
+ E(x)− Λ

2
‖x‖22

=
1

2τ

(∥∥xCH
k−1

∥∥2
2
− 2

〈
xCH
k−1, x

〉)

︸ ︷︷ ︸
convex since linear

+ E(x)− Λ

2
‖x‖22

︸ ︷︷ ︸
convex by A4
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is convex by being the sum of two convex functions. By strong convexity of Ẽk, x̃CH
k exists, is unique and for all ξ ∈ [0, 1] it

holds

1

2

(
1 + Λτ

τ

)
ξ(1− ξ)

∥∥x− x̃CH
k

∥∥2
2
≤ ξẼk(x) + (1− ξ)Ẽk(x̃CH

k )− Ẽk(ξx+ (1− ξ)x̃CH
k )

≤ ξ
(
Ẽk(x)− Ẽk(x̃CH

k )
)
,

where we used in the last inequality that x̃CH
k minimizes Ẽk. Dividing both sides by ξ, letting ξ → 0 and reordering the

inequality gives the result.

Remark F.4. In the case that E is Λ-convex with Λ < 0 (i.e., potentially nonconvex), Lemma F.3 requires that the parameter τ
is sufficiently small, in order to ensure that Ẽk is strongly convex and therefore has a unique global minimizer x̃CH

k . On the

other hand, if E is convex, i.e., Λ ≥ 0, Ẽk is strongly convex and therefore such constraint is not necessary, i.e., τ can be

chosen arbitrarily.

Next, we give technical estimates on the quantities (Ẽk)r, νk
(
Br(x̃

CH
k )

)
and

∫ ∥∥x− x̃CH
k

∥∥
2
dνk(x), which appear when

applying Proposition F.2 in the setting of the function Ẽk and the probability measure νk = N
(
xCH
k−1, 2σ̃

2Id
)
. This allows

to keep the proof of Proposition C.2 more concise.

Lemma F.5. Let Ẽk ∈ C(Rd) be as defined above with E ∈ C(Rd) satisfying A2. Then for the expressions (Ẽk)r,

νk
(
Br(x̃

CH
k )

)
and

∫ ∥∥x− x̃CH
k

∥∥
2
dνk(x) appearing in Equation (59) the following estimates hold. Namely,

(Ẽk)r ≤
(

1

2τ

(
r + 4τC1

(∥∥xCH
k−1

∥∥
2
+
∥∥x̃CH

k

∥∥
2

))
+ C1

(
1 + r + 2

∥∥x̃CH
k

∥∥
2

))
r,

νk
(
Br(x̃

CH
k )

)
≥ 1

(2σ̃)d
exp

(
− 1

2σ̃2

(
r2+12τ2C2

1

(
1 +

∥∥xCH
k−1

∥∥2
2
+
∥∥x̃CH

k

∥∥2
2

))) 1

Γ
(
d
2+1

)rd,
∫ ∥∥x− x̃CH

k

∥∥
2
dνk(x) ≤ 2τC1

(
1 +

∥∥xCH
k−1

∥∥
2
+
∥∥x̃CH

k

∥∥
2

)
+
√
2dσ̃.

Proof. Let us start by investigating the expressions (Ẽk)r, νk
(
Br(x̃

CH
k )

)
and

∫ ∥∥x− x̃CH
k

∥∥
2
dνk(x) individually.

Term (Ẽk)r: By definition (see Proposition F.2) and under A2 it holds

(Ẽk)r = sup
x∈Br(x̃CH

k
)

Ẽk(x)− Ẽk(x̃CH
k )

≤ 1

2τ
sup

x∈Br(x̃CH

k
)

(∥∥xCH
k−1 − x

∥∥2
2
−
∥∥xCH

k−1 − x̃CH
k

∥∥2
2

)
+ sup

x∈Br(x̃CH

k
)

E(x)− E(x̃CH
k )

≤ 1

2τ

(
r + 2

∥∥xCH
k−1 − x̃CH

k

∥∥
2

)
r + C1

(
1 + r + 2

∥∥x̃CH
k

∥∥
2

)
r

≤
(

1

2τ

(
r + 2

∥∥xCH
k−1 − x̃CH

k

∥∥
2

)
+ C1

(
1 + r + 2

∥∥x̃CH
k

∥∥
2

))
r.

Term νk
(
Br(x̃

CH
k )

)
: Using the density of the multivariate normal distribution νk = N

(
xCH
k−1, 2σ̃

2Id
)

we can directly

compute

νk
(
Br(x̃

CH
k )

)
=

1

(4πσ̃2)d/2

∫

Br(x̃CH

k
)

exp

(
− 1

4σ̃2

∥∥x− xCH
k−1

∥∥2
2

)
dλ(x)

≥ 1

(4πσ̃2)d/2

∫

Br(x̃CH

k
)

exp

(
− 1

2σ̃2

(∥∥x− x̃CH
k

∥∥2
2
+
∥∥x̃CH

k − xCH
k−1

∥∥2
2

))
dλ(x)

≥ 1

(4πσ̃2)d/2
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(
r2 +
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)
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28



How Consensus-Based Optimization can be Interpreted as a Stochastic Relaxation of Gradient Descent

where we used in the last step that the volume of a d-dimensional unit ball is πd/2/Γ
(
d
2 + 1

)
. Here, Γ denotes Euler’s

gamma function. We recall for the readers’ convenience that by Stirling’s approximation Γ (x+ 1) ∼
√
2πx (x/e)

x
as

x → ∞.

Term
∫ ∥∥x− x̃CH

k

∥∥
2
dνk(x): A straightforward computation gives

∫ ∥∥x− x̃CH
k

∥∥
2
dνk(x) =

∫ ∥∥x− x̃CH
k

∥∥
2
dN
(
xCH
k−1, 2σ̃

2Id
)
(x)

=

∫ ∥∥x+ xCH
k−1 − x̃CH

k

∥∥
2
dN
(
0, 2σ̃2Id

)
(x)

≤
∥∥xCH

k−1 − x̃CH
k

∥∥
2
+

∫
‖x‖2 dN

(
0, 2σ̃2Id

)
(x)

≤
∥∥xCH

k−1 − x̃CH
k

∥∥
2
+
√
2dσ̃.

Concluding step: To conclude the proof, we further observe that since x̃CH
k is the minimizer of Ẽk, see (11), a comparison

with xCH
k−1 yields

1

2τ

∥∥xCH
k−1 − x̃CH

k

∥∥2
2
+ E(x̃CH

k ) ≤ E(xCH
k−1).

With A2 it therefore holds

∥∥xCH
k−1 − x̃CH

k

∥∥2
2
≤ 2τ

(
E(xCH

k−1)− E(x̃CH
k )

)
≤ 2τC1

(
1 +

∥∥xCH
k−1

∥∥
2
+
∥∥x̃CH

k

∥∥
2

) ∥∥xCH
k−1 − x̃CH

k

∥∥
2
,

or rephrased

∥∥xCH
k−1 − x̃CH

k

∥∥
2
≤ 2τC1

(
1 +

∥∥xCH
k−1

∥∥
2
+
∥∥x̃CH

k

∥∥
2

)
.

Exploiting this estimate in the former bounds, gives the statements.

F.3. Proof of Proposition C.2

We now have all necessary tools at hand to present the detailed proof of Proposition C.2.

Proof of Proposition C.2. By using the quantitative Laplace principle F.2, we make rigorous and quantify the fact that xCH
k

approximates the minimizer of Ẽk, denoted by x̃k, for sufficiently large α.

To obtain the probabilistic formulation of the statement, let us again denote the underlying probability space by (Ω,F ,P)
(note that we can use the same probability space as in Section E since the stochasticity of both schemes (10) and (11) is

solely coming from the initialization) and introduce the subset Ω̃M of Ω of suitably bounded random variables according to

Ω̃M :=

{
ω ∈ Ω : max

k=0,...,K
max

{∥∥xCH
k

∥∥
2
,
∥∥x̃CH

k

∥∥
2

}
≤ M

}
.

For the associated cutoff function (random variable) we write 1Ω̃M
.

We first notice that by definition of the consensus point xE
α in (3) it holds

xCH
k = xE

α(µk) =

∫
x

exp(−αE(x))
‖exp(−αE)‖L1(µk)
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=
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= xẼk
α (νk),

(62)
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which introduces the relation τ = 2ασ̃2 and where we chose νk = N
(
xCH
k−1, 2σ̃

2Id
)
, which is globally supported, i.e.,

supp(νk) = R
d. Since, according to Lemma F.3, Ẽk satisfies the inverse continuity property (61) with ν = 1/2 and

η =
√

1
2τ + Λ

2 > 0, the quantitative Laplace principle, Proposition F.2, gives for any r, q > 0 the bound

∥∥xCH
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∥∥
2
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∥∥
2
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)ν
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∫ ∥∥x− x̃CH

k

∥∥
2
dνk(x), (63)

where (Ẽk)r := supx∈Br(x̃CH

k
) Ẽk(x)− Ẽk(x̃CH

k ). We further notice that by the assumption τ < 1/(−2Λ) if Λ < 0 it holds

η ≥ 1/(2
√
τ) (in the case Λ ≥ 0 the same bound holds trivially). Combining (63) with the technical estimates of Lemma F.5

and the definition of the cutoff function 1Ω̃M
allows to obtain

E
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)

η2
1Ω̃M

]
+ 2E

[
exp(−2αq)

νk
(
Br(x̃CH

k )
)2
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∥∥
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]
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(
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)

+ 4 exp
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r2d
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1 (1 + 2M)2 + d
τ

α

)
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(64)

where in the last step we just replaced 2σ̃2 by τ/α according to the relation. We now choose

r = τ, q =
3

2
τ + 12τC2

1 (1 + 2M2) and α ≥ α0 :=
1

τ

(
d log 2 + log(1 + d) + 2 log Γ

(
d
2 + 1

))
,

where Γ denotes Euler’s gamma function, for which, by Stirling’s approximation, it holds Γ (x+ 1) ∼
√
2πx (x/e)

x
as

x → ∞. With this we can continue the computations of (64) with

E
∥∥xCH
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∥∥2
2
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)
τ2

≤ cτ2

(65)

with a constant c = c(C1,M). Notice that to obtain the next-to-last inequality one may first note and exploit that one has

ατ ≥ 1 as well as 1/α ≤ τ as a consequence of α ≥ 1/τ .

Probabilistic formulation: We first note that with Markov’s inequality we have the estimate

P
(
Ω̃c

M

)
= P

(
max

k=0,...,K
max

{∥∥xCH
k

∥∥
2
,
∥∥x̃CH
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∥∥
2

}
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≤ 1
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(
E max
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∥∥4
2
+ E max
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∥∥x̃CH
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∥∥4
2

)

≤ 1

M4

(
MCH + M̃CH

)
,

where the last inequality is due to Lemmas D.3 and D.6. Thus, for any δ ∈ (0, 1/2), a sufficiently large choice M =

M(δ−1,MCH,M̃CH) allows to ensure P
(
Ω̃c

M

)
≤ δ. To conclude the proof, let us denote by K̃ε ⊂ Ω the set, where (14)

does not hold and abbreviate

ε = ε−1cτ2.
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For the probability of this set we can estimate

P
(
K̃ε

)
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)
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∥∥2
2

∣∣∣ Ω̃M

]
+ δ,

(66)

where the last step is due to Markov’s inequality. By definition of the conditional expectation we further have

E
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2
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.

Inserting now the expression from (65) concludes the proof.

F.4. Proof of Theorem C.3

We now have all necessary tools at hand to present the detailed proof of Theorem C.3.

Proof of Theorem C.3. We combine in what follows Proposition C.2 with a stability argument for the MMS (12).

To obtain the probabilistic formulation of the statement, let us denote, as in the proof of Proposition C.2, the underlying

probability space by (Ω,F ,P) (note that we can use the same probability space as in Section E since the stochasticity of the

three schemes (10), (11) and (12) is solely coming from the initialization) and introduce the subset Ω̃M of Ω of suitably

bounded random variables according to

Ω̃M :=

{
ω ∈ Ω : max

k=0,...,K
max

{∥∥xCH
k

∥∥
2
,
∥∥x̃CH

k

∥∥
2

}
≤ M

}
.

For the associated cutoff function (random variable) we write 1Ω̃M
.

We can decompose the expected squared discrepancy E
∥∥xMMS

k − xCH
k

∥∥2
2
1Ω̃M

between the MMS (12) and the CH

scheme (10) for any ϑ ∈ (0, 1) as
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∥∥2
2
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. (67)

In what follows we individually estimate the two terms on the right-hand side of (67).

First term: Let us first bound the term E
∥∥xMMS

k − x̃CH
k

∥∥2
2
1Ω̃M

. By definition of xMMS
k and x̃CH

k as minimizers of (12)

and (11), respectively, and with the definition EΛ(x) := E(x)− Λ
2 ‖x‖

2
2 it holds
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τ
∈ −∂EΛ(xMMS

k ) and
(1 + τΛ)x̃CH

k − xCH
k−1

τ
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Since EΛ is convex due to A4 and as consequence of the properties of the subdifferential we have
〈
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τ
+
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τ
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k

〉
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which allows to obtain by means of Cauchy-Schwarz inequality
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Second term: For the term E
∥∥x̃CH

k − xCH
k

∥∥2
2
1Ω̃M

we obtained in (65) in the proof of Proposition C.2, for suitable choices

of σ̃ and α, the bound

E
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≤ cτ2 (69)

31



How Consensus-Based Optimization can be Interpreted as a Stochastic Relaxation of Gradient Descent

with a constant c = c(C1,M).

Concluding step: Combining this with the estimate (68) yields for (67) the bound
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An application of the discrete variant of Grönwall’s inequality (9) shows that
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(71)

for all k = 1, . . . ,K, where we used that both schemes are initialized by the same x0.

Probabilistic formulation: We first note that with Markov’s inequality we have the estimate

P
(
Ω̃c

M

)
= P

(
max

k=0,...,K
max

{∥∥xCH
k

∥∥
2
,
∥∥x̃CH

k

∥∥
2

}
> M

)

≤ 1

M4

(
E max

k=0,...,K

∥∥xCH
k

∥∥4
2
+ E max

k=0,...,K

∥∥x̃CH
k

∥∥4
2

)

≤ 1

M4

(
MCH + M̃CH

)
,

where the last inequality is due to Lemmas D.3 and D.6. Thus, for any δ ∈ (0, 1/2), a sufficiently large choice M =

M(δ−1,MCH,M̃CH) allows to ensure P
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)
≤ δ. To conclude the proof, let us denote by K̃ε ⊂ Ω the set, where (15)
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For the probability of this set we can estimate
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(72)

where the last step is due to Markov’s inequality. By definition of the conditional expectation we further have
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Inserting now the expression from (71) concludes the proof.
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G. Additional numerical experiments

G.1. Comparison of the CH scheme (10) for different sampling widths σ̃

To complement Figure C.1a, we visualize in Figure G.1 the influence of the sampling width σ̃ on the behavior of the CH

scheme (10).

(a) The CH scheme (10) with sampling
width σ̃ = 0.4 gets stuck in a local mini-
mum of E .

(b) The CH scheme (10) with sampling
width σ̃ = 0.6 can occasionally escape
local minima of E .

(c) The CH scheme (10) with sampling
width σ̃ = 0.7 can escape local minima
of E .

Figure G.1: A visual comparison of the CH scheme (10) for different sampling widths σ̃. We depict the positions of the

consensus hopping scheme (10) for different values of σ̃ (0.4 in (a), 0.6 in (b) and 0.7 in (c)) in the setting of Figure C.1a.

While for small σ̃ the numerical scheme gets stuck in a local minimum of the objective, the ability to escape such critical

points improves with larger σ̃. Notice that (b) coincides with Figure C.1a.
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G.2. The numerical experiments of Figures 1 and C.1 for a different objective

In the style of Figures 1 and C.1 we provide in Figure G.2 an additional set of illustrations of the behavior of the different

algorithms analyzed in this work for a noisy Canyon function with a valley shaped as a second degree polynomial.

(a) A noisy Canyon function E with a valley shaped as a second
degree polynomial

(b) The CBO scheme (4) (sampled over several runs) follows
on average the valley while passing over local minima.

(c) The CH scheme (10) (sampled over sev-
eral runs) follows on average the valley of
E and can occasionally escape local min-
ima.

(d) GD gets stuck in a local minimum of E . (e) The Langevin dynamics (6) (sampled
over several runs) follows on average the
valley of E and escapes local minima.

Figure G.2: An additional numerical experiment illustrating the behavior of the CBO scheme (4) (see (b)), the consensus

hopping scheme (10) (see (c)), GD (see (d)) and the overdamped Langevin dynamics (6) (see (e)) in search of the global

minimizer x∗ of the nonconvex objective function E depicted in (a). The experimental setting is the one of Figures 1 and C.1

with the only difference of the particles being initialized around (5,−1).
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