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Abstract

We propose a general framework for automating

data structure design and apply it to the problem

of nearest neighbor search. Our model adapts to

the underlying data distribution and provides fine-

grained control over query and space complex-

ity, enabling the discovery of solutions tailored

to problem-specific constraints. We are able to

reverse-engineer learned data structures and query

algorithms in several settings. In 1D, the model

discovers optimal distribution (in)dependent al-

gorithms such as binary search and variants of

interpolation search. In higher dimensions, the

model learns solutions that resemble k-d trees in

some regimes, while in others, have elements of

locality-sensitive hashing.

1. Introduction

Data structures are ubiquitous objects in computer science

that enable efficient querying. Traditionally, they are de-

signed to be worst-case optimal and thus agnostic to specific

data and query distributions. However, in many applica-

tions, there are patterns in these distributions that can be

exploited to design faster algorithms [1]. For instance, in-

terpolation search [2] can significantly outperform binary

search for uniformly distributed data. This has motivated

recent work on learning-augmented data structures which

leverages knowledge of the data distribution to modify ex-

isting data structures [1], [3], [4]. In much of this work, the

goal of the learning algorithm is only to learn the probability

density function of the data distribution and the actual un-

derlying query algorithm/data structure is fixed. While this

line of work clearly demonstrates the potential in leveraging

distributional information, it still relies on expert knowledge

to design and integrate learning into such structures. This

raises the more fundamental question: can we learn effi-
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Figure 1. Our model has two components: (i) A data-processing

network that transforms raw data into structured data, arranging

it for efficient querying and generating additional statistics when

given extra space (not shown). (ii) A query-execution network

that performs M look-ups into the output of the data-processing

network in order to retrieve the answer to some query q. Each

lookup i is managed by a separate MLP Qi

θ , which takes q and

the lookup history Hi, and outputs a one-hot lookup vector mi

indicating the position to query.

cient distribution-dependent data structures from scratch?

As an initial step towards this goal, we propose a framework

for automating data structure design and apply it to nearest

neighbor (NN) search—a problem with extensive theoretical

work and widespread practical applications [5]. We show

that: (i) In 1D, our model learns to sort the data and apply

binary search or variants of interpolation search. (ii) In 2D,

our model learns solutions resembling k-d trees, and (iii) In

high-dimensions it discovers approximate nearest-neighbor

methods resembling locality-sensitive hashing. Addition-

ally, by learning directly from the data distribution, our

model can also discover data-dependent data structures and

query algorithms that outperform worst-case baselines. Our

model learns solutions with a high-degree of interpretability,

providing insights for data structure design.

2. Nearest Neighbor Search

Given a dataset D = {x1, ..., xN} of N points where

xi ∈ R
d and a query q ∈ R

d, the nearest neighbor y of

q is defined as y = argminxi∈D dist(xi, q). We focus

on the case where dist(·) corresponds to the Euclidean dis-

tance. Our objective is to learn a data structure D̂M for D
such that given q and a budget of M lookups, we can output

a (approximate) nearest neighbor of q by querying at most

M elements in D̂M . When M ≥ N , y can be trivially re-

covered via linear search so D̂M = D is sufficient. Instead,
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Figure 2. (a) Our model (adaptive) trained with 1D data from the uniform distribution over (−1, 1) outperforms binary search and several

ablations. (b) Distribution of lookups by the first query model. Unlike binary search, the model does not always start in the middle but

rather closer to the query’s likely position in the sorted data. (c) When trained on data from the hard distribution, the model finds a solution

similar to binary search. The figure shows an example of the model performing binary search (’X’ denotes the nearest neighbor location).

we are interested in the case when M ≪ N 1.

3. Architecture and Training Details

We frame the problem of learning efficient data structures

as a two-stage process: 1) data-processing and 2) query-

execution (see Fig 1). The role of data-processing is to trans-

form a raw dataset D into a structured database D̂M . Subse-

quently, the query-execution phase performs M lookups into

D̂M to retrieve the answer for some query q. Below, we dis-

cuss the details of the data-processing and query-execution

networks in the context of nearest neighbor search but the

same framework can be applied to other data structure prob-

lems with minor modifications.

3.1. Data-processing Network

The backbone of our data-processing network is a trans-

former model based on the NanoGPT architecture [6]. The

transformer takes as input the dataset D and is trained to

output a scalar oi ∈ R representing the rank for each point

xi ∈ D. These rankings {o1, ..., oN} are then sorted using

a differentiable sort function, sort({o1, o2 . . . , oN}) [7],

which produces a permutation matrix P that encodes the

order based on the rankings. By applying P to the input

dataset D, we obtain DP , where the input data points are

arranged in order of their rankings. By learning to rank

rather than directly outputting the transformed dataset, the

transformer avoids the need to reproduce the exact inputs.

Note that this division into a ranking model followed by

sorting does not impose any restrictions and the overall

model can represent any arbitrary ordering of the inputs.

We also consider scenarios where the data structure can use

additional space. To support this use case, the transformer

can also output T extra tokens b1, ..., bT ∈ R
d which can be

retrieved by the query-execution network. We form the data

structure D̂M by concatenating the permuted inputs and the

1E.g. in 1D, binary search requires M = log(N) lookups
given a sorted list.

extra tokens: D̂M = [DP , b1, ..., bT ].

3.2. Query Execution Network

The query-execution network consists of M MLP query

models2 Q1
θ1
, ..., QM

θM
. Each query model Qi

θi
outputs a

sparse vector mi ∈ R
N+T which represents a lookup posi-

tion in D̂M . To execute the lookup, we compute the value

vi at position mi in D̂M as vi = m⊤
i D̂M . In addition to

the query q, each query model Qi
θi

also takes as input the

query execution history Hi = {(m1, v1), ..., (mi−1, vi−1)}
where H1 = ∅. The final answer of the network for the

nearest-neighbor query is given by ŷ = m⊤
M D̂M .

Enforcing sparse lookups To restrict our model to exactly

M lookups, we enforce each lookup vector mi to be a one-

hot vector. Enforcing this constraint during training poses

a challenge as it is a non-differentiable operation. Instead,

during training, our model outputs soft-lookups where mi

is the output of the softmax function and
∑

j mij = 1. This

alone, however, leads to non-sparse queries. To circumvent

this, we add noise (only during training) to the logits prior

to the softmax operation, which leads to sparser solutions

(see App E.1 for details).

3.3. Data Generation and Training

Each training example is a tuple (D, q, y) consisting of a

dataset D, query q, and nearest neighbor y generated as fol-

lows: (i) sample dataset D = {x1, ..., xN} from dataset dis-

tribution D, (ii) sample query q from query distribution QD,

(iii) compute nearest neighbor y = argminxi∈D ||xi − q||2.

The dataset and query distributions D,QD vary across the

different settings we consider and are defined later. Given

a training example (D, q, y), the data-processing network

transforms D into the data structure D̂M . Subsequently,

the query execution network, conditioned on q, queries the

data structure to output ŷ. We use SGD to minimize the

2The query models do not share weights.

2



Learning to Design Data Structures: A Case Study of Nearest Neighbor Search

loss ||ŷ − y||22 averaged over all training examples. After

training, we test our model on inputs (D, q, y) generated in

the same way. We describe the exact model architecture and

training hyper-parameters in App A.

4. Experiments

We now evaluate our model (referred to as adaptive) on

one-dimensional, two-dimensional, and high-dimensional

nearest-neighbor problems. We primarily focus on data

structures that do not use extra space, but in Section 4.4, we

also explore scenarios with additional space.

Baselines We compare against suitable NN data struc-

tures in each setting (e.g., sorting followed by binary search

in 1D). In addition, to study the impact of various model

components, we compare against several ablations. The

frozen model does not train the data-processing network,

relying on rankings generated by the initial weights. The no-

permute model removes the permutation component of the

data-processing network so that the transformer has to learn

to transform the data points directly. The non-adaptive

model ablation conditions each query model Qi
θi

on only

the query q and not the query history Hi.

4.1. 1D

Uniform Distribution We consider a setting where D and

QD correspond to the uniform distribution over (−1, 1),
N = 50 and M = 6. We plot the mean squared error3

after each lookup in Figure 2(a). At each lookup index we

plot ||v∗i − y||22 where v∗i is the closest element to the query

among the first i lookups: v∗i = argminv∈{v1,...,vi} ||v −
q||22. We do this for all methods.

We verify that our model has learned to sort the inputs by

measuring the fraction of inputs that are mapped to the cor-

rect position in the sorted order, averaged over multiple

datasets. After training, our model correctly positions ap-

proximately 97% of the inputs. Despite using a separate

function for sorting rankings, the model must still learn

to output the correct rankings. In comparison, the frozen

ablation (untrained transformer) positions only about 38%

of inputs correctly, explaining its underperformance. The

non-adaptive baseline, lacking query history access, under-

performs as it fails to learn adaptive solutions crucial for 1D

NN search. The no-permute ablation also underperforms

due to its inability to fully retain inputs (verified by mea-

suring the distance between the transformer’s inputs and

outputs). These ablations highlight the crucial role of both

learned orderings and query adaptivity for our model.

Our model outperforms binary search for M < 6. This

is because unlike binary search (which is optimal only in

the worst-case), our model exploits knowledge of the data

3We include accuracy plots as well in Appendix B.

distribution to start its search closer to the nearest neighbor,

similar to interpolation search [2]. For instance, if the query

q ≈ 1, the model begins its search near the end of the list

(Fig 2(b)). The minor sorting error (∼ 3%) our model makes

likely explains its worse performance on the final query.

In summary, starting from scratch, the data-processing net-

work discovers that the optimal way to arrange the data is in

sorted order. Simultaneously, the query-execution network

learns to efficiently query this sorted data, leveraging the

properties of the data distribution.

Hard Distribution. To verify that our model can also

learn worst-case optimal search algorithms such as binary

search, we design a hard distribution DH with the property

that for any given query it is hard to learn a strong prior

over the position of its nearest neighbor in the sorted data

(see App. C for more details about DH). We generate our

queries by first sampling a point (uniformly at random) from

the dataset and then adding noise from the standard normal

distribution. In Fig 2(c), we demonstrate a representative

example showing that the trained model searches in a man-

ner similar to binary search (see Fig 9 for more examples).

In Fig 7, we plot the error curve for the model which closely

resembles that of binary search.

4.2. 2D

Uniform Distribution In 2D, we use a similar setup to

1D, sampling coordinates independently from the uniform

distribution on (−1, 1). We compare our model to a k-d tree

baseline with N = 50 and M = 5 queries (Fig. 5 in App.

B). A k-d tree is a binary tree for organizing points in k-

dimensional space, with each node splitting the space along

one of the k axes, cycling through the axes at each tree level.

Figure 3. The learned data structure resembles a k-d tree in 2D.

We show the average pairwise distances (across the first, second

and both dimensions) between points at different positions for the

learned data structure and k-d tree, with lighter colors indicating

smaller distances. For the k-d tree, data is arranged by in-order

traversal of the tree. The plots look similar for k-d trees and the

learned data structure, with dimensions 1 and 2 flipped.
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Figure 4. (a) For NN search in higher dimensions (d = 30), the trained models perform comparably to (adaptive) or better than (non-

adaptive) locality-sensitive hashing (LSH) baselines. (b) When trained with a single query, the model partitions the query space based on

projection onto two vectors, similar to LSH. We show the query projection onto the subspace spanned by these vectors and the lookup

positions for different queries. (c) For NN search in 1D (N=32), the model learns to use extra space and outperforms a bucketing baseline.

Similar to the 1D setting, our model outperforms the k-d

tree as it can exploit distributional information. Although

the no-permute ablation outperforms our model, it does not

fully retain the inputs, so it is not a feasible alternative. By

studying the permutations, we find that our model learns to

put points that are close together in the 2D plane next to each

other in the permuted order (see Fig. 11 for an example).

Hard Distribution We also consider the case where we

sample both coordinates independently from the hard dis-

tribution considered in the 1D setup (see Fig 10 for the

corresponding error curve). We observe that the data struc-

ture learned by our model is surprisingly similar to a k-d tree

(see Fig 3). This is striking as a k-d tree is a non-trivial data

structure, requiring either an O(N) median finding algorithm

or sorting data on both dimensions.

4.3. High Dimensions

High-dimensional NN search poses a challenge for

traditional low-dimensional algorithms due to the curse

of dimensionality. K-d trees, for instance, can require

an exponential number of queries in high dimensions

[8]. This has led to the development of approximate NN

search methods such as locality sensitive hashing (LSH)

which have a milder dependence on d [9], relying on hash

functions that map closer points in the space to the same

hash bucket with high probability.

In high dimensions, we train our model on datasets uni-

formly sampled from the d-dimensional unit hypersphere.

The query is sampled to have a fixed correlation ρ ∈ [0, 1]

with a dataset point, where ρ = |uT v|
||u||||v|| for vectors u, v ∈

R
d. When ρ = 1, the query matches a data point, making

hashing-based methods sufficient. For ρ < 1, LSH-based

solutions are competitive. We train our model for ρ = 0.8
and compare it to an LSH baseline when N = 50,M = 5,

and d = 30. In Fig 4(a), we observe that our model per-

forms competitively with LSH baselines (see details of the

baselines in App D). The non-adaptive model does slightly

better as adaptivity is not needed to do well in this setting

(e.g., LSH is non-adaptive), and lack of adaptivity likely

makes training easier. To better understand the data struc-

ture our model learns we consider a smaller setting where

N = 8 and M = 1. We find that the model learns an LSH

like solution, partitioning the space by projecting onto two

vectors in R
30 (see Fig 4(b)). We provide more details in

App E.3.

4.4. Leveraging Extra Space

The previous experiments demonstrate our model’s ability

to learn useful orderings for efficient querying. However,

data structures can also store additional pre-computed in-

formation to speed up querying. For instance, with infinite

extra space, a data structure could store the nearest neigh-

bor for every possible query, enabling O(1) search. To

evaluate if our model can effectively use extra space, we

run an experiment in 1D on the uniform distribution with

N = 32,M = 2. We allow the data-processing network

to output T ∈ {0, 21, 22, 23, 24, 25} tokens b1, ..., bT ∈ R

in addition to the N rankings. We plot the NN error as

a function of T in Fig 4(c) compared to a simple bucket-

ing baseline (described in App E.4.1). The error mono-

tonically decreases with extra space demonstrating that the

data-processing network learns to pre-compute useful statis-

tics that enable more efficient querying. We provide some

insight into the learned solution in App E.4.2.

5. Conclusion

We propose a framework for learning data structures from

scratch and apply it to nearest neighbor search. Our model

discovers structures like sorted lists, k-d trees, and locality-

sensitive hashing, and simultaneously learns efficient

data-dependent algorithms to query them. Additionally, our

model leverages extra space to store pre-computed statistics,

effectively balancing query time and space complexity.

Related work and future work are discussed in App. F & G.
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A. Training Details

The transformer in the data-processing network is based on the NanoGPT architecture [6] and has 8 layers with 8 heads each

and an embedding size of 64. Each query model Qi
θ is a 3-layer MLP with a hidden dimension of size 1024. Each hidden

layer consists of a linear mapping followed by LayerNorm [10] and the ReLU activation function relu. In all experiments

we use a batch size of 1024, 1e-3 weight decay and the Adam optimizer [11] with default PyTorch pytorch settings. For

both the transformer and the MLP models we use a learning rate of 1e-4. All models are trained for 4 million gradient steps

with early-stopping. We apply the Gumbel Softmax [12] with a temperature of 2 to the lookup vectors to encourage sparsity.

For the experiments in 1D, we found it beneficial to only add Gumbel noise to the final lookup vector until training had

converged and then add noise to all vectors to find a sparser solution.

B. 1D, 2D, and 30D MSE and Accuracy Plots
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Figure 5. 1D, 2D, 30D N=50 MSE
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Figure 6. 1D, 2D, 30D N=50 Accuracy

C. Hard Distribution

To generate data from the hard distribution, we first sample the element at the 50th percentile from the uniform distribution

over a large range. We then sample the 25th and 75th percentile elements from a smaller range and so on. The intuition

behind this distribution is to reduce concentration such that p(NN |q) is roughly uniform where NN denotes the index of

the nearest-neighbor of q in the sorted list.

Precisely, to sample N points from the hard distribution we generate a random balanced binary tree of size N . All vertices

are random variables of the form Uniform(0, alogn−k) where a is some constant and k is the level in the tree that the

vertice belongs to. If the i− th node in the tree is the left-child of its parent, we generate the point xi as xi = xp(i) − di
where p(i) denotes the parent of the i− th node and di is a sample from node i of the random binary tree. Similarly, if node
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i is the right child of its parent, xi = xp(i) + di. For the root element x0 = d0. In our experiments we set a = 7. The larger

the value of a, the greater the degree of anti-concentration. We found it challenging to train models with N > 16 as the

range of values that xi can take increases with N . Thus for larger N , the model needs to deal with numbers at several scales,

making learning challenging.
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Figure 7. Our model’s performance is closely aligned with binary search on the hard distribution in 1D. By design, this distribution does

not have a useful prior our model can exploit and so it learns a binary search like solution.

Figure 8. The positional distribution per lookup in the 1D Hard experiment. Our model closely aligns with binary search, first looking at

the middle element, then (approximately) either the 25th or 75th percentile elements, and so on.

D. LSH Baseline

Our LSH baseline samples K random vectors r1, ..., rK from the standard normal distribution in R
d. For a given vector

v ∈ R
d, its hash code is computed as hash(v) = [sign(vT

r1), ..., sign(v
T
rK)]. In total, there are 2K possible hash

codes. To create a hash table, we assign each hash code a bucket of size N/2K . For a given dataset D = {x1, ..., xN}, we

place each input in its corresponding bucket (determined by its hash code hash(xi). If the bucket is full, we place xi in a

vacant bucket chosen at random. Given a query q and a budget of M lookups, the baseline retrieves the first M vectors in

the bucket corresponding to hash(q). If there are less than M vectors in the bucket, we choose the remaining vectors at

random from other buckets. We design this setup like so to closely align with the constraints of our model (i.e. only learning

a permutation).

E. Additional Experiment Findings

E.1. Noise Injection for Lookup Sparsity

We find that adding noise prior to applying the soft-max on the lookup vector mi leads to sparser queries. We hypothesize

that this is because the noise injection forces the model to learn a noise-robust solution which corresponds to a sparse solution.

7
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Figure 9. Binary Search vs. our model on the hard distribution in 1D

Consider a simplified setup in 1D where the query model is not conditioned on q and is only allowed one lookup (M = 1)

and D is a sorted list of three elements: D = [x1, x2, x3]. For a given query q and its nearest neighbor y, the query-execution

8
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Figure 10. On the 2D hard distribution our model roughly tracks the performance of a k-d tree.

network is trying to find the optimal vector m̂ ∈ R
3 that minimizes ||y − mTD||22 where m = softmax(m̂ + ϵ), ϵ ∼

Gumbel distribution [12]. Given that M = 1, the model cannot always make enough queries to identify y and so in the

absence of noise the model may try to predict the ’middle’ element by setting m̂1 = m̂2 = m̂3. However, when noise is

added to the logits m̂ this solution is destabilized. Instead, in the presence of noise, the model can robustly select the middle

element by making m̂2 much greater than m̂1, m̂3. We test this intuition by running this experiment for large values of N
and find that with noise the average gradient is much larger for m̂N/2.

E.2. 2D Uniform Distribution
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Figure 11. Our model’s learned permutation on the 2D uniform distribution. The model puts elements that are close together in the

Euclidean plane next to each other in the permutation.

E.3. N=8, M=1 30D Experiment

To determine if our model has learned an LSH-like solution, we try to reverse engineer the query model in a simple setting

where N = 8 and M = 1. The query-execution model is only allowed one lookup. We fit 8 one-vs-rest logistic regression

classifiers using queries sampled from the query distribution and the output of the query model (lookup position) as features

and labels, respectively. We then do PCA on the set of 8 classifier coefficients. We find that the top 2 principal components

explain all of the variance which suggests that the query model’s mapping can be explained by the projection onto these two

components. In Figure 13 we plot the projection of queries onto these components and color them based on the position they

were assigned by the query model. We do the same for inputs xi ∈ D and color them by the position they were permuted to.

The plot on the right suggests that the data-processing network permutes the input vectors based on their projection onto

these two components. This assignment is noisy because there may be multiple inputs in a dataset that map to the same

9
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Figure 12. k-d search vs. our model on the uniform distribution in 2D. Unlike the k-d tree, our model has a stronger prior over where to

begin its search.

bucket and because the model can only store a permutation, some buckets experience overflow. Similarly, the query model

does a lookup in the position that corresponds to the query vector’s bucket. This behaviour suggests the model has learned a

locality-sensitive hashing type solution!

E.4. 1D Extra Space

E.4.1. BUCKET BASELINE

We create a simple bucket baseline that partitions [−1, 1] into T evenly sized buckets. In each bucket bi we store

argminxj∈D||xj − li|| where li is the midpoint of the segment partitioned in bi. This baseline maps a query to its

corresponding bucket and predicts the input stored in that bucket as the nearest-neighbor. As T → ∞ this becomes an

optimal hashing-like solution.

10
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Figure 13. Left Projection of queries onto top two PCA components of the decision boundaries of the query model, colored by the lookup

position the query is mapped to. Right Projection of inputs onto the same PCA components colored by the position the data-processing

model places them in. Both the data-processing and query models map similar regions to the same positions, suggesting an LSH-like

bucketing solution has been learned.
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Figure 14. (a) Decision boundary of the first query model. (b) The regression coefficients of the values stored in extra positions as a linear

function of the (sorted) inputs.

E.4.2. UNDERSTANDING EXTRA SPACE USAGE

By analyzing the lookup patterns of the first query model, we can better understand how the model uses extra space. In

Figure 14(a) we plot the decision boundary of the first query model. The plot demonstrates that the model chunks the query

space ([−1, 1]) into different buckets. To get a sense of what the model stores in the extra space, we fit a linear function on

the sorted inputs and regress the values stored in each of the extra space tokens bi and plot the coefficients for several of

the extra spaces in Figure 14(b). For a given subset of the query range, the value stored at its corresponding extra space is

approximately a weighted sum of the values stored at the indices that correspond to the percentile of that query range subset.

This is useful information as it tells the model for a given query percentile how ’shifted’ the values in the current dataset

stored in the corresponding indices are from model’s prior.

F. Related Work

To the best of our knowledge there is no prior work on using machine learning to design efficient data structures and query

algorithms end-to-end from scratch. However, we discuss several related works below and highlight the connections to our

work.
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Learning-Augmented Algorithms Recent work has shown that traditional data structures and algorithms can be made

more efficient by learning properties of the underlying data distribution. For example, Lykouris and Vassilvitskii [13]

proposed learning-augmented algorithms for online caching and paging problems, where predictions about future requests

are used to improve cache replacement policies. Kraska, Beutel, Chi, et al. [1] introduced the concept of learned index

structures, which use machine learning models to replace traditional index structures in databases, resulting in significant

performance improvements for certain query workloads. By learning the cumulative distribution function of the data

distribution the model has a stronger prior over where to start the search for a record. Other works augment the data structure

with predictions instead of the query algorithm. For example, Lin, Luo, and Woodruff [14] use learned frequency estimation

oracles to estimate the priority in which elements should be stored in a treap. Perhaps most relevant to the theme of our

work is [15], which trains neural networks to learn a partitioning of the space for efficient nearest neighbor search using

locality sensitive hashing.

In much of these works, the goal of the learning algorithm is only to learn certain properties of the data distribution while

most components of the underlying data structure/query algorithm remain fixed. While this line of work clearly demonstrates

the potential in leveraging distributional information, it still relies on expert knowledge to design and integrate learning into

such structures. The goal of our work is to push this idea even further by learning the data structure as well as the query

algorithm together from scratch, allowing much greater adaptability to the underlying data distribution.

Neural Algorithmic Learners Neural algorithmic learners focus on embedding traditional algorithms into neural network

frameworks, allowing these models to learn and execute algorithmic tasks. One of the pioneering works in this area is

the Neural Turing Machine (NTM) proposed by Graves, Wayne, and Danihelka [16], which combines a neural network

with an external memory, enabling it to learn and perform algorithmic tasks such as sorting and copying . More recent

approaches, such as those by Veličković, Ying, Padovano, et al. [17], have employed graph neural networks (GNNs) to learn

to perform classical algorithms such as breadth-first search (BFS) and shortest path algorithms, leveraging their ability to

handle structured data efficiently.

While these works share a similar motivation of training neural networks to execute algorithms, they are trained with a much

greater degree of supervision than our model and focus on embedding known algorithms into neural networks. For instance,

Graves, Wayne, and Danihelka [16] use the ground truth sorted list as supervision to train the model to learn to sort and

other works even use intermediate computations of algorithms as additional supervision [17]. Instead, we are interested

in discovering efficient solutions to more general tasks (e.g. nearest-neighbor search). Typically, such solutions require

learning algorithmic primitives (such as sorting) and so our model is indirectly encouraged to learn these. In this sense,

we take a more top-down approach. Instead of training neural networks to learn specific (known) primitives that can be

manually combined to solve a given task, we instead train models to solve the task directly. This approach allows the model

more freedom to discover solutions adapted to the specific task distribution. However, this is also more challenging as our

model needs to learn multiple algorithms in tandem, e.g. learning to both sort and execute binary search with only the

desired output as supervision.

There has also been work on learning end-to-end algorithms. Selsam, Lamm, Bünz, et al. [18] train neural networks to solve

SAT. Garg, Tsipras, Liang, et al. [19] and Akyürek, Schuurmans, Andreas, et al. [20] show that transformers can be trained

to encode learning algorithms for function classes such as linear functions and decision trees, and Fu, Chen, Jia, et al. [21]

observe that trained transformers discover algorithms resembling higher-order optimization methods.

Differentiable Algorithms Differentiable algorithms are traditional algorithms that have been modified to allow gradient-

based optimization, making them compatible with neural network training. This approach enables the integration of

algorithmic components directly into end-to-end machine learning models.

For instance, Grover, Wang, Zweig, et al. [7] proposed differentiable sorting and ranking functions, which approximate

traditional sorting algorithms with differentiable counterparts, allowing them to be used in gradient-based optimization

frameworks. In our work, we make use of this differentiable sorting function to reorder the input dataset into a data structure.

More recent works have proposed other differentiable sorting algorithms that use optimal transport or enforce monotonicity

[22], [23].

Xie, Dai, Chen, et al. [24] introduced differentiable top-k selection algorithms which enable the integration of top-k selection

within neural network architectures. Operating on pairwise distances, these top-k algorithms can be used to retrieve k-nearest

neighbors in a differentiable manner. However, this requires computing distances between the query and every item in the
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dataset (i.e. N lookups for a dataset of size N ). Instead, our work focuses on learning data structures and algorithms such

that nearest-neighbor queries can be executed with M << N lookups.

At a high-level, both components of our model can be regarded as differentiable algorithms themselves. For example, in the

context of high-dimensional NN search, the trained data-processing network buckets the input dataset based on hash codes.

The query-processing network searches in these buckets based on the query’s hash code. Both of these operations are fully

differentiable. Thus, our model can also be integrated into a larger pipeline that requires a learned differentiable algorithm.

G. Limitations and Future Work

There are several limitations to our current model that we plan to address in future work. One limitation is scaling. Our

current model can find sparse solutions up to N = 50 and non-sparse solutions up to N = 150 (Figure 15). While we

demonstrate that useful data structures can still be learned at this scale, it is possible that other classes of structures only

emerge for larger datasets. It is likely that significantly scaling up the parameter count can help scale up N . Complementary

to this, it would be worthwhile to explore better inductive biases for the query and data-processing networks, and other

methods to ensure sparse solutions, enabling smaller models to scale to larger datasets. While we intentionally refrained

from introducing additional inductive bias in this work in order to give both models more degrees of freedom, there are

several modifications that are likely helpful such as shared weights among query-models and using relative lookups (similar

to relative position encoding in transformers [25]) as opposed to absolute lookups.
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Figure 15. 2D and 30D experiments with N = 150 and M = 7. Our model can learn competitive solutions at this scale however they are

not fully sparse.

13


