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Abstract

We introduce SA-DQAS in this paper, a novel

framework that enhances the gradient-based Dif-

ferentiable Quantum Architecture Search (DQAS)

with a self-attention mechanism, aimed at optimiz-

ing circuit design for Quantum Machine Learning

(QML) challenges. Analogous to a sequence of

words in a sentence, a quantum circuit can be

viewed as a sequence of placeholders containing

quantum gates. Unlike DQAS, each placeholder

is independent, while the self-attention mecha-

nism in SA-DQAS helps to capture relation and

dependency information among each operation

candidate placed on placeholders in a circuit. To

evaluate and verify, we conduct experiments on

job-shop scheduling problems (JSSP), Max-cut

problems, quantum chemistry and quantum fi-

delity. Incorporating self-attention improves the

stability and performance of the resulting quan-

tum circuits and refines their structural design

with higher noise resilience and fidelity. Our re-

search demonstrates the first successful integra-

tion of self-attention with DQAS.

1. Introduction

In recent years, quantum computing (QC) has developed

rapidly and has achieved remarkable progress in different ar-

eas, such as image classification, circuit architecture search,

quantum reinforcement learning, knowledge graph embed-

ding, and approximate optimization problem [1]–[5]. How-

ever, the performance of the quantum algorithms is often

different from expected on noisy devices. Variational quan-

tum algorithms (VQAs) are considered the leading strategy

in the NISQ era [6].
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Various quantum architecture search (QAS) algorithms can

automatically search for the near-optimal quantum circuit

architecture [7]–[15]. Differentiable quantum architecture

search (DQAS) [9] is a gradient-based QAS algorithm. It

designs circuits by replacing placeholders with operation

candidates. Instead of evaluating all possible architecture,

DQAS only samples a batch of candidates for updating

architecture parameter α and circuit parameters θ. The loss

L and the local loss L are given as:

L =
∑

k∈P (k,α)

P (k, α)∑
k′∈P (k,α) P (k′, α)

L(k) , (1)

where

P (k, α) =

p∏

i=1

p(ki, αi) , (2)

and k determines a circuit structure in a probabilistic model.

Since DQAS assumes that each placeholder is independent

of other placeholders, each operation candidate has little

overall view of operations in other placeholders. In order

to tackle this issue, we choose the architecture parameter α

as a tokenized ”sentence” and extend the DQAS by adding

a transformer encoder [16], which compresses architecture

parameter and positional information into a low-dimension

vector to provide a global view of the operation candidates

in different placeholders. Unlike prior methods [9] that the

selection of operation for each placeholder has little infor-

mation regarding operation candidates in other placeholders,

we present a DQAS method enhanced with the self-attention

mechanism SA-DQAS to let the operation candidates have

a global view.

We summarise our contributions as follows:

1. We present a high-performing QAS algorithm SA-

DQAS by extending the DQAS with an attention mod-

ule. A transformer encoder can transform architecture

parameters by handling the fitness and positional infor-

mation of operation candidates.

2. We conduct sufficient experiments for comparing our

new method with the original DQAS in different tasks.

The SA-DQAS provides outperforming results and can
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find high-performing circuit architectures efficiently

on a quantum simulator.

3. We test SA-DQAS in a noisy environment. By consid-

ering idle errors, we show that SA-DQAS can still find

noise-resilient circuit architecture by keeping entangle-

ments.

2. Methodology

Our work is based on DQAS, which uses a gradient-based

method to construct a quantum circuit by replacing these

placeholders with one possible candidate operation from

the operation pool. We denote the operation pool as O.

A circuit is a sequence of p placeholders described as

U =
∏p

i=0 ui(θi), where ui and oi ∈ O stand for uni-

tary placeholder and operation candidate, and θi are the

parameters of trainable gates. The architecture parameter

matrix is (αij) ∈ R
p×l with l = |O|. The probability is

calculated by Eq 2 . This setting makes the search process

continue and focuses on operations in one placeholder but

ignores the relationship among operation candidates placed

on different placeholders.

Encoder F1&F2 As shown in Figure 1, each architec-

ture parameters vector αi is viewed as a word, and the

architecture matrix α is viewed as a sentence. The output

of the encoder is the architecture parameters, including rela-

tionship features, and is added to the original architecture

parameter matrix α:

α′ = α+ βF (α), (3)

where F is the encoder and β is the scaling coefficient.

From different perspectives, by viewing a placeholder as

a token, we propose one encoder with two types of input:

F1 and F2. Regarding the encoder F1, we use sinusoidal

position embedding α
pos
i for N layers-encoder. Each layer

consists of two sublayers:

αn1

i = LayerNorm(αa
i ), (4)

αa
i = MultiHead(αpos

i , α
pos
i , α

pos
i ) + α

pos
i . (5)

The second sub-layer is a position-wise fully connected

feed-forward network:

αn2

i = LayerNorm(αa2

i ), (6)

αa2

i = αn1

i + g(αn1

i ), (7)

g(αn1

i ) = W2max(0,W1α
n1

i + b1) + b2. (8)

And α is updated by:

α′
1 = α+ βF1(α

trans), (9)

αtrans = α× αT × α. (10)

For F2, we view the original architecture matrix α as an

input for the encoder. The output of this method is α′
2 =

α+ βF2(α). We expect that the self-attention mechanism

can give us additional features without strongly reducing the

effect of the original architecture parameters. As a result,

we select a sufficiently small β as a scaling coefficient.

Loss function The loss function for the whole process of

circuit architecture search is described in Eq.1. In order to

get a gradually fixed architecture parameter, we select the

distance of the output of the encoder between the current

training step and one previous training step as our loss met-

ric. For each training step t, the encoder parameters are

updated by

wt = wt − η∆wLencoder (11)

Lencoder = max
1≤i≤p

max
1≤j≤l

|Ft−m − Ft(α
trans
ij )|, (12)

where Ft is the output matrix of F in training step t. We set

m = 1 in our experiment and F (α0) is initialized by 0.

3. Experiments

3.1. Experiment settings

Our experiments test our framework based on JSSP and

Max-cut problems. We define four different types of oper-

ation pools, O1-O4. Appendix A describes the operation

pool construction rules. The basic settings in the training

process and types of gates contained in O1-O4 are given in

Appendix E.

3.2. Experiments on JSSP

In this section, we conduct experiments with five qubits

using SA-DQAS for the simplest JSSP task defined in pa-

per[4] with five qubits. Their manually designed circuit,

represented in Figure 2b, is selected as our baseline. In

the experiments, all qubits are initialized with the state |0⟩
and applied rx gates with a rotation angle of π to form

the encoding block. There is only one parameterized block

containing four placeholders. For each learning step, we

update all placeholders. The energies E are scaled to the

range [0, 1]:

e =
E − Emin

Emax − Emin
∈ [0, 1] , (13)

where Emin and Emax are the minimum and maximum

energy. When e ≈ 0, we reach the minimal energy and find

the optimal solution.

From Table 1, nearly all circuits designed by SA-DQAS

converge faster than those without self-attention. When

circuits generated with SA-DQAS contain fewer parame-

terized gates than those with DQAS. There are still some

searches that do not find optimal circuits.
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Figure 1: The illustration of the proposed framework SA-DQAS. On the left side is the common part of both algorithms (Step 1 and Step
2). On the right side, we show the differences between both algorithms. SA-DQAS uses the attention modules F1 or F2 to improve the
architecture parameters α, such that each operation shares positional and fitness information among operation candidates in different
placeholders.

Table 1: Summary of circuits designed with and without self-
attention from different operation pools for JSSP

Operation

pool

#Gates∗∗∗ #Param.

Gate∗∗∗
Quantum

cost∗∗∗
ASP∗∗

Baseline 18 10 8 29

Y∗ N∗ Y N Y N Y N

op1-1 15 14 15 14 0 0 25 26

op1-2 13 9 9 9 4 0 18 11

op1-3 13 19 9 14 4 0 20 39

op1-4 14 20 5 15 4 0 13 38

op2-1 13 9 9 9 4 0 13 16

op2-2 15 16 7 12 8 4 13 28

op2-3 16 18 8 18 8 0 13 40

op2-4 15 18 10 5 0 8 19 14

op3-1 15 13 7 9 8 4 18 15

op3-2 15 13 11 13 4 0 17 32

op3-3 16 16 4 12 12 4 10 16

op3-4 13 20 5 20 8 0 14 39

op4-1 7 12 7 12 0 4 33 72

op4-2 12 15 12 15 8 8 60 108

op4-3 16 16 16 16 8 8 89 96

op4-4 16 17 16 17 16 12 88 91

* Y indicates circuits searched by SA-DQAS and N indi-

cates by DQAS
** Average solving point (ASP) refers to the number of

iterations required to find the minimum energy without

subsequent fluctuations.
*** Columns 1-3 indicate the number of total gates, trainable

gates and controlled gates in the parameterized blocks.

Figure 2 shows the evaluation of newly found architectures

on the simulator without noise. The best-performing circuits

converge faster than the baseline and have high reliability.

More controlled gates indicate a higher building cost of the

quantum circuit, while controlled gates provide quantum

features. The discovered circuit contains fewer gates than

the baseline. The impact of placeholders and parameterized

blocks are shown in Appendix B.

In Figure 5, we show the circuit evaluation on the noisy

(a) Comparison (b) Baseline (c) Circuitauto

Figure 2: Evaluation of newly found architectures on the simulator
without noise. The results are averaged over 10 trials with the
different initial parameters.

(a) Op*-01 (b) Op*-02

(c) Op*-02 (d) Op*-04

Figure 3: Comparison of circuits generated using operation pools
replacing ry with rx. We also generate operation pools by replacing
ry with rx gates.

simulator. The designed circuits are noise-resilient and

more reliable in most cases, although the learned circuits,

including the baseline, do not find the accurate minimum

energy in some trials because of the influence of noise.

From Figure 6, we know that random information to DQAS
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(a) Performance JSSP-10-
qubits

(b) Circuit JSSP-10-qubits

Figure 4: Top performing circuit for 10 qubits JSSP problem.
The baseline (red) does not converge to the bottom, while the
automatically design circuit can within 300 training Epochs.

Figure 5: Performance evaluation in noisy environments. We study
the resistance of auto-generated circuits to noise. We form noise
models by adding 20% noise of different types on each end of the
qubit in the generated circuit with the best performance.

Table 2: Summary of circuit architectures designed with and with-
out self-attention from different operation pools for solving differ-
ent Max-cut problem.

Circuits #Gates∗∗ #Param. G. #Con. G.

M∗
1 M∗

2 N∗ M1 M2 N M1 M2 N

Circuit∗∗∗R−op4−74
23 22 29 23 22 29 8 16 8

CircuitL−op3−34 23 27 22 15 19 14 8 8 8

CircuitB−op3−64 29 30 23 21 22 23 8 8 0

* M∗
1 indicates circuits searched by Method 1, M∗

2 by

Method 2 and N indicates by DQAS.
** Columns 1-3 indicate the number of total gates, con-

trolled gates, and trainable parameterized gates in the

parameterized blocks.
*** The suffix indicates that the circuits are derived from

which operation pool and used to solve the Max-cut

problem in which graph. R denotes Random graph, L

means Ladder and B is Barbell. The suffix op4-4 means

the circuits are generated from operation op4-4.

can lead to the instability of the final circuit performance.

However, self-attention can help build stable circuit archi-

tectures through additional information. There are more

comparison results in terms of randomness, Max-Cut and

error mitigation problem in Table 2 and Appendix C, and

noisy test in Appendix D.

(a) op2-74 (b) op3-44 (c) op3-64

Figure 6: Evaluation of performances of circuits generated by SA-
DQAS and DQAS with random information. Method 1 and 2 use
the encoder F1 and F2, respectively. The line is the average results
of 10 trials with different initial parameters. The suffix means four
placeholders are used.

Table 3: Experiments on hydrogen. We solve the Hamiltonian
of H2 and compare our method to other algorithms. The value
indicates the error level compared with ground state energy.

Algorithm H2 (Energy Error)

UCCSD 10−11

quantumDARTS 10−6

SA-DQAS 10−4

DQAS 10−4

QGAS 10−2

Randomness 10−2

3.3. Experiments on quantum chemistry

In Table 3, we compared SA-DQAS with different algo-

rithms in terms of hydrogen. The SA-DQAS can find

optimal circuit architecture that outperforms QGAS [7],

RS but still has limited performance by comparing with

UCCSD [17] and quantumDARTS [2]. SA-DQAS here may

only find the local optimum due to a very shallow circuit

with only 4 placeholders. More molecules and a large circuit

should be considered by comparison in the next step.

4. Conclusion

Our method, SA-DQAS, improves DQAS by using the self-

attention mechanism. We show the effectiveness of this

method through various experiments for JSSP, quantum

chemistry, and max-cut problems. SA-DQAS still has lim-

ited performance in quantum chemistry. However, JSSP

experimental results show that SA-DQAS can find more

stable circuit structures than DQAS in ideal and noisy envi-

ronments.

However, the circuit depth and width are fixed, and being

especially small during a search may limit the search per-

formance. Some search results still hardly depend on the

size and selected gate types of the operation pool, and a

larger operation pool increases the search space exponen-

tially, leading to tremendous training costs. Addressing

these issues could be the next step.
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A. Operation Pool

We define four root operation pools O1-O4 to create

concrete operation pools. Each root contains only the

type of quantum gates with a generic range. We define

’RZ+RY+CZ+H’ (O1) and ’U3+CU3+H’ as two essential

roots since the circuits based on these two design spaces per-

form well in quantum optimization problems. Furthermore,

we define two additional roots by making a small change in

’RZ+RY+CZ’. One is by extending it with CNOT (O3), and

the other is created by replacing CZ with CNOT (O2).

The smallest and largest operation pool of O4 with five

qubits in JSSP for each type is shown as follows:

op4-1 = {U3 : [0, 1, 2, 3, 4],

U3 : [0, 1, 2, 3],U3 : [1, 2, 3, 4],

U3 : [0, 1, 2],U3 : [1, 2, 3],U3 : [2, 3, 4],

U3 : [0, 1],U3 : [1, 2],U3 : [2, 3],U3 : [3, 4],

CU3 : [0, 1, 2, 3],E : [0, 1, 2, 3, 4]}

op4-4 = {U3 : [0, 1, 2, 3, 4],H : [0, 1, 2, 3, 4],

CU3 : [0, 1, 2, 3],E : [0, 1, 2, 3, 4]}
(14)

The last operation E means that add an identical gate to each

qubit. We change the size following this rule: every time we

reduce the size, we delete all single-gate operations with the

current smallest length of the working range. For example,

the largest operation pool of O4 contains U3 with a length

of working range of 2. The smallest length of working range

in the smallest pool of single-qubit gates is 5. As a result,

for each type, with N qubits, we will form N − 1 different

sizes of operation pools, and we number them in order from

largest to smallest. In our experiments, our operation pools

of different qubits are formed to obey this rule. In some

experiments, we change the operation pool slightly, the

working range of entangle gates [0,1,2,3,4,5,6,7].

B. JSSP

The impact of placeholders and parameterized blocks during

generating circuits is studied. In Figure 7, the red line

indicates the number of gates of the baseline is 23 and the

ASP is 29. The evaluation results show that as the number of

placeholders and parameterized blocks increase, the number

of gates in the generated circuits and the depth of the circuits

increase and converge more slowly when solving a simple

JSSP. The deeper the circuits are, the more parameterized

gates need to be trained, resulting in more complex quantum

calculations and slower convergence.

C. Max-cut Problem

SA-DQAS adds self-attention in two methods for the Max-

cut problem in the benchmark and compares their perfor-

(a) Comparison of place-
holders

(b) Gates and ASP of auto-
generated circuit

(c) Comparison of parame-
terized blocks

(d) Gates and ASP of auto-
generated circuit

Figure 7: (a) and (b) illustrate the impact of placeholders when
generating circuits with op1-3. (c) and (d) illustrate the impact of
parameterized blocks when generating circuits with op1-3.

(a) SA-DQAS vs DQAS (b) Comparison in data

(c) Circuit by SA-DQAS (d) Circuit by DQAS

Figure 8: Comparison of circuits generated using SA-DQAS and
DQAS. (a) performances for solving JSSP, (b) comparison in data,
(c) one circuit generated with SA-DQAS, (d) one circuit generated
with DQAS.

mances. We select some generated circuits to make a com-

parison. The results are shown in Figure 9. In Figure 9b,

circuits created with method 1 converge faster to the min-

imum energy than circuits searched by method 2. Figures

9c and 9e show that circuits searched by method 1 outper-

form those by method 2. Some circuits generated with these

two methods perform similarly for the Max-cut problem,

as shown in Figure 9d and 9f. Furthermore, in Figure 9a,

although the circuit from method 2 converges fast, it has a

large deviation. The circuits generated by the two methods

6



SA-DQAS: Self-attention Enhanced Differentiable Quantum Architecture Search

(a) W<WO op2-44 (b) W>WO op4-74 (c) W≈WO op4-54 (d) W≈WO op3-34 (e) W<WO op3-14 (f) W>WO op3-64

Figure 9: A comparison of the performance of circuits generated with (methods 1 and 2) and without self-attention in solving different
Max-cut problems. (a),(b) are evaluation results for Random graph, (c), (d) are for Ladder graph and (e), (f) are for Barbell graph. W
means generating circuits with self-attention, and WO means without self-attention.

perform similarly in solving different Max-cut problems,

and no circuit generated by one method will always per-

form better. However, the circuits generated in both ways

find the optimal solution faster than the baseline. Moreover,

the circuit generated by method 1 has a more stable and

reliable performance and is not sensitive to different initial

parameters.

In this part, we compare the structural and performing dif-

ferences between the circuits generated with SA-DQAS

and DQAS and the performances in solving different Max-

cut problems in the benchmark. When we look into the

results shown in Figures 9a and 9e, we can know that cir-

cuits generated by SA-DQAS, no matter which method

is used, these circuits outperform those created without

self-attention. And circuits in Figures 9c, indicating these

circuits don’t perform stably. Circuits created by DQAS,

shown in other figures, perform better than those designed

with SA-DQAS. However, if we look into their circuit ar-

chitectures, the data are given in Table 2. CircuitR−op4−74

with method 2 contains the fewest gates, especially param-

eterized ones. Next, we look into the evaluation results of

the Ladder graph. Circuits derived from op3-3 by these

three methods show similar performances, converging to the

minimum energy almost simultaneously and containing a

similar number of each gate type. The circuit generated by

DQAS for the Barbell graph doesn’t contain any controlled

gates. Controlled gates are essential in quantum circuits be-

cause they allow us to create interactions and entanglement

between quantum qubits, enabling various quantum compu-

tation and quantum information processing tasks. A circuit

without controlled gates is indistinguishable from a classical

circuit. However, the hardware costs for entanglement in

circuits designed by SA-DQAS are higher.

From these comparison results, we can know that by adding

self-attention to DQAS, a better circuit structure that keeps

the quantum features by containing entanglements can be

found, and the circuit shows better stability and repeata-

bility when solving problems and is insensitive to initial

parameters. Moreover, the number of gates in the generated

circuit is less, which saves the hardware resources needed to

build the circuit and reduces the errors and hardware noise

(a) Ideal circuit (b) Circuit from SA-DQAS

Figure 10: Evaluation of newly found architectures on the simula-
tor without noise. The results are averaged over 10 trials with the
different initial parameters.

generated by the quantum gate itself to a certain extent.

D. Fidelity

In this section, we test our algorithm for error mitigation

and study the fidelity between the pre-defined circuits and

circuits created by SA-DQAS. An experiment has been

done in [9] which proved that DQAS can be used for error

mitigation. We repeat this experiment but generate new

circuits with SA-DQAS. The pre-defined circuit is a three-

qubit QFT circuit. An x gate is added on each qubit at the

beginning for encoding. In the searching process, we set

up six placeholders in the circuit, half before the QFT part

and half after it, just like the original experimental setting

in [9]. The operation pool used in this experiment is Of1

(shown in Appendix E), which only contains single-qubit

operations. A noise model assumes that there are 2% BitFlip

errors between two gates and 20% BitFlip errors when a

qubit is idle. We design circuits by SA-DQAS in an ideal

environment and pick the one with the highest fidelity to the

ideal circuit in a noisy environment. The fidelity between

the auto-generated circuit by SA-DQAS (illustrated in 10a)

and the ideal circuit is 0.66, which is a little higher than the

fidelity (0.6) between the ideal circuit and the circuit derived

from DQAS. It indicates that SA-DQAS outperforms DQAS

in error mitigation.

We build three more noise models based on BitFlip. The first

type is designed by adding BitFlip errors with different oc-

currence probabilities on each qubit at the end. The second

type adds 2% BitFlip errors after each operation in the non-

empty (the chosen operation is not ”E”) placeholders of the

generated circuit and adds a 20% BitFlip to each qubit at the
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Table 4: A table that records the fidelity between the generated
circuit and the ideal circuit under different probabilities of BitFlip
noise when the placeholders are placed at different positions. The
circuits are automatically generated under an ideal environment
(B0.0) and 20% BitFlip noise (B0.2).

*/** B0.0 B0.1 B0.2 B0.3

Back B0.0 0.94 0.79 0.68 0.57

B0.2 0.97 0.81 0.69 0.57

Back and Front B0.0 0.97 0.79 0.68 0.57

B0.2 0.94 0.78 0.67 0.57

Front B0.0 0.99 0.77 0.65 0.54

B0.2 0.99 0.79 0.66 0.55

* The column headings of the table indicate the en-

vironments when searching for a circuit with SA-

DQAS. The row headers indicate the environment

the generated circuits are in when calculating the

fidelity between them and the ideal circuit.
** We search five architectures in each environment

and calculate the average fidelity under different en-

vironments.

end of the circuit. The third one uses the same noise model

given in [9]. Now we calculate the fidelity between the ideal

circuit and generated circuits in environments where BitFlip

errors occur with different probabilities.

From Table 4 we get the results. As the probability of the oc-

currence of BitFlip increases, the average fidelity decreases.

When placeholders are all behind or before the QFT part,

the circuits generated in a noisy environment have higher

average fidelity than those created in an ideal environment.

While the QFT part is in the middle of the circuit, the situa-

tion is precisely the opposite. Circuits are more stable and

reliable when created in a noisy environment. Their struc-

tures are better and suffer less from BitFlip noise, making

them more noise-resilient. Moreover, the noise resistance of

the generated circuit is also related to the circuit structure.

In [9] they only use single-qubit operations in the operation

pool. Such quantum error mitigation tricks can transfer

the coherent errors to the easily handled Pauli errors [9],

[18], [19]. We add controlled gates into the operation pool

form a new operation pool Of2 (given in Appendix E). In

this way, the automatically designed parameterized blocks

in the circuit architectures can consist of entangled gates.

Together with the operation pool containing single-qubit

gates, we generate circuits from both operation pools in an

ideal environment or add 20% BitFlip on each qubit at the

end of the entire circuit. The average fidelity of the searched

circuits is calculated in an ideal environment or with BitFlip

2 and 3 The comparisons are shown in Table 5.

When circuits (except the QFT part) contain controlled gates,

whether in ideal or noisy environments, the average fidelity

is lower than those that only contain single-qubit gates. Con-

Table 5: A table that records the fidelity between the generated
circuit from operation pools with and without controlled gates and
the ideal under different environments when the placeholders are
in three positions of the QFT part.

Ideal BitFlip 2 BitFlip 3

Y∗ N∗ Y N Y N

Back B0.0 0.91 0.94 0.66 0.68 0.56 0.65

B0.2 0.94 0.97 0.67 0.69 0.63 0.65

Back and Front B0.0 0.89 0.97 0.63 0.68 0.53 0.66

B0.2 0.89 0.94 0.64 0.67 0.51 0.65

Front B0.0 0.99 0.99 0.65 0.65 0.50 0.64

B0.2 0.99 0.99 0.64 0.66 0.47 0.64

* Y indicates the operation pool contains controlled gates,

and N indicates only single-qubit gates are in the opera-

tion pool.

trolled gates connect multiple qubits, and when one of them,

especially the control qubit, is perturbed by an error, it af-

fects the state of the other qubits. So, the controlled gates

suffer from noise errors with a larger margin of error, result-

ing in lower fidelity of the final circuit. Furthermore, more

controlled gates in a circuit can cause qubits to last longer in

idle states. When a qubit is idle, it has a higher probability

of suffering from errors called idling errors.

E. Settings

Experiments settings:

Table 6: Basic settings in different experiments.

Experiments #Qubits #Placeholders #Param. blocks∗

Max-cut 8 4 1

JSSP 5 4 1

Fidelity 3 6 1

* #Param. blocks indicate the number of parameterized

blocks used in the training process.

Operation pools:

Table 7: The types of gates in operation pools O1-O4

Operation pool Gate type

O1 RY, RZ, H, CZ

O2 RY, RZ, H, CNOT

O3 RY, RZ, H, CZ, CNOT

O4 H, U3, CU3

Benchmark graphs of Max-cut problem:

Baseline in Max-cut problem:
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Figure 11: Benchmark graphs used for Max-cut problem.

Figure 12: Baseline used for Max-cut problem.

Operation pools used for study the fidelity:

Of1 = {X : [0],X : [1],X : [2],

T : [0],T : [1],T : [2], ,

E : [0, 1, 2]

Of2 = {X : [0],X : [1],X : [2],

T : [0],T : [1],T : [2],

CNOT : [0],CNOT : [1],CNOT : [2],CNOT : [0, 1, 2],

CZ : [0],CZ : [1],CZ : [2],CZ : [0, 1, 2],

,E : [0, 1, 2, 3, 4]}
(15)
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