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Abstract

The range of weights in a model disrupts effec-

tive lower bit quantization. Penalizing the range

of weights improve quantization accuracy, but

calculation of range (max-min) is not differen-

tiable. In this work, we propose Differentiable

Soft Min-Max Loss (DSMM) to restrict weight

ranges so that we can get a quantization-friendly

model which has narrow weight ranges. We ap-

ply DSMM with a learnable parameter which can

adjust hardness of DSMM without requiring a spe-

cial hyper-parameter. DSMM improves lower bit

quantization accuracy with state-of-the-art post-

training quantization (PTQ), quantization-aware

training (QAT), and weight clustering across vari-

ous domains and model sizes.

1. Introduction

Quantization bit-resolution is inversely proportional to the

range of weights and affects accuracy of the quantized mod-

els. Since outliers tend to increase range, outliers are detri-

mental for quantization friendly models.

As an example, lets assume we want to quantize the weight

distributions shown in Figure 1 (left) into 4 bins. For the

original distribution in red most of the weights will be quan-

tized to the central 2 bins and the model accuracy would

drop significantly. This problem gets worse for low bit

quantization such as 1 or 2 bit quantization. To this end,

we introduce Differentiable Soft Min-Max Loss (DSMM),

a simple yet powerful method that helps to reduce weight

range during training without severely affecting full preci-

sion accuracy and provides a quantization friendly check-

point. Using DSMM loss we intend to trim the edges of the

black distribution and convert it to the red distribution as

shown in Figure 1 (left). Such a restriction might regress
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the full-precision model’s accuracy slightly as the model

has to operate under new constraints, but it would have a

quantization friendly weight distribution removing outlier

weights. Therefore, lower bit quantization accuracy can be

improved as shown in Figure 1 (right). In case of higher bit

quantization such as 4bit or 8bit, a model might already have

enough bits to properly represent wide ranges of weights.

Therefore the benefit of DSMM loss could be limited.

Soft max operation has been proposed in previous works [1],

but we bring it to the quantization domain for the first time

by modifying the function. The key innovation of our work

is DSMM loss for reducing a range of weights by oper-

ating on outliers more preferably to quantization. To this

end, we make the degree of smoothness (temperature α in

Equation (1)) in the function as a learnable parameter so

that it automatically fits to an optimal value without further

hyper-parameter search for the temperature factor. We then

add a new term e−α term into the function to encourage the

temperature to increase. Without the additional term, the

temperature would move towards negative infinite direction

to minimize the DSMM always and it disrupts the purpose

of DSMM, making quantization-friendly pre-trained model.

We show that DSMM loss works well with state of the

art post-training quantization (PTQ), quantization aware

training (QAT) and weight clustering algorithms. We also

show that our method is applicable to multiple domains like

computer vision and natural language processing.

2. Related Works

In this paper we have applied our DSMM loss with vari-

ous training time quantization (quantization-aware training,

QAT) algorithms like LSQ [2] and DoReFa [3] used in

PACT [4]. PACT clips activation values with a trainable

parameter for activation quantization and uses DoReFa for

weight quantization. LSQ quantizes weights and activations

with learnable step size (scale or bin size).

Also, we have compared our DSMM loss with a state-of-

the-art post-training quantization (PTQ) methods. DFQ

[5] equalizes per-channel weight ranges by applying per-

channel scaling factors. It resolves the wide weight range

problem across channels, but still the weight range would
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Figure 1. (Left) Example weight distribution for quantization using 4 bins. (Right) Benefit of DSMM loss for low bit quantization.

remain wide for lower bit quantization like 4bit as DFQ

does not target outliers within a channel. AdaRound [6]

proposed adaptive rounding for quantization bin assignment

instead of nearest rounding. SQuant [7] decomposes a layer

by the Hessian-based optimization objective into sub-items,

then composes them in a quantized domain. PD-Quant [8]

quantizes weights by comparing model prediction result

before and after quantization of each layer. Additionally,

we show DSMM loss is effective not only for integer quan-

tization but also for weight clustering. DKM [9] introduces

differentiable k-means clustering for weights to represent

them in n-bit centroids which have arbitrary float values.

In our extensible experiments, we show our DSMM loss im-

proves accuracies with cutting-edge QAT, PTQ and weight

clustering for lower bit quantization like 1bit, 2bit and 4bit.

3. Differentiable Soft Min-Max Loss

We introduce Differentiable Soft Min-Max Loss as an auxil-

iary loss to reduce the range of weights for every layer to get

better pre-trained models for further quantization or com-

pression. Just like L1 and L2 regularization our approach is

invariant to the quantization or compression technique used.

But as opposed to L1 or L2 regularization, Differentiable

Soft Min-Max Loss only affects the range of the distribution

and not the absolute magnitude of it. In our experiments,

we demonstrate that L2 regularization (1x(baseline) and

10x(heavy L2)) only affects the magnitude of the weights

but does not remove outliers from the distribution. As evi-

dent from Figure 1, heavier L2 regularization just reduces

the scale of weights but does affect the shape of the dis-

tribution whereas DSMM loss reshapes the distribution.

To capture the range we intend to calculate the difference

between the maximum and minimum value of the weights

in a easily differentiable form as illustrated below. The loss

for a given weight W is described in Equation (1).

Here temperature α is a learnable parameter per layer. e−α

term in the auxiliary loss Ldsmm, encourages temperature

α to increase during training time optimization process to

approach hard-min-max loss towards the end of training.

This loss smoothly penalizes not only outliers but also near-

outlier weights together. We allow α to be learnable because

in our experiments we found that fixing it introduces a new

hyper-parameter to tune while worsening the accuracy of the

model. A trainable α also allows us to control the smooth-

ness of the loss per layer therefore, introducing more degrees

of freedom to the loss.

smax =
Σ(W ⊙ eα×(W−Wmax))

Σeα×(W−Wmax)

smin =
Σ(W ⊙ e−α×(W−Wmin))

Σe−α×(W−Wmin)

LDSMM = (smax − smin) + e
−α

(1)

DSMM loss was employed during training time of the base

model itself and not during quantization. This was done

because the purpose of DSMM loss is to provide effective

initial weights for quantization. This ensures extensibility

of DSMM loss to any quantization technique.

4. Experiment

4.1. Post-Training Quantization with DSMM loss

We compare models trained using DSMM loss and other

weight regularization, L2 and heavy L2, using PTQ meth-

ods such as DFQ [5], AdaRound [6], SQuant [7], and

PD-Quant [8]. As shown in Table 1, models trained with

DSMM loss are more quantization friendly than other regu-

larization. DSMM loss shows the best accuracy as it reduces

outliers as well as weight range. On the other hand, heavy

L2 regularization makes weight ranges smaller, but it does

not remove outliers, therefore prove to be ineffective here.

Compared to FP32 accuracy of baseline models, models

trained with DSMM loss, have slight accuracy regression in

full-precision inference as we expected in Figure 1 (right).

However, after quantizing, the models trained with DSMM

loss shows better accuracies.
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Figure 2. Weight distribution of the first five 3x3 convolution layers of MobileNet-V2 using L2 norm (baseline), heavy L2 norm (10x

heavy L2 norm than baseline) and the proposed Differentiable Soft Min-Max Loss (the red dots correspond outliers).

Table 1. Top-1 accuracies (%) of MobileNet-V1 and V2 on ImageNet-1K using PTQ methods with 4bit weight and 8bit activation

quantization. Heavy L2: applied 10x heavy L2 regularization than baseline. Naı̈ve: quantizing without any advanced PTQ techniques.

DFQ [5], AR [6], SQ [7], PD-Q [8]. DSMMα: fixed α (10.0). DSMM: trainable α.

METHOD
MOBILENET-V1 MOBILENET-V2

FP32 NAÏVE DFQ AR SQ PD-Q FP32 NAÏVE DFQ AR SQ PD-Q

BASELINE 74.12 2.67 54.06 70.42 63.85 71.87 73.08 2.57 56.56 71.29 59.30 71.54

HEAVY L2 72.67 13.41 57.68 69.23 66.51 69.86 71.00 4.17 0.09 68.06 57.30 68.92

DSMMα=10 74.21 8.52 42.48 69.71 67.23 71.92 72.80 13.77 56.19 70.79 62.16 71.27

DSMM(OURS) 73.95 44.24 59.21 71.35 67.86 72.39 72.81 36.69 51.46 71.77 67.16 71.98

Table 2. BLEU score for machine translation task on Transformer

Base model [10] with 8bit weight quantization.

METHOD FP32 NAÏVE

BASELINE 28.2 2.9

DSMM 27.9 27.8

Table 3. Top-1 accuracies (%) of 2bit weight and 8bit activa-

tion PTQ using PD-Quant [8]. MNV1: MobileNet-V1, MNV2:

MobileNet-V2, RN50: ResNet-50, RN101: ResNet-101. FP32

accuracy is in Table 1 and Table 4. DSMM1: applied DSMM from

scratch. DSMM2: applied DSMM during fine-tuning

METHOD MNV1 MNV2 RN50 RN101

BASELINE 47.62 50.66 62.92 66.50

DSMM1 54.20 57.53 69.31 71.24

DSMM2 53.10 56.31 66.85 69.66

Even without advanced PTQ approaches, models trained

with DSMM loss can be reasonably quantized without any

further fine-tuning (See Naı̈ve in Table 1). This proves that

models with DSMM loss have good weight distribution so

they can be quantized with fairly high quantization accura-

cies. This approach scales to other applications like machine

translation as illustrated in Table 2. It is also applicable to

larger models like ResNet{50,101} as shown in Table 4.

In Table 3, we can clearly see the benefit of DSMM lossfor

lower bit PTQ. The accuracy of ResNet101 trained with

DSMM loss only regressed by 8.39% (79.63% → 71.24%),

while the baseline model trained without DSMM loss shows

higher absolute regression, 12.95% (79.45% → 66.50%).

4.2. PTQ for models fine-tuned with DSMM loss

Training models from scratch might not always be feasi-

ble especially given the cost and time taken. Therefore,

Table 4. Top-1 accuracies (%) of ResNet50 and ResNet101 on

ImageNet-1K with 4bit weight and 8bit activation PTQ.

METHOD
RESNET50

FP32 AR SQ PD-Q

BASELINE 78.04 74.73 74.68 76.60

DSMM 78.22 75.61 75.75 77.21

METHOD
RESNET101

FP32 AR SQ PD-Q

BASELINE 79.45 75.18 75.23 78.16

DSMM 79.63 76.71 77.20 78.49

we finetuned pre-trained models with a low learning rate

while applying DSMM as an additional loss to the existing

task loss. Our experimental results are shown in Table 3

where we applied DSMM on pre-trained models, followed

by PD-Quant (PD-Q) [8] for PTQ. It can be observed that on

quantization, finetuning a pre-trained model does not show

the same performance gains as training from scratch but

it is still significantly better than the baseline. This shows

that our method is also applicable to pre-trained models if

finetuned with the additional loss.

4.3. Quantization-Aware Training with DSMM loss

We apply state-of-the-art quantization techniques like PACT

[4] while training the models from scratch using DSMM

loss. For LSQ [2] we initialize the model to pre-trained

ResNet-18 (RN) [11] with DSMM loss.

As shown in Table 5, DSMM loss helps the quantization

techniques in improving their accuracy, especially for ex-

tremely low bit quantization such as at 2 bit while it shows

similar accuracies with 4 bit. For example, DSMM loss im-

proves 2 bit quantization accuracy with LSQ to over than
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Table 5. Top-1 accuracies (%) of ResNet18 with various QAT meth-

ods. Weights and activations are quantized with the same bit

(2W2A: 2bit, 4W4A: 4bit).

METHOD
2W2A QAT

FP32 PACT LSQ

BASELINE 69.76 51.97 58.33

DSMM 69.84 55.64 62.47

METHOD
4W4A QAT

FP32 PACT LSQ

BASELINE 69.76 66.90 69.90

DSMM 69.84 68.36 69.45

62% from 58%, but there is no noticeable difference in 4

bit LSQ accuracies with and without DSMM loss. The rea-

son why DSMM loss would not help much for higher bit

like 4 bit quantization is that QAT can effectively represent

outliers using many bits as we expected in Figure 1 (right).

4.4. Weight Clustering with DSMM loss

We evaluate the effectiveness of DSMM loss with the

state-of-the-art weight clustering technique, DKM [9], for

ResNet-18 and MobileNet-V1. The bit-dim ratio, b

d
is an

important factor in the DKM algorithm which effectively

defines the kind of compression a DKM palettized model

would see. We ran these experiments for both scalar and

vector palettization. For scalar palettization(dim = 1) we

ran 1 bit, 2 bit and 4 bit compression. Figure 3 shows that

DSMM loss significantly improves accuracy from DKM 1

bit and 2 bit models. As we discussed, there is no signif-

icant difference for higher bit like 4 bit because many bit

compression can also cover outliers even without DSMM.

We also expand the application of DSMM loss to vec-

tor palettization(2-bit/2-dim and 4-bit/4-dim) DKM [9] as

demonstrated in Figure 3. For these experiments, we kept

the effective bit-dim ratio, b

d
equivalent to 1 so as to see vari-

ation across the models almost compressed to 32x. Since

a vector palettized model will require range constraining

for all dimensions, we applied multi-dimensional DSMM

loss for all layers. For vector palettized ResNet-18 there

is an average absolute improvement of > 1% using mod-

els trained with DSMM loss, and for vector palettized

MobileNet-V1, the gain ranges from 2% to 5%.

Finally we also validated that DSMM loss for weight clus-

tering scales to other domains as well by applying it in

compressing MobileBERT [12]. For Question Answer-

ing (QNLI) [13] using MobileBERT, DSMM loss slightly

improved the performance of the model as demonstrated

in Table 6. Note that we applied DSMM loss to a QNLI

fine-tuning task based on a pre-trained MobileBERT [14].

It might be necessary to apply DSMM loss to the entire
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Figure 3. Top-1 accuracy for various compression ratios and mod-

els using weight clustering. nB/mD: n-bit/m-dim weight clustering.

training task of MobileBERT from scratch so that DSMM

loss would have more chances to get effective weight distri-

bution for model compression.

Table 6. Question-answering NLI (QNLI) accuracies of Mobile-

BERT using single dimension DKM

METHOD PRE-TRAIN 1-BIT 2-BIT

DKM BASELINE 90.41 61.34 80.12

DKM + DSMM 90.83 61.49 80.87

5. Discussion

As we discussed earlier, DSMM loss would be effective

for lower bit quantization, because higher bit quantiza-

tion can represent outlier weights and wide weight range.

Also most of state-of-the-art quantization techniques already

achieved reasonable accuracy with higher bit comparing its

full-precision models, so there would not be a room for

improvement further in higher bit quantization.

We are planning to conduct more studies with DSMM, such

as expending to large language model quantization and pro-

viding theoretical grounding from current empirical studies.

6. Conclusion

In this paper, we introduced Differentiable Soft Min-Max

Loss as an effective technique to reduce the weight range

for quantization for multiple tasks across domains. This

serves as a good initialization for PTQ, QAT and weight

clustering methods, and hence can be coupled with any of

them. This helps to augment the accuracy gained from such

techniques and is invariant to the quantization algorithm.

We demonstrated how DSMM loss converts a wide weight

range distribution to a more densely-packed distribution

for model quantization. While full-precision accuracy with

DSMM loss can be slightly regressed as it penalizes outlier

weights, it significantly improves quantization accuracy,

especially for lower bit.
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A. Experiment settings

A.1. Pre-training from scratch with and without DSMM loss

We train ResNet-18 [11], MobileNet-V1 [15] and MobileNet-V2 [16] on ImageNet 1K [17] with proposed Differentiable

Soft Min-Max Loss on a x86 Linux machine with eight GPUs to get pre-trained models before model compression and

quantization-aware training. We set initial learning rates to 1.0, 0.4 and 0.4 for ResNet-18, MobileNet-V1 and MobileNet-V2

respectively. We use SGD with 0.9 of momentum with Nesterov. We apply 1e-4 of weight decay (L2 norm weight

regularization) for ResNet-18 and 4e-5 for MobileNet-V1 and V2. For heavy L2-regularization, in Figure 2, we use 4e-4 of

weight decay (10x heavier than baseline) for MobileNet-V2 to see whether heavy L2-regularization helps quantization or

not as a naive solution for range restriction. Strength of DSMM loss is set to 0.01. The learnable parameter α is initially set

to 0.1. For comparison, we use pre-trained models of Resnet-18 from Torchvision. As we are using modified version of

ResNet-50, and ResNet-101, MobileNet-V1 and V2 for better FP32 performance, we trained those models from scratch

without DSMM loss using the same settings above.

A.2. Quantization and weight clustering

DSMM loss is not a model compression nor quantization method. It penalizes outlier weights during training of the

base model from scratch. To evaluate the effectiveness of DSMM loss with model compression and quantization, we

apply state-of-the-art compression/quantization techniques, DKM [9], LSQ [2], DFQ [5], AdaRound [6], SQuant [7], and

PD-Quant [8] to the pre-trained model with and without DSMM loss. Except SQuant 1, PD-Quant 2, DFQ and AdaRound 3,

since other works do not provide official implementation, we implement those techniques ourselves.

We follow the same hyper-parameters used in the works, but we apply compression and quantization for all layers including

the first and last layers. It is important to compress/quantize all layers including first and last layers considering computation

burden at the first layer with a large convolutional filter size such as 7x7 convolutions in the first layer of ResNet and the

large number of weights in the last linear layer, e.g., 1.2M of weights in the last layer of MobileNet-V1 which has 4.2M of

weights in total.

1https://github.com/clevercool/SQuant
2https://github.com/hustvl/PD-Quant
3https://quic.github.io/aimet-pages/
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