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Abstract

In this paper we present PICT, our differentiable

2D and 3D fluid simulator for machine learning

in the PyTorch framework with support for GPU

acceleration. We implemented the PISO algo-

rithm using custom CUDA operations for the core

components and Python for the overall algorithm

to achieve GPU performance while keeping the

simulation easily customizable. To support ge-

ometry beyond toy examples we support spatially

adaptive multi-block grids using a generalized co-

ordinate system. This allows the user to refine

the grid as necessary and align it to boundaries.

The forward simulation is validated using ana-

lytical and numerical references as well as long

rollouts for stability. The gradients of individual

components are checked numerically, and we con-

ducted non-trivial optimization and learning tests

to verify the usability of our gradients.

1. Introduction

Modeling and numerical simulation of fluid phenomena,

governed by the well-known Navier-Stokes (NS) equations,

has a long history in computer science. Computational

fluid dynamics (CFD) have many applications in weather

forecasting [1], medicine [2], and mechanical design [3],

but suffer from heavy computational complexity, especially

when employing direct numerical simulation (DNS). While

established methods like Reynolds-averaged Navier–Stokes

(RANS) and large eddy simulation (LES) aim to reduce

this computational complexity, one area of research that is

attracting increasing attention is to employ machine learning

(ML) methods to improve the performance of simulators.

One way is to completely replace the solver by a network
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that has learned the dynamics from data, but this has proven

to be unreliable in generalization and long rollouts [4]. A

more promising one is replacing or augmenting costly parts

of existing approaches with learned components in hybrid

solvers. Properly training such hybrid solvers often requires

the rest of the simulator to be differentiable to allow for

the more stable end-to-end training in which the learned

components can correct for their own prediction errors that

would otherwise accumulate in longer trajectories. Another

avenue that can benefit from differentiable solvers is learned

control tasks [5], [6] and design optimization [7]. Despite

the apparent interest in differentiable solvers, only very few

such methods exist [8], [9]. Bezgin et al. [10] argue that this

may be due to the mismatch between the typically low-level

implementation of high-performance solvers and high-level

machine learning frameworks, and subsequently introduced

JAX-Fluids [10] as a python framework that bridges this

gap.

We follow a similar avenue, albeit with different choices for

algorithms and discretization, and developed PICT, imple-

menting the PISO algorithm by Issa [11] for incompress-

ible flows in CUDA for GPU acceleration for the PyTorch

machine learning framework. Our solver is intended as a

general DNS solver that can be used with gradient-based

methods for various optimization tasks and applications and

supports spatially adaptive meshes by using a generalized

coordinate system [12], [13] and multi-block grids. This

allows the user to refine the grid as necessary and align it to

arbitrary boundaries while keeping the grid topology a regu-

lar Cartesian grid structure for easier memory handling and

straightforward connection to convolutional neural networks

(CNN). For the connection to auto differentiation (AD), we

implement analytical gradients for the core components of

the PISO algorithm, including an implicit Euler step, and

integrate them for use with PyTorch’s AD. As is common

for ML applications, we implement our solver for GPU for

better runtime performance. To validate our implementation,

we compare forward simulations to existing analytical or

numerical references. We also show our solver’s stability

in long turbulent rollouts. For differentiation, we validated

the gradients of individual operations numerically and show

that backpropagation through long rollouts is stable and

provides meaningful gradients for both direct optimization
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of physical quantities, i.e., viscosity and boundary velocity,

and for learning a control force with a CNN.

2. Method

2.1. Governing Equations and Algorithm

The governing NS equations to simulate incompressible

flows take the form of momentum

∂u

∂t
+∇ · (uu)− ν∇2

u = −∇p+ S (1)

and continuity

∇ · u = 0, (2)

with velocity u, pressure p, viscosity ν, time t, and external

sources S.

For the numerical simulation we use the PISO algorithm

introduced by Issa [11]. It comprises a predictor step to

solve the momentum equation (1) and advance the simu-

lation in time, followed by typically 2 corrector steps to

enforce continuity (eq. (2)) on the result. For the predictor

step

1

∆t
u
∗+∇· (un

u
∗)−ν∇2

u
∗ =

1

∆t
u
n
−∇p+Sn+1 (3)

the velocity is split into velocity from previous step u
n

(advecting) and the velocity guess u∗ (advected). In matrix

form this advection is Cu
∗ = 1

∆t
u
n −∇p+ S, which we

solve with an implicit Euler step.

For the corrector step the matrix C is split into its diagonal

A and off-diagonal entries H . With h = −Hu
∗ + u

0

∆t
, the

pressure correction comes from the linear system

∇
2(A−1p∗) = ∇ ·

(

A−1h+A−1Sn+1
)

(4)

which is solved for the pressure p. This pressure is then

used to compute the corrected, divergence-free velocity u
∗∗

with

u
∗∗ = A−1h−A−1

∇p∗ +A−1Sn+1 (5)

The pressure correction, equations 4 and 5, are repeated

twice [11], with an additional ∗ indicating the second update.

The velocity of the next time-step is then u
n+1 := u

∗∗∗.

2.2. Discretization

For discretization we use the finite volume method (FVM)

based formulation as described by Maliska [13]. At its core,

it uses the divergence theorem to convert the divergence op-

erators ∇· of the governing equations to sums over discrete

faces f of final volume elements.

∇ · u ≈
∑

f

uf · n⃗faf , (6)

where n⃗f is the face normal and af its area.

Transformations To align grid axes to physical bound-

aries and support refinement in areas of interest we include

the option to transform the vertices of the regular grids.

Since we use a FVM-based formulation, the face fluxes

created from eq. (6) need to take the new physical size and

orientation of the now-transformed faces into account. To

handle these mesh transformations we use the generalized

coordinate system as described by Kajishima and Taira [12]

and Maliska [13], which effectively scales af and rotates

n⃗f , but allows to precompute the required factors from the

mesh coordinates. We only support static meshes that do not

change during the simulation, but a discussion of temporally

changing grids can be found in [13].

Block structure To handle complex geometry, we use a

multi-block grid where the domain of interest can be split

into multiple blocks, but each block is still a regular grid

with its own velocity and pressure tensor that together make

up the global field. Advection and pressure are still solved

for the whole domain. Each side of a block can have one

boundary specified, either a connection with matching res-

olution or a prescribed quantity. The block connections

allow for more complicated meshes while keeping the regu-

lar structure for most of the memory. This also fits nicely

for the connection to CNNs where connections could be

handled by padding with a ghost layer of connected blocks.

Boundary Conditions In addition to the connections be-

tween blocks, we support Dirichlet boundaries for the ve-

locity, with Neumann being a possible extension, and an

advective outflow boundary. The advective outflow updates

the boundary between each PISO step by advecting the

block’s boundary cell layer into the boundary with some

characteristic velocity um to satisfy ∂u
∂t

+um
∂u
∂xi

= 0. This

prevents the boundary from reflecting flow structures back

into the domain [14]. During the PISO step the boundary

is then treated as a fixed Dirichlet boundary. The pressure

boundary conditions for Dirichlet velocity boundaries are

implicitly 0-Neumann, for the implementation these pre-

scribed boundaries can be largely ignored as the pressure

correction should not change them.

2.3. Implementation

Our solver is implemented as C++/CUDA module for

Python containing the individual operations needed to build

the PISO algorithm with implicit Euler advection. It com-

prises the setup of the advection/diffusion linear system

(matrix and RHS of eq. (3)), a preconditioned BiCGStab

GPU solver for advection, the setup of the pressure system

(matrix and RHS of eq. (4)), a simpler CG solver for pres-

sure, and the pressure correction for the predicted velocity

field (eq. (5)). It also includes the data structure necessary

to store the multi-block structure with its tensors and con-

2



PICT: Adaptive GPU Accelerated Differentiable Fluid Simulation for Machine Learning

Figure 1. Some example transformed multi-block meshes that can be handled by our simulator. From left to right: a torus grid with

rotational distortion, a (rather bad) mesh fitting a round obstacle in a block, a refined C-grid around an airfoil.

Figure 2. Velocity of the final frame of various forward simulations. For 2D the velocity is mapped to a color circle, for 3D the absolute

velocity vector is mapped directly to RGB. Top left: a multi-block vortex street setup with a rectangular obstacle, the white lines show

block connections. Top right: a crop of a vortex street using a torus grid and a rotating round obstacle. The cell centers are resampled to a

pixel grid, which leaves some empty black areas. Bottom left: a crop of the center slice of a 3D flow around a rotating cylinder. Bottom

right: a flow around a NACA 0012 airfoil, also resampled and cropped.

nections and make them accessible on the GPU. The final,

combined PISO algorithm is then implemented in Python to

allow for easier customization.

2.4. Differentiability

To support the differentiability needed for integration with

ML applicated we implement analytical gradients for the

individual operations. For the operations that build the lin-

ear systems, this is mainly done by ”inverting” the forward

compute graph. For the linear solvers we do not backpropa-

gate through the solution procedure of Ax = b, but instead

solve the system AT∂b = ∂x for ∂b [15]. The gradient w.r.t.

the matrix entries is then the outer product ∂A = −∂b⊗ x.

Since A is a sparse matrix, only elements that exist on A

are used for ∂A. For the connection to PyTorch AD the

individual differentiable operations are wrapped in Python

to enable the necessary tensor tracking.

3. Results

First we test various forward simulations to validate the ac-

curacy and long-term stability of our solver. Then we show

optimization and learning setups to verify gradient back-

propagation through longer rollouts beyond numerically

checked gradients.

3.1. Validation of the Forward Simulation

We validated our solver using the analytical solution of the

Plane Poiseuille flow, and numerical references for 2D [16]

and 3D [17] lid-driven cavity setups. Here we also tested

different Reynolds numbers, grid refinement towards the

closed boundaries, rotational distortions of the grid, and

permutations of the lid boundary for the lid-driven cavity

setups. See appendix B for more details and result graphs.

Flow Around Obstacle We investigated flows around

various obstacles to test solver stability. The first test is a

simple vortex street with a box obstacle and 8 computational

blocks, as shown in figure 2. Inflow is from the left, and

the domain is periodic in y-direction. The results show a

consistent and stable vortex shedding behavior. Our second

test is another vortex street with a round obstacle inside a

torus grid. Here the grid is split into 2 blocks, left and right

of the obstacle, to handle the now curved in- and outflow

boundaries. We further prescribed a tangential motion at the

obstacle boundary to simulate a clockwise rotating obstacle.

This induces vortex shedding from the start of the simulation

and redirects it from the center line, downwards in our case.

Then we extrude this torus vortex street to 3D with inverted

obstacle rotation which shows a more chaotic behaviour.

Lastly, we simulate the flow on a 3-block C-grid around a
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Table 1. Runtime Performance Metrics. The columns contain: sim steps: length of the simulation in PISO-steps. opt it: optimization

iterations for learning tasks, each including a full simulation. max mem: peak GPU memory usage. sim time: wall clock time for the

forward simulation, total and per simulation step, including network evaluation. opt time: is the same for the backpropagation and variable

update. The first 4 tests are forward simulations, followed by our 2 optimization tests. All test were run on a single Nvidia RTX A5000.

Test resolution #cells sim steps opt it max mem sim time opt time

Block Vortex Street 512× 96 48k 4102 - 32MB 13.5m (174ms) -

Torus Vortex Street 128× 60 7680 6585 - 17MB 10m (90ms) -

3D Vortex Street 128× 60× 32 245k 5755 - 181MB 43m (451ms) -

Airfoil 791× 143 113k 14788 - 200MB 162m (658ms) -

Direct Optimization 32× 32 1024 70 - 400 100 190MB 7m (45ms) 3m (22.5ms)

Learned Control 64× 32 2048 500 500 605MB 3h (40ms) 1h (14ms)

Figure 3. The final frame of the learned control test. From left to right: the first velocity of the simulation, the final velocity of a simulation

without control force, the final velocity with learned control force applied over the simulation, the control force of the final frame. The

velocity is mapped to a color circle and normalized in each visualization.

NACA 0012 airfoil. The left, upper, and lower boundaries

are prescribed with the inflow velocity, while we use the

advective outflow condition on the right. Visualizations

of the results are in fig. 2, sequences can be found in the

appendix.

3.2. Optimization and Learning

The gradients of our individual operations are validated

numerically using PyTorch’s gradcheck [18]. We further

investigated a simple direct optimization of a flow quantity

before training a neural network with gradients from our

solver. For the direct optimization we use a lid-driven cavity

setup and optimize both viscosity and lid velocity using

simple gradient descent (GD). As loss we use a L2 loss to

a reference simulation, using only the final velocity at the

horizontal and vertical center lines, similar to the velocity

profiles of the lid-driven cavity validation. Over the course

of the optimization both quantities converge towards their

targets, showing that the gradients point consistently in the

right direction even when backpropagating through a up to

400 steps long rollout. More information is in appendix D.

Learned Control To showcase training a CNN within our

solver we use the torus vortex street setup with a slightly

rotating obstacle to induce vortex shedding behavior from

the start. With this we train a simple 3-layer CNN Θ (3x3

kernel, stride 1, ReLU activation) that maps the velocity

to the forcing term of the next step Θ(un) = Sn+1. The

objective is to minimize the y-velocity after the following

PISO step, i.e. Ln+1 =
(

u
n+1
y

)2
. The simulation is run

for 500 iterations, and Θ and L are evaluated and applied at

every step. Gradients are then backpropagated through the

500 iterations rollout. In the end the network learns to keep

the flow away from the obstacle, which is shown in fig. 3.

4. Conclusion

In summary, we presented our differentiable fluid simulator

and its integration with ML applications. We showed its sta-

bility and accuracy in forward simulations and the efficacy

of the provided gradients for optimization tasks. While our

simulator is robust and works well in the investigated sce-

narios, there are still some limitations: not every quantity is

made differentiable, most notably the mesh transformations.

The quality of the mesh is also very important for stable

results, as large variations between neighboring cells, such

as seen in the middle mesh in fig. 1, quickly deteriorate the

results. We anticipate that the combination of a powerful,

efficient, and differentiable flow solver will enable a large

variety of interesting learning objectives that are highly rel-

evant for practical applications. We plan to make the solver

publicly available as open-source.
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A. Implementation Details

Fig. 4 shows a visualization of the data flow in our solver. The boxes are individual differentiable operations implemented in

C++/CUDA and wrapped in Python while the remaining structure of the PISO algorithm is realized directly in Python.

B. Validation Results

B.1. Plane Poiseuille flow

The plane Poiseuille flow is a simple 2D test case in which the NS equations simplify to have the analytic solution

u = G
2∗ν

y(1− y). It is a flow through a periodic channel with closed no-slip boundaries and a constant forcing G. In our

test we use ν = 1 and G = 1 and tested growing resolutions and refinement towards the closed boundaries. All resolutions

agree well with the analytic solution, as can be seen in fig. 5. For non-orthogonal grid transformations we also tested a grid

with rotational distortion in the center of the grid (not shown).

B.2. Lid-Driven Cavity

We compare a converged lid-driven cavity simulation to high-res DNS references for 2D [16], see Fig. 6 and 7 and 3D [17],

see Fig. 8, for different Reynolds numbers and with grid refinement towards the boundaries. With increasing resolution, the

solution converges to the reference. For higher Reynolds numbers (Fig. 7 and 8) the refinement, shown in the right pair,

further improves the results, while at lower Reynolds numbers the uniform grid performs better. Additionally, we tested

permutations of the lid and its velocity direction and rotational distortions of the grid (not shown). The results on a distorted

grid are impacted by the worse mesh quality but are still stable and close to the reference.

C. Simulation Sequences

Figures 9 to 13 show several interesting frames from different simulations. Note that compared to the ’sim steps’ from Table

1 a frame can consist of multiple simulation steps. The last frame shown is always the final step of the simulation.

D. Optimization

As mentioned in sec. 3.2, we run direct optimizations (no network training) on two different low-dimensional flow quantities,

namely viscosity and lid velocity, in the same lid-driven cavity setup that we also used for the simulation validation above.

Here, we use a 2D setup with a resolution of 32× 32 and closed no-slip boundaries. The boundary at the lower y-border

moves in x-direction as the driving lid. As objective for the optimization we use a L2 loss to the velocity of a reference

simulation. This loss is evaluated only on the last frame of the simulation and only on the horizontal and vertical center

lines of the grid, meaning that this sparse supervision is backpropagated through the complete simulation rollout. We use

simple gradient descent without momentum for the optimization. The learning rate depends on the quantity optimized.

When optimizing a quantity, it is initialized as uinit = 1 for lid velocity or νinit = 0.005 for viscosity. The target values

are utar = 0.2 and νtar = 0.001 respectively. This results in both the initial and target state having Re = 200. A quantity

that is not optimized in a test is set to its target value. We run the optimization for 100 iterations (variable updates). Each

iteration runs a simulation for 10 time units with adaptive time-steps sizes based on the current lid velocity. When optimizing

the quantities individually they converge against their respective value used in the reference simulation, as expected, see

fig. 14 and 15. However, there is no unique solution given the simple objective when jointly optimizing viscosity and lid

velocity, where a higher velocity can compensate for a lower viscosity and vice versa. While this results in flows of different

Reynolds number that are visually distinct, it still converges to a solution with low loss. The exact solution found depends

on the relative learning rates used for the optimization, as shown in fig. 16.
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Figure 4. A flow chart showing the implemented components of our solver and their interaction.
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Figure 5. The 2 graphs on the left show vertical u-velocity profiles for the plane Poiseuille flow for increasing resolution from 8× 8 to

128 × 128. Left is a uniform grid, middle uses a grid refined towards the closed boundaries. On the right is a stream plot of the 2D

lid-driven cavity with Re 5000 and resolution 128× 128 with the lid at the top moving to the right.

Figure 6. Velocity profiles for the 2D lid-driven cavity with Re 100 for increasing resolutions. The left image of a pair is the u-velocity on

the vertical center line, and the right is the v-velocity on the horizontal center line. The left pair uses a uniform grid, the right a grid that

was refined towards all boundaries.

Figure 7. Velocity profiles for the 2D lid-driven cavity with Re 5000 for increasing resolutions. The left image of a pair is the u-velocity

on the vertical center line, and the right is the v-velocity on the horizontal center line. The left pair uses a uniform grid, the right a grid

that was refined towards all boundaries.

Figure 8. Velocity profiles for the 3D lid-driven cavity with Re 1000 for increasing resolutions. The left image of a pair is the u-velocity

on the vertical center line, and the right is the v-velocity on the horizontal center line. The left pair uses a uniform grid, the right a grid

that was refined towards all boundaries.
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Figure 9. Simulation of a 2D flow around a box obstacle. Top left: frame 1, top right: frame 260, bottom left: frame 350, bottom right:

frame 500.

Figure 10. Simulation of a 2D flow around a round obstacle that is rotating clockwise. Left to right: frame 1, 25, 200.

Figure 11. Simulation of a 3D laminar flow around a round obstacle, middle slice in z-dimension. Left to right: frame 1, 25, 200.
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Figure 12. Simulation of a 3D turbulent flow around a round obstacle that is rotating counter-clockwise, middle slice in z-dimension. Left

to right: frame 1, 25, 200.

Figure 13. Simulation of a 2D flow around a NACA 0012 airfoil. Top left: frame 1, top right: 70, bottom left: 120, bottom right: 200.

Figure 14. Optimization of the lid velocity with learning rate 4e-2. From left to right: final frame of the simulation with initial parameters,

with optimized parameters, with the reference parameters, loss over the optimization iterations, lid u-velocity over the optimization

iterations.
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Figure 15. Optimization of the viscosity with learning rate 1e-5. From left to right: final frame of the simulation with initial parameters,

with optimized parameters, with the reference parameters, loss over the optimization iterations, viscosity over the optimization iterations.

Figure 16. Joint optimization of lid velocity and viscosity. For the velocity we use a learning rate of 2e-2 in both cases, while the viscosity

learning rate is 4e-7 in the top row and 6e-7 in the bottom row. From left to right: final frame of the simulation with initial parameters,

with optimized parameters, with the reference parameters, loss over the optimization iterations, lid u-velocity over the optimization

iterations, viscosity over the optimization iterations. The bold dashed line shows the target value.
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