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Abstract

Existing studies have shown that Graph Neu-

ral Networks (GNNs) are vulnerable to adver-

sarial attacks. Even though Graph Transform-

ers (GTs) surpassed Message-Passing GNNs on

several benchmarks, their adversarial robustness

properties are unexplored. However, attacking

GTs is challenging due to their Positional En-

codings (PEs) and special attention mechanisms

which can be difficult to differentiate. We over-

come these challenges targeting three representa-

tive architectures based on (1) random-walk PEs,

(2) pair-wise-shortest-path PEs, and (3) spectral

PEs – and propose the first adaptive attacks for

GTs. We leverage our attacks to evaluate robust-

ness to (a) structure perturbations on node classi-

fication; and (b) node injection attacks for (fake-

news) graph classification. Our evaluation reveals

that they can be catastrophically fragile and un-

derlines our work’s importance and the necessity

for adaptive attacks.

1. Introduction

Graphs are versatile data structures that have applications

in a wide range of different domains and Graph Neural

Networks (GNNs) have become the tool of choice for many

learning tasks on graphs. Given the increasing popularity

of GNNs, multiple studies in the past years have developed

adversarial attacks for GNNs and analyzed their robustness

[1]–[3]. These studies mostly focus on Message-Passing

GNNs (MPNNs), such as the Graph Convolutional Network

(GCN) [4] and show that GNNs are vulnerable to even slight

graph structure perturbations [1].

Recently, Graph Transformers (GTs) have started to increas-

ingly outperform MPNNs in many common benchmarks [5].
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They address inherent limitations of MPNNs such as over-

smoothing, over-squashing, and limited receptive fields [5].

Despite their increasing popularity, the adversarial robust-

ness of GTs is entirely unexplored. Consequently, the un-

known stability of GTs poses a substantial risk in practical

applications, where robustness is crucial. Yet evaluating,

their robustness is non-trivial since they employ modified at-

tention mechanisms and Positional Encodings (PEs) that are

often non-differentiable w.r.t. the graph structure. This ren-

ders the immediate application of standard gradient-based

adaptive attacks impossible. In prior work, similar issues

were addressed with adaptive attacks, tailored to specific

architectures [6]–[8] including GNNs [9].

To provide the first analysis on the robustness of GTs, we

propose continuous relaxations and perturbation approxi-

mations that enable us to apply adaptive attacks to three

representative GT architectures. 1) Graph Inductive bias

Transformer (GRIT) [10], based on random walk PEs; 2)

Graphormer [11], which uses pairwise shortest path PEs;

and 3) Spectral Attention Network (SAN) [12], with spec-

tral PEs. We evaluate the adversarial robustness of the three

GT models for node and graph classification. To this end,

we propose a node injection attack (NIA) which we ap-

ply to attack fake news detection. Fig. 1 provides a direct

comparison between the robustness of different GNNs and

highlights crucial robustness vulnerabilities of GTs.

2. Background

Let G = (V, E) be an undirected attributed graph with n
nodes V = {v1, ..., vn} and m edges. Let xi ∈ R

d be the

feature vector of node vi. Then the graph can be defined as

G = (A,X) with its symmetric binary adjacency matrix

A ∈ {0, 1}n×n and node feature matrix X ∈ R
n×d. The

diagonal degree matrix D with entries Dii = deg(vi) =
∑n

j=1 Aij and the normalized symmetric graph Laplacian

matrix Lsym = I − D−1/2AD−1/2 can both be derived

from A. The GNNs considered in this work are functions

fθ(A,X) with model parameters θ, and H(l) denotes the

updated node representations in the model layers.

Structure attacks. The attack objective is described by the

following optimization problem:

max
Ã s.t. ∥Ã−A∥0<∆

Latk(fθ(Ã,X)) (1)
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Figure 1. The classification accuracy for different GNNs with varying attack budget on the two UPFD Twitter fake news datasets (graph

classification, node injection attacks) and CLUSTER (node classification, structure attack). The strongest attack for each budget is shown.

where fθ is the GNN model with fixed parameters θ, Latk

is a suitable attack loss function, and Ã ∈ {0, 1}n×n is the

discrete perturbed adjacency matrix in relation to A with

the number of edge flips bounded by the budget ∆. It is

convenient to model the perturbation as a function of the

binary matrix indicating the edge flips B ∈ {0, 1}n×n:

Ã = A+ δA, δA = (1n1
T
n − 2A)⊙B (2)

with element-wise product ⊙. Applying a continuous relax-

ation B ∈ [0, 1]n×n to the combinatorial problem makes

optimization with gradient descent possible. In this setting,

the entry Bij represents the probability that the edge (vi, vj)
is flipped. Discrete perturbations can then be sampled from

the continuous solution. The budget constraint becomes

E[Bernoulli(B)] =
∑

Bij ≤ ∆, which can be dealt with

by using projected gradient descent [13]. For large graphs,

optimizing over all entries in B at once becomes infeasible.

Projected Randomized Block Coordinate Descent (PRBCD)

solves this with a strategy that optimizes over sampled ran-

dom blocks of limited size [14].

Figure 2. Generic

GT architecture.

Graph transformers. GTs apply

the popular transformer architec-

ture for sequences [15] to arbitrary

graphs. In this work, we focus on

GTs that apply global self-attention,

where each node can attend to all

other nodes. A ‘vanilla’ structure-

unaware self-attention head is de-

fined as:

Attn(H) = σ

(

QKT

√
dk

)

V (3)

where Q = HWq,K = HWk ∈
R

n×dk are the query and key projec-

tions, V = XWv ∈ R
n×d is the

value projection, and σ is the softmax function. A generic

GT is depicted in Fig. 2. The individual attention scores are:

wij = Wqhi · Wkhj/
√
d,

αij = σ(wij) =
ewij

∑

k e
wik

(4)

For structure awareness, prior works commonly add Po-

sitional Encodings (PEs) to the node features: H(0) =
X+ψ(A). We categorize the PEs roughly in three main cat-

egories: (1) random walk encodings, (2) distance encodings,

and (3) spectral encodings. In addition to PEs, many GTs

adapt the attention mechanism to capture relevant topologi-

cal aspects of the graph explicitly in the attention operation.

3. Graph transformer relaxations

The main obstacles for gradient-based structure attacks on

GTs fθ are PEs and attention mechanisms that are designed

for a discrete graph structure. As a result, the model output

is often a discontinuous function of the continuous input

adjacency matrix Ã ∈ [0, 1]n×n, rendering continuous opti-

mization ineffective. We identify such components in the GT

models and continuously relax them: f̃θ. For designing the

continuous relaxations, we identify three main principles:

Principle I: Relaxed and target models coincide for dis-

crete inputs. The prediction should equal f̃θ(A) = fθ(A)
for any discrete adjacency A ∈ {0, 1}n×n.

Principle II: f̃θ can interpolate “smoothly” between any

different discrete graphs. In other words, f̃θ(Ã) should

be continuous w.r.t. Ã but does not need to be continuously

differentiable.

Principle III: The relaxed model f̃θ must be efficient. It

is a critical property that the relaxation does not excessively

increase memory and runtime complexity.

Next, we introduce a representative GT for each of the PE

categories and propose continuous relaxations for problem-

atic components based on these principles.

Random-walk-based GRIT. The components of the GRIT

model [10] are already continuous and do not require addi-

tional relaxations for gradient-based attacks. Details on the

architecture are given in Appendix B.

Distance-based Graphormer. The Graphormer model [11]

learns a PE embedding vector z ∈ R
d for each integer de-

gree value (# of neighbors) which are added to the node
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features according to their degrees: h
(0)
i = xi + zdeg(vi).

To allow for continuous degrees, we linearly interpolate be-

tween the PE embeddings of the two closest integer values:

z̃deg(vi) = η · zdl+1 + (1− η) · zdl
with dl = ⌊deg(vi)⌋, η = deg(vi)− dl

(5)

Similarly, a learnable scalar b ∈ R is assigned to each dis-

crete Shortest Path Distance (SPD). This value is added as

a bias to the raw attention scores: ŵij = wij + bspd(vi,vj),.
When a very small edge probability lies on a (simple) short-

est path, the path is less likely to exist in the discrete sampled

adjacency matrix. Therefore, low edge probabilities should

only marginally affect the original SPDs. To model this rela-

tionship, we use the reciprocal of the continuous adjacency

matrix Rij = 1/Ãij for the SPDs. We interpolate again to

handle the continuous distance values and compute:

b̃spd(vi,vj) = η · bsl+1 + (1− η) · bsl
with sl = ⌊rspdij⌋, η = rspdij − sl

(6)

where rspdij = spd(vi, vj |R) is the sum of edge weights

that lie on the shortest path from vi to vj for the graph

defined by R. Similar to ReLU activations, the distances

are not differentiable everywhere. However, we use the sum

over one possible shortest path as a proxy. Backpropagation

through this sum yields the gradients w.r.t the continuous

adjacency matrix. Note that for discrete edge probability

values 0 and 1, the reciprocal edge weights become −∞
and 1, respectively, yielding the original distances. Hence,

we do not alter the clean predictions if δA = B = 0 (see

Principle I).

Spectral SAN. The SAN architecture [12] uses learned

Laplacian-based PEs (LPEs), starting with the eigen-

decomposition of the Laplacian Lsym = UΛUT, where

diagonal entries of Λii = λi are the eigenvalues of Lsym

in ascending order, and the columns of U are the corre-

sponding eigenvectors. While the Laplacian matrix itself

is a continuous functions of the entries in the adjacency

matrix, its eigen-decomposition poses challenges for gradi-

ent computation, especially w.r.t the eigenvectors. To avoid

direct gradient computation, we use results from matrix per-

turbation theory [16], [17] to approximate the perturbed

eigen-decomposition as a simpler function of the input per-

turbation. The perturbation is δLsym = L̃sym − Lsym,

where L̃sym is the Laplacian of the continuous adjacency

matrix Ã. The first-order approximations for the eigenvalues

and vectors are [17]:

Λ̃ = Λ+ δΛ, δΛ ≈ diag(UTδL U) (7)

Ũ = U + δU , δU ≈ −U
(

Π⊙UTδL U
)

,

where Πij =

{

1
λi−λj

if λi ̸= λj

0 else

(8)

For the approximation to hold with repeated eigenvalues,

special care for the choice of arbitrary eigenvectors that span

the eigenspace is required, as described by Bamieh [17].

The SAN attention mechanism computes separate attention

scores between connected and unconnected nodes, using

different key and query weights. A hyperparameter γ ∈ R
+

controls how the two scores are relatively scaled, varying

the bias towards sparse or full attention. To relax the binary

decision of whether an edge is real or fake, we add edges

with probability between 0 and 1 to both attention mecha-

nisms. The contribution of the uncertain edges is weighted

relative to the probabilities of being real or fake using a

corresponding bias:

α̃ij =
γ

1 + γ
σ
(

wfake,ij + log(1− Ãij)
)

+
1

1 + γ
σ
(

wreal,ij + log(Ãij)
)

(9)

For a discrete real edge, i.e., Ãij = 1, the logarithm terms

become −∞ and 0 respectively. The equation then simpli-

fies to αij =
1

1+γ softmax (wreal,ij), thus only contributing

to the ‘real’ attention scores, as in the original SAN. The

same can be shown for fake edges.

4. Node injection attack

We also consider the relevant case of inserting nodes into

an existing graph structure. In contrast to the usual framing

of Node Injection Attack (NIA), where the attacker also

chooses the node features for the new vicious nodes [18],

we connect existing nodes from other graphs of an inductive

graph dataset. Therefore, the nodes’ features are fixed but

physically realizable even if, e.g., they represent embeddings

of natural language. Details are shown in Appendix C.

During the structure attack optimization, probabilities are

assigned to edges, yet for NIAs, node probabilities are also

relevant to allow for a smooth node insertion. To obtain

these from the edges, we propose a simple iterative compu-

tation. For a continuous connected graph, let N (vi) be the

1-hop neighborhood of node vi. We can approximate the

probability pi of vi being connected to the graph, by using

the probability that it is connected to its neighbors and the

probability that these neighbors are connected to the graph.

We start with the assumption that all nodes are connected to

the graph: p
(0)
i = 1, and update using the edge probabilities:

p
(t+1)
i = 1−

∏

vj∈N (vi)

(1−Aij · p(t)j ) (10)

To to ensure that the model output is continuous w.r.t. node

injections, for graph level tasks we weigh the nodes’ contri-

butions in the sum or mean graph-pooling by their probabili-

ties. For GTs, we additionally use them to bias the attention

scores: ŵij = wij + log(pj).
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Figure 3. CLUSTER attack results.

5. Results

Fig. 1 shows the strongest attacks on the different GNNs

for CLUSTER and the UPFD fake news detection datasets.

It shows that some GTs can be surprisingly fragile. More

detailed results are reported in Appendix E.

Results for three attack types are shown: adaptive, transfer,

and random. Adaptive is the gradient-based PRBCD attack

with our relaxations described in § 3. Random is a baseline

attack that randomly flips as many edges as the budget

allows. The random attack gets the same number of model

evaluations as the adaptive attack during optimization. Of

those, the strongest random perturbation is chosen. For a

transfer attack, the perturbed graph generated by an adaptive

attack on one model is used as an adversarial input for a

different GNN model. We report results for the strongest

transfer perturbation at each budget.

We evaluate our structure attacks on the inductive node

classification dataset CLUSTER [19]. It contains SBM-

generated graphs with 6 clusters, where each cluster has

one labeled node. The task is to predict which node belongs

to which cluster. The node classification accuracy for the

CLUSTER dataset for different attack budgets is shown in

Fig. 3. We hypothesize that the straightforward nature of

the task and dataset lead to the same type of perturbations,

independent of the model. This would explain the strong

transferability and little variation in robustness across mod-

els. This outcome positively indicates the effectiveness of

our adaptive attacks, as they consistently identify meaning-

ful perturbations across all GTs. They may sometimes be

weaker than the transfer attacks simply due to a more diffi-

cult optimization function. To avoid the natural fragility in

the data, we also evaluate a constrained attack that prohibits

modifying edges to the labeled nodes.

Additionally, we attack the CLUSTER graphs with different

combinations of our relaxations. The results for Graphormer

and SAN are shown in Tab. 1 and 2 respectively. All con-

tinuous relaxations individually seem to provide somewhat

useful gradients and can be used to get better than random

results. Yet some lead to stronger attacks than others, and

using multiple does not seem to work better than just one.

Table 1. Graphormer attacks using relaxations for a fixed budget

of 1% for CLUSTER unconstrained (u.) and constrained (c.).

Deg. SPD
Acc. (%)

CLUSTER, u. CLUSTER, c.

✓ ✓ 52.61± 0.57 60.00± 0.42

✓ 46.78± 0.46 68.45± 0.37

✓ 50.81± 0.41 60.66± 0.21

random 66.52± 0.61 70.29± 0.32

clean 77.89 77.89

Table 2. SAN attacks using relaxations for a fixed budget of 1%

for CLUSTER unconstrained (u.) and constrained (c.).

Atten.
Lap.
pert.

Acc. (%)

CLUSTER, u. CLUSTER, c.

✓ ✓ 53.95± 0.59 63.27± 0.27

✓ 53.87± 0.26 63.20± 0.12

✓ 57.12± 0.62 67.22± 0.17

random 65.70± 0.65 68.86± 0.32

clean 76.12 76.12

Since there is not one that is consistently better than the

others, a good approach might be to try all combinations as

an ensemble and choose the strongest. A similar evaluation

for NIAs on the UPFD datasets is shown in Appendix E. It

indicates that only adding the node probability bias to the

attention scores seems to be sufficient and leads to some of

our strongest attacks.

In conclusion, we empirically demonstrate that GTs can

be catastrophically fragile in some settings and remarkably

robust w.r.t. the studied attack in other settings. This diverse

picture underlines the importance and need for adaptive

attacks to reveal nuanced robustness properties. Similarly,

also the comparison of GT’s and MPNN’s robustness w.r.t.

the studied attacks does not allow for a conclusion about

which approach is superior in terms of robustness. Neverthe-

less, our work sets the important cornerstone for empirical

research in answering this very question.
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and Y. Bengio, “Graph attention networks,” in International
Conference on Learning Representations, 2018.

[35] S. Brody, U. Alon, and E. Yahav, “How attentive are graph
attention networks?” In International Conference on Learn-
ing Representations, 2022.

6

https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428


Relaxing Graph Transformers for Adversarial Attacks

A. Related work

Triggered by the seminal works of Zügner, Akbarnejad, and Günnemann [1] and Dai, Li, Tian, et al. [20], a research area

emerged spanning attacks, defenses, and certification of GNNs [21], [22]. However, GTs have been entirely neglected

despite their recent success on common benchmarks. Zhu, Huang, Chen, et al. [23] is the sole exception acknowledging this

research gap. However, they solely propose a robust and sparse transformer and evaluate it with non-adaptive poisoning

attacks. Thus, they do not shine light on the robustness of the diverse set of graph transformers nor do they study adaptive

attacks.

Our attack is rooted in the GNN robustness literature. Xu, Chen, Liu, et al. [13] proposes the first Projected Gradient

Descent attack for discrete L0 perturbations of the graph structure, with a focus on message-passing architectures. Geisler,

Schmidt, Şirin, et al. [14] extend this PGD with a randomization scheme to obtain the efficient Projected Randomized Block

Coordinate (PRBCD) attack. Gosch, Sturm, Geisler, et al. [24] extend PRBCD with local constraints, which is comparable

with our relaxed GTs. While highlighting the general nature of our framework, we leave the empirical evaluation for future

work. Further important related works are Lin, Blaser, and Wang [25], Zhu, Cui, Zhang, et al. [26], and Bojchevski and

Günnemann [27], where the authors study similar approximations for perturbations on the eigen-decomposition of the graph

Laplacian. Moreover, Wang, Dou, Chen, et al. [28] attack message-passing architectures on the UPFD fake news detection

using reinforcement learning. As an entry to Node Insertion Attacks (NIA), we refer to Wang, Luo, Suya, et al. [18] and

Zou, Zheng, Dong, et al. [29]

B. Graph transformers

Graph transformers (GTs) apply the popular transformer architecture for sequences [15] to arbitrary graphs. A general GT

architecture is depicted in Fig. 2. In this work, we focus on GTs that apply global self-attention, where each node can attend

to all other nodes. A ‘vanilla’ structure-unaware self-attention head is defined as:

Attn(X) = softmax

(

(XWq)(XWk)
T

√
dk

)

(XWv) (11)

where Wq,Wk ∈ R
d×dk are the weights for the query and key projections, and Wv ∈ R

d×d is the value weight matrix. For

structure awareness, prior works commonly add Positional Encodings (PEs) to the node features:

X̂ = X + ψ(A) (12)

GT categorization. We categorize the PEs roughly in three main categories: (1) random walk encodings, (2) distance

encodings, and (3) spectral encodings. In addition to PEs, many GTs adapt the attention mechanism to capture relevant

topological aspects of the graph explicitly in the attention operation. Some GT architectures can optionally leverage available

edge features, which we omit here since our evaluation data does not include any. Furthermore, edge features are typically

not considered for pure structure perturbation attacks, as adding new edges would also require adding features for them.

Next, we introduce a representative GT for each of the PE categories.

(1) Random-walk-based GRIT. The GRIT model architecture [10] terms their PE Relative Random Walk Probabilities

(RRWP). The random walk encodings are collected from a fixed-length walk of length k, which is a hyperparameter (usually

k > 10). The PEs are based on the tensor:

P = [I,M ,M2, ...,Mk−1] ∈ R
n×n×k, with M = D−1A (13)

This yields an embedding vector Pij ∈ R
k for each of the n2 node-pairs (vi, vj). The diagonal vector entries are transformed

to dimension d by a linear layer and added to the node features as PEs: h
(0)
i = xi + g1(Pii). Additionally, all n2 vectors are

transformed by a separate linear layer and added as node-pair features: h
(0)
i,j = g2(Pij). The node representations hi and

node-pair representations hi,j are updated in each transformer layer by a modified attention mechanism, which includes an

adaptive degree-scaler that is applied to the node representations:

hi = (hi ⊙ θ1) + log(1 + deg(vi)) · (hi ⊙ θ2) (14)

where θ1,θ2 ∈ R
d are learnable weights.
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(2) Distance-based Graphormer. The Graphormer model [11] uses degree PEs. For each discrete degree value there is a

learnable embedding vector z ∈ R
d. The embeddings are added to the node features according to the node degrees:

h
(0)
i = xi + zdeg(vi) (15)

Similarly, a learnable scalar b ∈ R is assigned to each discrete Shortest Path Distance (SPD). This value is added to the raw

attention scores and results in a re-weighting of the attention weights after applying the softmax function:

ŵij = wij + bspd(vi,vj), αij = softmax(ŵij) (16)

where wij = Wqhi · Wkhj/
√
d. For graph-level tasks, a virtual node is added to the graph with its own distinct learnable bias

bvirtual , which is used as graph representation in the pooling stage.

(3) Spectral SAN The SAN architecture [12] uses learned Laplacian-based PEs (LPEs), starting with the eigen-

decomposition of the Laplacian Lsym = UΛUT, where diagonal entries of Λii = λi are the eigenvalues of Lsym

in ascending order λ1 ≤ λ2 ≤ ... ≤ λn, and the columns of U are the corresponding eigenvectors. Determined by a

hyperparameter, only the k-th smallest eigenvalues and their eigenvectors are used, which we write as Λk ∈ R
k×k and

Uk ∈ R
n×k. For each node vi, its PEs are initialized as the concatenation of the eigenvalues and the i-th row of Uk:

Pi = [diag(Λk) ∥ (Uk)i] ∈ R
k×2 (17)

Further processing by a transformer encoder results in pi = f(Pi) ∈ R
dp , which is concatenated to the node features:

h
(0)
i = xi∥pi. Additionally, the main graph transformer attention mechanism is modified to have two separate key and query

weights for connected and unconnected node-pairs. The attention scores to the connected nodes and to the unconnected

nodes are computed independently, each with a softmax. A hyperparameter γ ∈ R
+ controls how the two scores are

relatively scaled, varying the bias towards sparse or full attention:

αij =

{

1
1+γ softmax (Wq,realhi · Wk,realhj/

√
d) if (vi, vj) is a real edge

γ
1+γ softmax (Wq,fakehi · Wk,fakehj/

√
d) otherwise

(18)

Some graph transformer architectures (including all three chosen in this work) can optionally leverage available edge

features, which we omit here since our evaluation data does not include any. Furthermore, edge features are typically not

considered for pure structure perturbation attacks, as adding new edges would also require adding features for them.

C. Node injection attack

We also consider the relevant case of inserting nodes into an existing graph structure. In contrast to the usual framing of

Node Injection Attack (NIA), where the attacker also chooses the node features for the new vicious nodes [18], we connect

existing nodes from other graphs of an inductive graph dataset. Therefore, the nodes’ features are fixed but physically

realizable even if, e.g., they represent embeddings of natural language. NIA in this inductive setting is also interesting for

attacking GTs since they allow to increase the graph size successively. This growth implies that the attention mechanism

must allow for a smooth insertion of nodes.

Let D = {G1, ...,GN} be the dataset including all graphs, where each graph Gi = (Vi, Ei) has ni nodes Vi = {vi,1, ..., vi,ni
}

with node feature matrix Xi ∈ R
ni×d. The total number of nodes in the dataset is nD =

∑

ni. Let Gatk be the graph

that is being attacked. We define the candidate set of injection nodes as the union of the nodes of all other graphs:

Vcs =
⋃

Gi∈D\Gatk
Vi, which includes ncs = nD − natk nodes with corresponding features Xcs. It is of course possible to

restrict this candidate set if is is not sensible or not feasible to include all nodes.

We can augment the original (connected) graph by adding the injection candidate set as isolated nodes. Then G′
atk =

(A′
atk,X

′
atk) is the augmented graph with:

A′
atk =

[

Aatk 0

0 0

]

∈ {0, 1}nD×nD , X ′
atk =

[

Xatk

Xcs

]

∈ R
nD×d (19)

Edge-flip perturbations to this augmented adjacency matrix, Ã′ = A′ + δA′, model both structure perturbations and node

injections together. As in Eq. 2, the perturbation δA′ can be expressed in terms of a binary edge flip matrix:

Ã′ = A′ + (1n1
T
n − 2A′)⊙B′, with B′ =

[

B E

ET F

]

∈ {0, 1}nD×nD (20)
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Since the number of edge flips is bounded by a budget usually much smaller than the candidate set size i.e., ∆ ≪ ncs, the

perturbed augmented graph G̃ = (Ã′,X ′) still mostly contains isolated nodes. Therefore, we prune away all disconnected

components, which for the unperturbed graph simply reverts the augmentation: prune(G′) = G. However, for a perturbed

augmented graph, this results in the perturbed graph that we are seeking:

G̃ = (Ã, X̃) = prune(Ã′,X ′) (21)

where, Ã ∈ {0, 1}ñ×ñ, X̃ ∈ R
ñ×d, ñ = n+ nin is the total number of nodes and nin is the number of new injected nodes.

The node injection attack objective can thus be written as:

max
B′ s.t. ∥B′∥0<∆

Latk(fθ(G̃)) (22)

where, fθ is the trained GNN and Latk is a suitable attack loss. Note that the edge flip budget ∆ is also an upper bound for

the number nodes that can be injected: 0 ≤ nin ≤ ∆.

Edge block sampling. To optimize the objective, we can apply the relaxation Bij ∈ [0, 1], as shown in § 2. In this case,

PRBCD [14] not only enables more efficient optimization, but setting a smaller block size is crucial to limit the number

of connected injection nodes during optimization, since GTs complexity scales with O(ñ2). Moreover, the edge sampling

allows us to control which parts of B′ in Eq. 20 to sample from, e.g. not sampling in B results in ‘pure’ node injections

without modifying edges in the original graph. For large candidate sets, we recommend only sampling from E, as sampling

from the n2
cs entries of F results in many disconnected injection node pairs that get pruned away.

Node probability attention bias. The continuous optimization of structure attacks in § 2 assigns probabilities to edges-flips,

while nodes are assumed to all be part of the graph. In contrast, during NIAs the nodes also have have certain probabilities

of being included. To obtain node probabilities from the edge weights in a general way, we propose a simple iterative

computation. For a continuous connected graph, let N (vi) be the 1-hop neighborhood of node vi. We can approximate

the probability pi of vi being connected to the graph, by using the probability that it is connected to its neighbors and the

probability that these neighbors are connected to the graph. We start with the assumption that all nodes are connected to the

graph and update using the edge probabilities:

p
(t+1)
i = 1 −

∏

vj∈N (vi)

(1−Aij · p(t)j ), with p
(0)
i = 1 (23)

The number of iterations should be set to match the expected longest chain of added injection nodes. Therefore very few

iterations (2-3) should suffice for most NIAs.

We use the node probability to compute a weighted sum or mean in the graph-pooling for graph level tasks, to ensure that

the model output is continuous w.r.t. node injections. Additionally for GTs, we use the node probability to bias the global

pairwise attention scores which result a continuous weighting of the attention scores:

ŵij = wij + log(pj), α̂ij = softmax(ŵij) =
eŵij

∑

k e
ŵik

=
pj · ewij

∑

k pk · ewik
(24)

D. Evaluation details

Setup. We build our implementation on top of GPS [30], which uses the flexible GraphGym [31] framework of the PyG

[32] library. All our experiments ran on an internal GPU cluster. Experiments that require less than 10GB of GPU memory

were conducted on a Nvidia GTX1080Ti (10GB), the others on V100 and A100 GPUs (32/40GB). Attacking a single graph

in our experiments takes anywhere from a few seconds to a few minutes, depending on the graph and model sizes.

Datasets. We evaluate our structure attacks on the inductive node classification dataset CLUSTER [19]. It contains SBM-

generated graphs with 6 clusters, where each cluster has one labeled node. The average number of nodes is 117. The task is

to predict which node belongs to which cluster. For training, we use the standard PyG train/val/test split of 10000/1000/1000
graphs, respectively. We use the UPFD Twitter fake news detection datasets from [33] to evaluate our node injection attacks.

There are 2 datasets: politifact, with political; and gossipcop with celebrity fake news. The average number of nodes is 131
and 58, respectively. The graphs consist of retweet trees, where the root node has features concerning both the news content

and the user who posted the news. All other nodes’ features are related to the users that retweeted the news. The task is
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Figure 4. CLUSTER constrained attack results.

binary classification whether the graph contains fake news or not. We use the standard PyG train/val/test split of 20/10/70%

of the 314/5464 graphs for politifact and gossipcop, respectively.

Due to the quadratic scaling in the number of nodes of the three chosen GTs, their application is limited to smaller graphs.

This renders evaluation on larger graph datasets commonly used in robustness studies impractical. While GTs are most

widely applied to molecule data, adversarial attacks are of little practical relevance in that domain. Thus, we omit molecule

data from our evaluations.

Attacks. In this work we focus on untargeted white-box evasion attacks, i.e., an attacker with full knowledge of model and

data attempts to change the trained model’s prediction to any incorrect class at test time by slightly perturbing the input

graph structure. For node-level tasks we focus on global attacks that minimize the overall performance metric across all

nodes. For model training we do a random hyperparameter search, choosing the model with the highest validation metric.

This approach is consistent with common practice. As described in § 5, we show results for three attack types: adaptive,

transfer, and random for a range of different budgets.

For both CLUSTER and the UPFD datasets, we evaluate our attacks on the 50 first graphs in the test set and report average

and standard deviation over 4 random seeds. For node classification, we use tanh-margin attack loss, shown to be effective

in [14]. For the binary graph classification, we simply minimize/maximize the raw prediction score (before sigmoid) for

labels 1/0 as our attack loss. For CLUSTER attacks, we use a PRBCD block size of 20000. For UPFD, we use a small block

size of 1000, which is necessary due to the n2 scaling of GTs. For GCN it is possible to increase the block size, but we keep

it the same for comparability. We optimize all our adaptive attacks for 125 steps and sample 20 discrete perturbations from

the result, of which we take the strongest. For all other attack hyperparameters, we use default values that performed well in

preliminary evaluations. For all results except the ablations, we use all of our continuous relaxations proposed in § 3.

E. Additional results

We present the first principled analysis on the robustness of GTs on three representative architecture types (GRIT, Graphormer,

SAN). We define different goals for our evaluation: (A) efficacy of the proposed adaptive attacks, (B) providing an accurate

assessment of GT robustness for relevant real-world tasks. To this end, we perform our evaluation on datasets with varying

complexity. Towards (A) we explore the robustness of GTs on CLUSTER, which comprises simple, interpretable structures.

This exploration helps us evaluate the effectiveness of the proposed relaxations, ideally leading our attacks to target

semantically meaningful structures within the dataset. We address (B) through evaluations on UPFD. Here, we constrain

our attack to remain within the predefined tree structure of the dataset. As a result, the attack represents impersonating an

existing user who is retweeting the respective news article. This evaluation goes beyond previous robustness analyses of

citation networks in GNNs [1], [14], offering a more practical use case and semantically meaningful attacks.

CLUSTER. The node classification accuracy for the CLUSTER dataset for different attack budgets is shown in Fig. 3.

Since only a single node in each cluster is labeled, attacking these labeled nodes requires little budget and leads to strong

attacks. We manually inspected the perturbations and confirmed that most edge modifications are connected to the labeled

nodes, which shows the efficacy of the attacks. The difference in attack strength between the adaptive and transfer attacks is

insignificant. This confirms our hypothesis that the straightforward nature of the task leads to the same type of semantically

meaningful perturbations, independent of the model (modifying the edges to labeled nodes). This would explain the strong

transferability and little variation in robustness across models. This outcome positively indicates the effectiveness of our

adaptive attacks (A), as they consistently identify meaningful perturbations across all GTs. They may sometimes be weaker
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Figure 5. Attack results for the UPFD twitter datasets politifact (pol.) and gossipcop (gos.).

than the transfer attacks simply due to a more difficult optimization function (GCN has fewer non-differentiable components).

To avoid the natural fragility in the data, we also evaluate a constrained attack that prohibits modifying edges to the labeled

nodes, for which results are shown in Fig. 4. For CLUSTER, we additionally attack the GAT [34] and GATv2 [35] GNN

models and include the adversarial perturbations for these in the transfer attack. Results for these are also shown in Fig 1.

UPFD. For our node injection attack, we add all dataset nodes except for the graph roots into the candidate set since they

have unique properties and include user and news features. We do not allow for perturbations of the original tree structure.

If the discretely sampled perturbations do not have a tree structure, we take the maximum spanning tree (using the edge

probabilities) to ensure all perturbations are valid retweet trees.

The graph classification accuracy for different attack budgets is shown in Fig. 5. In contrast to the results observed for the

CLUSTER dataset, we note big robustness differences across models for UPFD. In general, Graphormer seems to be the

least robust and for which our adaptive attacks work best in comparison the baselines. For Graphormer on gossipcop the

random baseline creates significantly stronger attacks than the transfer attacks, highlighting the importance of adaptive

attacks. The adaptive attacks for GRIT are also significantly stronger than the baselines. The SAN attacks are the outlier, and

for gossipcop the random baseline generates significantly stronger attacks than both adaptive and transfer. The reason may

be that the Laplacian eigen-decomposition perturbation approximation does not hold well in the case of node injection. The

ablation in Tab. 4 also indicates that by disabling this relaxation much stronger attacks than reported in Fig. 5 are possible.

Our results reveal that GTs showcase catastrophic vulnerabilities to adversarial modifications of the graph structure, even

when these changes are constrained to meaningful perturbations. In comparison, the GCN model exhibits considerably higher

robustness. Furthermore, we cannot derive a consistent pattern concerning the robustness of the different GT architectures

and results differ depending on the dataset and attack. Both findings underscore the need for research into robust design

choices of architecture components, such as PEs, and modifications to the attention mechanism.

Ablations. We enable each of the continuous relaxations individually and in different combinations together. We report

the results for Graphormer and SAN in Tab. 3 and 4 respectively. The node probability relaxation only applies to the node

injection attacks on UPFD. The main insights from the results are: (a) all continuous relaxations individually seem to give

somewhat useful gradients and can be used to get better than random results. (b) some work better than others, and using

multiple does not seem to always work better than only one. We argue that they lead the optimization towards different

adversarial perturbations, targeting features relevant for different components. However, one is not consistently better than

the other. (c) adding the node probability bias to the attention scores for node injection results is usually sufficient and

leads to some of the strongest attacks. (d) A good approach might be to try all individually as an ensemble and choose the

strongest. Additionally, we check the attack strength for GRIT when enabling or disabling gradient computation through
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Table 3. Ablations for the Graphormer relaxations for a fixed budget of 1% for CLUSTER unconstrained (u.) and constrained (c.), and

10% for UPFD politifact (pol.) and gossipcop (gos.). Mean and standard deviation over 4 runs with different seeds.

Deg. SPD
Acc. (%) Node

prob.
Acc. (%)

CLUSTER, u. CLUSTER, c. UPFD pol. UPFD gos.

✓ ✓ 52.61± 0.57 60.00± 0.42 ✓ 67.0± 2.0 38.0± 0.0

✓ 46.78± 0.46 68.45± 0.37 ✓ 67.0± 2.0 38.0± 0.0

✓ 50.81± 0.41 60.66± 0.21 ✓ 66.5± 1.9 39.5± 1.9

✓ 66.5± 1.9 38.5± 1.0

✓ ✓ 80.5± 3.4 53.5± 1.0

random 66.52± 0.61 70.29± 0.32 85.0± 2.6 61.5± 4.1

clean 77.89 77.89 92.0 98.0

Table 4. Ablations for the SAN relaxations for a fixed budget of 1% for CLUSTER unconstrained (u.) and constrained (c.), and 10% for

UPFD politifact (pol.) and gossipcop (gos.). Mean and standard deviation over 4 runs with different seeds.

Atten.
Lap.
pert.

Acc. (%) Node
prob.

Acc. (%)

CLUSTER, u. CLUSTER, c. UPFD pol. UPFD gos.

✓ ✓ 53.95± 0.59 63.27± 0.27 ✓ 83.5± 1.0 91.5± 4.1

✓ 53.87± 0.26 63.20± 0.12 ✓ 77.5± 1.0 91.5± 2.5

✓ 57.12± 0.62 67.22± 0.17 ✓ 83.5± 1.0 89.5± 1.9

✓ 77.0± 1.2 89.5± 3.4

✓ ✓ 86.0± 0.0 90.1± 6.0

random 65.70± 0.65 68.86± 0.32 86.0± 0.0 87.5± 1.0

clean 76.12 76.12 86.0 98.0

certain parts of the model and show the results in Tab. 5. It is possible to get strong attacks even without computing gradients

through RRWP, which could be much more efficient computationally, depending on the model and graph size. For node

injection attacks, as for the other models, using only the node probability bias in the attention scores already leads to the

strongest attacks we report.

F. Limitations

All our adversarial attacks do neither provide a guarantee nor insights about how close they are to the optimal adversarial

example. We note that this is common practice in the adversarial learning community. Nevertheless, if we are able to find

an adversarial example, this proves the non-robustness of the studied model. Furthermore, we only look at three specific

graph transformer architectures. While the continuous relaxations described here may not always be directly applicable

to other GTs, our approach for designing adaptive attacks should provide a useful guide for further relaxations of similar

components.

Table 5. Ablations for the GRIT relaxations for a fixed budget of 1% for CLUSTER unconstrained (u.) and constrained (c.), and 10% for

UPFD politifact (pol.) and gossipcop (gos.). Mean and standard deviation over 4 runs with different seeds.

RRWP
grad.

Deg.
grad.

Acc. (%) Node
prob.

Acc. (%)

CLUSTER, u. CLUSTER, c. UPFD pol. UPFD gos.

✓ ✓ 44.07± 0.79 65.25± 0.22 ✓ 34.5± 1.0 75.0± 2.6

✓ 46.27± 0.36 65.70± 0.35 ✓ 34.5± 1.0 74.5± 2.5

✓ 49.51± 0.90 66.49± 0.49 ✓ 34.5± 1.0 73.5± 1.0

✓ 34.5± 1.0 73.5± 1.0

✓ ✓ 54.5± 1.9 83.0± 2.0

random 69.13± 0.10 72.25± 0.29 76.0± 4.3 82.0± 0.0

clean 78.98 78.98 98.0 84.0
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