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Abstract

Federated optimization, an emerging paradigm

that finds wide applications, e.g., federated learn-

ing, enables multiple clients (e.g., edge devices)

to collaboratively optimize a global function by

sharing their local gradients. However, the gra-

dient information is not available in many appli-

cations, giving rise to the paradigm of federated

zeroth-order optimization (ZOO). Existing fed-

erated ZOO algorithms typically suffer from the

limitations of query and communication round

inefficiency, which can be attributed to (a) their re-

liance on a substantial number of function queries

for gradient estimation and (b) the significant dis-

parity between their realized local updates and the

intended global updates caused by client hetero-

geneity. To this end, we (a) introduce trajectory-

informed gradient surrogates which are capable

of using the history of function queries during

optimization for accurate and query-efficient gra-

dient estimation, and (b) develop the technique

of adaptive gradient correction using these sur-

rogates to mitigate the aforementioned disparity.

With these, we propose the federated zeroth-order

optimization using gradient surrogates (FZooS)

algorithm for query- and communication round-

efficient heterogeneous federated ZOO, which is

supported by our theoretical analyses and exten-

sive experiments.

1. Introduction

Because of the growing computational power of edge de-

vices and increasing privacy concerns, recent years have wit-

nessed a surging interest in federated optimization, which

finds real-world applications including federated learn-
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ing [1]. Particularly, federated optimization allows clients

(e.g., edge devices) to retain their local datasets but share

their locally computed gradients for optimization. Unfor-

tunately, in many important applications of federated opti-

mization including federated black-box adversarial attack

[2], gradient information is not available. This gives rise to

the paradigm of federated zeroth-order optimization (ZOO)

where the global function to be optimized is an aggregation

of the local functions on various clients and those local func-

tions are only accessible via function queries. To tackle this

problem, existing algorithms [2] follow the framework of

applying finite difference (FD) for local gradient estimation

and resorting to federated first-order optimization (FOO)

algorithms for optimization. Nevertheless, these algorithms

usually suffer from both query and communication round

inefficiency for local and global functions that are not only

expensive-to-evaluate but also heterogeneous. This im-

pedes their practical applicability, especially in scenarios

with restricted query times and communication rounds.

However, to the best of our knowledge, little attention has

been dedicated to developing both query- and communi-

cation round-efficient heterogeneous federated ZOO algo-

rithms in the literature (related work in Appx. A).

To address this problem, it is imperative to first identify

the challenges faced by existing federated ZOO algorithms

which will be responsible for their query and communica-

tion round inefficiency in practice. Federated ZOO typically

requires multiple communication rounds for central server

aggregation; between consecutive communication rounds,

every client performs several iterations of local updates

using their estimated gradients that are usually approxi-

mated via additional function queries based on FD. We first

show that the query inefficiency of existing federated ZOO

algorithms arises from their employment of FD for local

gradient estimation, which often requires an excessive num-

ber of additional function queries. Thus, addressing the

challenge of query efficiency in federated ZOO calls for a

gradient estimation method that requires minimal (ideally

zero) additional function queries. We further show that the

communication round inefficiency of these existing algo-

rithms results from the disparity between their realized local

updates and the intended global updates, which is typically

caused by client heterogeneity. As a consequence, resolving
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the challenge of communication round efficiency requires

developing a high-quality gradient correction technique to

mitigate such a disparity.

So, we propose the federated zeroth-order optimization us-

ing gradient surrogates (FZooS) algorithm to address the

aforementioned challenges, leading to a query- and com-

munication round-efficient heterogeneous federated ZOO

algorithm. Firstly, we introduce the recent derived Gaus-

sian process from [3] that only requires the optimization

trajectory (i.e., the history of function queries) for gradient

estimation, as the local gradient surrogates for the clients,

thereby realizing query-efficient gradient estimation in fed-

erated ZOO (Sec. 3.1). Secondly, based on these local gra-

dient surrogates, we apply random Fourier features (RFF)

approximation [4] to produce a transferable global gradient

surrogate without the necessity of transferring raw obser-

vations, which can be an accurate estimate of the gradient

of the global function (Sec. 3.2.1). Using these surrogates,

we develop the technique of adaptive gradient correction

using adaptive gradient correction vector and length to help

mitigate the disparity between our local updates and the

intended global updates, and consequently to improve the

communication round efficiency of heterogeneous federated

ZOO (Sec. 3.2.2). We verify that FZooS has addressed the

aforementioned challenges using both theoretical analyses

(Sec. 4) and empirical experiments (Sec. 5).

2. Preliminaries

In the federated zeroth-order optimization (ZOO) setting [2],

we aim to minimize a global function F on x ∈ X , which

is the arithmetic average ofN local functions {f1, · · · , fN}
on N different clients without sharing these local functions:

min
x∈X

F (x) ≜
∑

i∈[N ]fi(x)/N . (1)

A central server is typically introduced to periodically ag-

gregate the updated inputs sent from the clients after their

several iterations of local optimization. Of note, in this

federated ZOO setting, the gradients of the local functions

are either not accessible or too computationally expensive

to obtain. Consequently, the gradients can not be directly

employed for optimization, which is our main difference

from the standard federated first-order optimization (FOO)

setting [5]–[7]. Instead, given an input x ∈ X , agent i is

only allowed to observe a noisy output yi(x) ≜ fi(x) + ζ
of the local function fi, in which ζ ∼ N (0, σ2). Moreover,

we focus on federated ZOO with heterogeneous clients, i.e.,

the local functions {fi}Ni=1 differ from the global function

F . Besides, we adopt a common assumption on {fi}Ni=1:

We assume that every local function fi is sampled from

a Gaussian process (GP), i.e., fi ∼ GP(µ(·), k(·, ·)) [3].

We summarize the framework to solve the heterogeneous

federated ZOO problem and identify the challenges faced

by existing algorithms in Appx. B.

3. FZooS Algorithm

We hence propose our federated zeroth-order optimization

using gradient surrogates (FZooS) algorithm (see Algo. 2 in

Appendix) to improve the query and communication round

efficiency of existing federated ZOO algorithms.

3.1. Trajectory-Informed Gradient Estimation

Of note, we assumed that fi ∼ GP(µ(·), k(·, ·)), ∀i ∈ [N ]
(Sec. 2). Then, in iteration t of communication round

r (Algo. 2), conditioned on the optimization trajectory

D(i)
r,t−1 ≜ {(x(i)

τ , y(i)τ )}T (r−1)+t−1
τ=1 of client i,1 ∇fi fol-

lows a derived posterior Gaussian Process [3]:

∇fi ∼ GP
(
∇µ(i)

r,t−1(·), ∂
(
σ
(i)
r,t−1

)2
(·, ·)

)
(2)

where the mean function ∇µ(i)
r,t−1(·) and the covariance

function ∂(σ(i)
r,t−1)

2(·, ·) are defined in (8) from Appx. C.1.

We propose to make use of the posterior mean∇µ(i)
r,t−1(x)

(8) as the local gradient surrogate for client i since it is a

prediction of the gradient ∇fi(x), and ∂(σ(i)
r,t−1)

2(x) ≜
∂(σ(i)

r,t−1)
2(x,x) provides a principled uncertainty measure

for this gradient surrogate [3]. Of note, our gradient sur-

rogate only requires the optimization trajectory (i.e., the

history of function queries D(i)
r,t−1 till iteration t − 1 of

round r) and thus eliminates the need for additional queries

required by the FD methods adopted by existing federated

ZOO (Appx. B.2). This therefore leads to more query-

efficient gradient estimations in federated ZOO. Moreover,

the aforementioned uncertainty measure can theoretically

guarantee the quality of our gradient estimation, and provide

theoretical support for our technique of using active queries

to further improve the local gradient estimations (Sec. 4).

3.2. Gradient Correction

3.2.1. GLOBAL GRADIENT SURROGATE

Note that our local gradient surrogates from Sec. 3.1 can

produce not only query-efficient but also accurate gradient

estimations [3]. So, these local surrogates can be used to

construct an accurate global gradient surrogate, which then

satisfies requirement (A) for communication round-efficient

federated ZOO from Appx. B.2: accurate local and global

gradient surrogates. However, due to the non-parametric

nature of Gaussian processes, (2) cannot be transferred to

the server without sending the raw observations. To this end,

we introduce the idea of random Fourier features (RFF)

approximation from [4] to approximate the mean of (2)

and then transfer this approximated mean to server for the

construction of high-quality global gradient surrogate.

We firstly approximate the mean of (2) on each client to

ease its transfer between the clients and the server. If k(·, ·)
1We slightly abuse notation and use (x(i)

τ , y(i)
τ ) to denote a

historical query till iteration t− 1 of round r.
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is assumed to be shift-invariant, it can be approximated by

a finite number of random features [4]. That is, we have

that k(x,x′) ≈ ϕ(x)⊤ϕ(x′) where pre-defined function ϕ :
R

d 7→ R
M produces M random features and its parameters

are shared across all clients and the server (Appx. D). By

incorporating this approximation into (8), the local gradient

surrogates on each client i at the end of every round r (i.e.,

∇µ(i)
r,T (x)) can then be approximated as

∇µ̂(i)
r,T (x) ≜ ∇ϕ(x)⊤Φ

(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1

y
(i)
r,T (3)

where ∇ϕ(x) is an M × d-dimensional matrix, Φ(i)
r,T ≜

[ϕ(x(i)
τ )]rTτ=1 is anM×rT -dimensional matrix, and K̂

(i)
r,T ≜

[ϕ(x(i)
τ )⊤ϕ(x(i)

τ ′ )]rTτ,τ ′=1 is an rT × rT -dimensional ma-

trix. Define an M -dimensional column vector w(i)
r,T ≜

Φ
(i)
r,T (K̂

(i)
r,T + σ2

I)−1y(i)
r,T , (3) can therefore be rewritten as

∇µ̂(i)
r,t−1(x) = ∇ϕ(x)⊤w(i)

r,T (line 8 of Algo. 2). So, each

client only needs to calculate and send the M -dimensional

vectorw(i)
r,T to the server for constructing the global gradient

surrogate (line 9 of Algo. 2).

After receiving {w(i)
r,T }Ni=1 from all clients, the server can

construct the global gradient surrogate at the end of every

round r by averaging these local gradient surrogates via

∇µ̂r(x) ≜
1

N

∑

i∈[N ]

∇µ̂(i)
r,T (x) = ∇ϕ(x)⊤

( 1

N

∑

i∈[N ]

w
(i)
r,T

)
.

(4)
To transfer this global gradient surrogate to all clients, we

only need to sendwr ≜ 1
N

∑N
i=1w

(i)
r,T back (lines 10-11 of

Algo. 2). Importantly, after receiving wr from the server,

each client can calculate the global gradient surrogate at any

input in the domain. Although this global gradient surrogate

incurs an additional transmission of M -dimensional vectors

compared with existing federated ZOO algorithms (Algo. 1),

it enjoys the advantage of achieving an improved gradient

correction with theoretical guarantees (Sec. 4), which is

essential for addressing federated ZOO with heterogeneous

clients (Appx. B.2) and shall outweigh its drawback of in-

creased transmission burden especially when query- and

communication round efficiency are crucial. Besides, this

communication burden also occurs in [8]. To further boost

the quality of this surrogate, we can actively query in the

neighborhood of the updated input xr on every client (line

7 of Algo. 2) as supported in Sec. 4.

3.2.2. ADAPTIVE GRADIENT CORRECTION

By using our aforementioned high-quality local and global

gradient surrogates, we then develop the technique of adap-

tive gradient correction to meet requirement (B) for com-

munication round-efficient federated ZOO from Appx. B.2.

Specifically, thanks to the ability of our gradient surrogates

to estimate the gradient at any input in the domain, we can

let x′ = x′′ = x(i)
r,t−1 in (6) to realize a more accurate gra-

dient correction vector during optimization. Moreover, we

propose to employ an adaptive gradient correction length

γr,t−1 (shared across all clients) to better trade off the utiliza-

tion of our gradient correction vector during optimization.

That is, for every iteration t of round r, we propose to use

the following ĝ(i)r,t−1 on each client for its local update:

ĝ
(i)
r,t−1 =∇µ(i)

r,t−1(x
(i)
r,t−1)+

γr,t−1

(
∇µ̂r−1(x

(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

)
,

(5)

(i.e., line 6 of Algo. 2) where∇µ̂(i)
r−1,T is the local gradient

surrogate of client i with RFF approximation at the end

of round r − 1 from (3), ∇µ̂r−1 is our global gradient

surrogate from (4), and γr,t−1 is a theoretically inspired

adaptive gradient correction length which we will discuss

in Sec. 4. Of note, the advantage of this adaptive gradient

correction can be theoretically justified (Sec. 4).

4. Theoretical Analysis

In this section, we present our theoretical analysis on the gra-

dient disparity (defined as Ξ(i)
r,t ≜ ∥ĝ(i)r,t−1−∇F (x(i)

r,t−1)∥2)

of our local gradient update (5). The convergence analy-

sis of our FZooS (Algo. 2) is in Appx. C.2. We assume

that 1
N

∑N
i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any x ∈ X ,

which is a common assumption in the analysis of feder-

ated optimization [7]. Here a larger G indicates a larger

degree of client heterogeneity. We derive an upper bound

on the gradient disparity of our (5) in Thm. 1 below (proof

in Appx. E.2).

Theorem 1. Define ρ ≜ 1
N

∑N
i=1 ρi in which ρi ≜

maxx∈X ,r≥1,t≥1

∥∥∂(σ(i)
r,t)

2(x)
∥∥/
∥∥∂
(
σ(i)
r,t−1

)2
(x)
∥∥, then

ρ, ρi∈[ 1
1+1/σ2 , 1]. With constant ω>0, ϵ = O( 1

M ), 1 ≜

4ωκρ(r−1)T+t−1, 2 ≜ 8ωκρ(r−1)T + 8Nϵ, and 3 ≜ 4G,

the following holds with constant probability

1

N

∑

i∈[N ]

Ξ
(i)
r,t ≤ 1 + γ2r,t−1 × 2 + (1− γr,t−1)

2 × 3 .

Corollary 1. Thm. 1 implies a better-performing choice of

γr,t−1, i.e., γr,t−1 = G
G+2ωκρ(r−1)T+2Nϵ

.

In the upper bound of Thm. 1, term 1 represents the error of

estimating {∇fi(·)}Ni=1 using our local gradient surrogates

in Sec. 3.1, and term 2 characterizes the disparity between

our gradient correction vector in (5) and its corresponding

ground truth {∇F (·) −∇fi(·)}Ni=1. The ϵ within term 2

denotes the RFF approximation error for our global gradient

surrogate in Sec. 3.2.1 and ϵ decreases with a larger num-

ber M of random features. Term 3 results from the client

heterogeneity in federated ZOO. Compared with the gradi-

ent disparity of existing algorithms (provided in Appx. F),

Thm. 1 shows that our (5) enjoys a number of major advan-

tages: (a) Our (5) is more query-efficient since it does not

require any additional function query for gradient estima-

tion, in contrast to existing algorithms which incur O(NQ)
additional function queries in every iteration. (b) The esti-
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mation error in our (5) (i.e., terms 1 and 2 ) can be expo-

nentially decreasing when ρ < 1 and ϵ is small, whereas

other existing algorithms only achieve a reduction rate of

O(1/Q), which implies that our gradient estimation is sig-

nificantly more accurate. Of note, ρi < 1 is likely to be

satisfied as justified in [3] and more importantly, ρ < 1
is even easier to be realized as it only needs one of the

clients to satisfy ρi < 1. (c) Our (5) mitigates the dispar-

ity caused by the fixed gradient correction vector adopted

by existing works, i.e., in contrast to FedProx and SCAF-
FOLD, our Thm. 1 does not contain an additional disparity

term of
∑N

i=1 ∥x(i)
r,t−1 − xr−1∥2. (d) Our (5) can trade off

between the impacts of our gradient correction vector and

client heterogeneity, and can consequently further improve

the gradient estimation when γr,t−1 is chosen intelligently

while accounting for this trade-off. Specifically, the upper

bound in Thm. 1 has characterized such a trade-off: When

the estimation error of our gradient correction vector (i.e.,

term 2 ) is relatively small compared with the client hetero-

geneity (i.e., term 3 ), a large γt−1 is preferred to reduce

the impact of client heterogeneity and hence to achieve a

small gradient disparity. Furthermore, this also implies a

theoretically better choice of γr,t−1 in our Cor. 1 (refer to

Appx. E.3 for a more practical choice of γr,t−1).

5. Experiments

In this section, we demonstrate that our FZooS outperforms

existing federated ZOO algorithms using synthetic experi-

ments (Sec. 5.1), as well as real-world experiments on fed-

erated black-box adversarial attack (Sec. 5.2). More results

can be found in Appx. H.

5.1. Synthetic Experiments

We firstly employ federated synthetic functions to illustrate

the superiority of our proposed FZooS over a number of

existing federated ZOO baselines such as FedZO, FedProx,

and SCAFFOLD in the federated ZOO setting (see Appx. F

for their specific forms) in Fig. 1. We refer to Appx. G.1

for the details of these synthetic functions and the experi-

mental setting applied here. It shows that our FZooS con-

siderably outperforms the other baselines in terms of both

communication round and query efficiency, which can be

attributed to the superiority of our (5). When C is increased,

a larger number of communication rounds and total queries

are required to achieve the same convergence error, which

empirically verifies our Thm. C.1.

5.2. Federated Black-Box Adversarial Attack

Following the practice of [2], we then examine the advan-

tages of our FZooS in the task of federated black-box ad-

versarial attack. Here we aim to find a small perturbation

x to be added to an input image z such that the perturbed

image z + x will be wrongly classified by the majority of
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Figure 1. Comparison of the communication round and query effi-

ciency on synthetic function with varying heterogeneity (controlled

by C ≥ 0), where a larger C implies larger heterogeneity.
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Figure 2. Comparison of the success rate in federated black-box

adversarial attack on CIFAR-10 under varying heterogeneity (con-

trolled by P ∈ [0, 1], a larger P implies smaller heterogeneity).

the private ML models on various clients through only the

function queries of these models (refer to Appx. G.2 for

more details). Remarkably, Fig. 2 shows that our FZooS
again achieves consistently improved communication round

efficiency over the other baselines under varying client het-

erogeneity. Thanks to this improved communication round

efficiency and the ability of (5) to avoid a large number of

additional function queries in every communication round,

FZooS also achieves a substantial improvement in query

efficiency. Overall, these results support the superiority

of FZooS over the other existing approaches in real-world

federated ZOO problems in terms of both communication

round and query efficiency.

6. Conclusion

We introduce FZooS to address the challenges of query and

communication round inefficiency faced by existing feder-

ated ZOO algorithms in the presence of client heterogeneity.

We use both theoretical justifications and empirical demon-

strations to show that FZooS is indeed able to address these

challenges and achieve considerably improved query and

communication round efficiency over the existing baselines.
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A. Related Work

Federated Learning and Federated First-Order Optimization. Federated learning (FL) has become a paradigm of

applying multiple edge devices (i.e., clients) to collaboratively train a global model without sharing the private data on these

edge devices [1]. We refer to the surveys [9], [10] for more comprehensive reviews of FL. Such a paradigm then gives rise

to recent interest in federated optimization or more precisely federated first-order optimization (FOO) [6] to broaden its

real-world application. Since the first federated FOO algorithm FedAvg proposed in [11], a number of techniques have been

developed to further improve its performance in different aspects, e.g., federated FOO with momentum [12] and adaptive

learning rates [7], [13], [14] for convergence speedup, federated FOO with local posterior sampling for de-biased client

updates [15], and federated FOO with regularized functions [16], [17] and control variates [8], [18] for the challenge of

heterogeneous clients, in which the global function to be optimized differs from the local functions on clients.

Federated Zeroth-Order Optimization. Despite the success of federated FOO algorithms, some important applications,

e.g., federated black-box adversarial attack in [2], suggests the development of federated zeroth-order (ZOO) algorithms for

the federated optimization where gradient information is not available. Nevertheless, very limited efforts have been devoted

to the development of federated zeroth-order (ZOO) algorithms especially when the clients are heterogeneous. To the best of

our knowledge, [2] is the first to consider federated ZOO, in which they simply combine FedAvg with existing FD methods

as their FedZO algorithm. Similar to the FedAvg algorithm in federated FOO, the FedZO algorithm also likely performs

poorly in the heterogeneous setting. This thus encourages the design of federated ZOO algorithms for heterogeneous

federated ZOO problems. Following the practice of FedZO, existing federated FOO algorithms for heterogeneous clients,

e.g., [8], [16], can be simply adapted to the corresponding federated ZOO algorithms for this kind of problem. However,

these algorithms shall be query- and communication round-inefficient in practice, which therefore raises the question of how

to improve query efficiency and the communication round efficiency of these algorithms. To answer this question, we first

identify the challenges of such an improvement and then develop a federated ZOO algorithm to overcome these challenges

in this paper.

B. Framework and Challenges for Heterogeneous Federated ZOO

Here we firstly summarize the framework to solve the federated ZOO problem (Appx. B.1), and then identify the challenges

which existing algorithms following this framework fail to address (Appx. B.2).

B.1. Optimization Framework

To solve (1), a general optimization framework is to estimate the gradients of {fi}Ni=1 using only function queries and then

employ the standard federated FOO algorithms for the optimization, as in Algo. 1. Specifically, in round r, every client

performs T iterations of local gradient decent updates in parallel (line 2-5 of Algo. 1), in which ĝ(i)r,t−1 ∈ R
d denotes the

estimated gradient by client i for the local update in iteration t of round r. After that, each client sends its locally updated

input x(i)
r,T to server (line 6 of Algo. 1). After receiving the updated inputs from all clients (i.e., {x(i)

r,T }Ni=1), the server

aggregates them (e.g., via arithmetic average) to produce a globally updated input xr, and then sends it back to the clients

for the optimization in the next round (line 7-8 of Algo. 1).

The aforementioned ĝ(i)r,t−1 used in the literature can be summarized into the following general form:

ĝ
(i)
r,t−1 ≜ g

(i)
r,t−1 + γ

(i)
r,t−1

(
gr−1(x

′)− g(i)r−1(x
′′)
)

(6)

where g(i)r,t−1 ∈ R
d is an estimate of ∇fi(x(i)

r,t−1) and is usually obtained using the finite difference (FD) methods (refer to

Appx. B.2). In addition, the gradient correction vector gr−1(x
′)− g(i)r−1(x

′′) ∈ R
d is usually obtained from the previous

round r − 1. This aims to make the resulting ĝ(i)r,t−1 better aligned with ∇F (x(i)
r,t−1), such that the local update on each

client (i.e., line 5 of Algo. 1) can better approximate the intended global update along the direction of ∇F (x(i)
r,t−1). It

is especially important in the presence of client heterogeneity, i.e., {∇fi}Ni=1 differ from ∇F . Intuitively, to accomplish

this alignment, gr−1(x
′) and g(i)r−1(x

′′) should be good estimates of∇F (x(i)
r,t−1) and∇fi(x(i)

r,t−1), respectively, which we

theoretically justify in Appx. B.2. Of note, the form of gr−1(x
′)− g(i)r−1(x

′′) for gradient correction usually aims to ensure

that the estimation biases from gr−1(x
′) and g(i)r−1(x

′′) could cancel out [19]. Finally, γ(i)r,t−1 ∈ [0, 1] denotes the gradient

correction length, which can be adjusted to trade off the utilization of the gradient correction vector (Appx. B.2).

Remarkably, (6) subsumes the forms of gradient updates employed in many existing federated ZOO algorithms, and hence
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Algorithm 1: General Framework for Federated ZOO

Input: Initial x0, rounds R, learning rate η, iterations T for each round, number of clients N
1 for each round r ∈ [R] do

// Client-Side Update

2 for each client i ∈ [N ] in parallel do

3 x(i)
r,0 ← xr−1

4 for each iteration t ∈ [T ] do

5 x(i)
r,t ← x(i)

r,t−1 − η ĝ(i)r,t−1

6 Send x(i)
r,T to receive xr back

// Server-Side Update

7 xr ← 1
N

∑
i∈[N ] x

(i)
r,T

8 Send xr back to each client

Algorithm 2: FZooS

Input: Input of Algo. 1, length γ, M features

1 for each round r ∈ [R] do

// Client-Side Update

2 for each client i ∈ [N ] in parallel do

3 x(i)
r,0 ← xr−1, ∇µ̂r−1 based on wr−1

4 for each iteration t ∈ [T ] do

5 ∇µ(i)
r,t−1 conditioned on D(i)

r,t−1

6 x(i)
r,t ← x(i)

r,t−1 − η ĝ(i)r,t−1 with (5)

7 Send x(i)
r,T to receive xr, query around xr

8 Approx. ∇µ(i)
r,T via RFF to get w(i)

r,T

9 Send w(i)
r,T to receive wr back

// Server-Side Update

10 xr← 1
N

∑
i∈[N ] x

(i)
r,T , wr← 1

N

∑
i∈[N ]w

(i)
r,T

11 Send xr back first and then wr to each client

Algo. 1 can reduce to the corresponding optimization algorithms (more details in Appx. F). E.g., when γ(i)r,t−1 = 0 and g(i)r,t−1

is obtained using FD, Algo. 1 becomes the FedZO algorithm [2]; when γ(i)r,t−1=1, gr−1(x
′)= 1

NT

∑N,T
i,t=1 g

(i)
r−1,t−1, and

g(i)r−1(x
′′) = 1

T

∑T
t=1 g

(i)
r−1,t−1, (6) reduces to the gradient update in [8] and hence Algo. 1 becomes the SCAFFOLD (Type

II) algorithm in the federated ZOO setting; let the gradient correction vector gr−1(x
′)− g(i)r−1(x

′′) in (6) be x(i)
r,t−1 − xr,

Algo. 1 is then equivalent to FedProx [16] in the federated ZOO setting.

B.2. Existing Challenges

Existing federated ZOO algorithms aiming to solve the problem in Sec. 2 typically fail to address the challenges of query

efficiency and communication round efficiency, which we discuss in detail below.

Challenge of Query Efficiency. Similar to standard ZOO algorithms [20], [21], existing federated ZOO algorithms (e.g.,

[2]) also commonly apply the FD methods [22] for gradient estimation. Specifically, given a parameter λ > 0 and directions

{uq}Qq=1, the gradient of the function fi on client i at x can be estimated as

∇fi(x) ≈∆
(i)(x) ≜

1

Q

∑

q∈[Q]

yi(x+ λuq)− yi(x)
λ

uq . (7)

That is, for existing federated ZOO algorithms, g(i)r,t−1 = ∆
(i)(x(i)

r,t−1) in (6). As implied in (7), Q additional function

queries are required for the gradient estimation at every local updated input x(i)
r,t−1. This therefore results in NTQ× more

function queries than the standard federated FOO algorithms [8], [16] in every communication round, which is unsatisfying

7
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in practice especially when {fi}Ni=1 are prohibitively costly to evaluate. So, tackling the challenge of query efficiency in

federated ZOO requires designing query-efficient gradient estimators.

Challenge of Communication Round Efficiency. When ĝ(i)r,t−1 = ∇F (x(i)
r,t−1) in (6), Algo. 1 is then able to attain the

convergence of centralized FOO algorithms, which is known to be better than the one in the federated setting [8]. Therefore,

intuitively, the convergence or the communication round efficiency (i.e., the number of communication rounds R required

to achieve an ϵ convergence error) of Algo. 1 depends on the disparity between (6) and∇F (x(i)
r,t−1). Define the gradient

disparity Ξ(i)
r,t ≜ ∥ĝ(i)r,t−1 −∇F (x(i)

r,t−1)∥2, we propose the following Prop. B.1 (proof in Appx. E.1) to show the condition

for the best-performing (6) and thus to justify the challenge in communication round efficiency that existing federated ZOO

algorithms typically fail to address well.

Proposition B.1. Let g(i)r−1(x
′′) ̸= gr−1(x

′), the minimum of Ξ(i)
r,t w.r.t γ(i)r,t−1 is achieved when

γ(i)r,t−1 = γ
(i)∗
r,t−1 ≜

(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)∥∥∥gr−1(x

′)− g(i)r−1(x
′′)
∥∥∥
−2

.

When γ(i)∗r,t−1 = 1, Ξ(i)
r,t = 0 iff we have gr−1(x

′)− g(i)r−1(x
′′) = ∇F (x(i)

r,t−1)− g(i)r,t−1.

Prop. B.1 shows that to achieve a small gradient disparity, γ(i)r,t−1 should be adaptive w.r.t. the alignment between the

gradient correction vector gr−1(x
′)− g(i)r−1(x

′′) and the drift ∇F (x(i)
r,t−1)− g(i)r,t−1. We have shown (Appx. E.1) that a

better alignment between the gradient correction vector and the drift leads to a smaller gradient disparity, Prop. B.1 further

shows that a zero gradient disparity (i.e., Ξ(i)
r,t = 0 for any r ∈ [R], t ∈ [T ]) can be reached when these two are perfectly

aligned. To achieve such an alignment, i.e., to make gr−1(x
′) = ∇F (x(i)

r,t−1) and g(i)r−1(x
′′) = g(i)r,t−1 hold more likely, it

requires not only (a) accurate gradient surrogates gr−1 and g(i)r−1 to accurately represent ∇F and ∇fi, respectively, but also

(b) adaptive x′,x′′ to avoid the discrepancy between x(i)
r,t−1 and x′,x′′.

Consequently, resolving the challenge of communication round efficiency in federated ZOO mainly requires (A) accurate

local and global surrogates (i.e., g(i)r−1 and gr−1) for the gradient correction in (6), and (B) adaptive gradient correction

in (6) with both adaptive x′,x′′ and adaptive γ(i)r,t−1. However, existing federated ZOO algorithms usually fail to address

them well: Firstly, these algorithms rely on the FD methods for gradient estimation, which usually lead to poor estimation

quality and consequently inaccurate gradient correction vectors in (6) when the query budget is very limited. Secondly,

although x(i)
r,t−1 changes during local updates, existing algorithms typically rely on gr−1, g

(i)
r−1 evaluated at a fixed input

xr−1 = x′ = x′′ to estimate∇F or∇fi (e.g., [8], [16]), leading to large discrepancies between x(i)
r,t−1 and x′,x′′. Thirdly,

existing algorithms use a fixed gradient correction length (e.g., γ(i)r,t−1 = 0 in [2] and γ(i)r,t−1 = 1 in [8]), which is likely to

result in misspecified gradient correction length.

C. More Details of FZooS

C.1. Exact Form of Derived Gaussian Process

∇µ(i)
r,t−1(x) ≜ ∂xk

(i)
r,t−1(x)

⊤
(
K

(i)
r,t−1 + σ2

I

)−1

y
(i)
r,t−1 ,

∂
(
σ
(i)
r,t−1

)2
(x,x′) ≜ ∂x∂x′k(x,x′)− ∂xk(i)r,t−1(x)

⊤
(
K

(i)
r,t−1 + σ2

I

)−1

∂x′k
(i)
r,t−1(x

′) .

(8)

Both k(i)r,t−1(x)
⊤ ≜ [k(x,x(i)

τ )]T (r−1)+t−1
τ=1 and (y(i)

r,t−1)
⊤ ≜ [y(i)τ ]T (r−1)+t−1

τ=1 are [T (r − 1) + t − 1]-dimensional row

vectors, and K
(i)
r,t−1 ≜ [k(x(i)

τ ,x(i)
τ ′ )]

T (r−1)+t−1
τ,τ ′=1 is a [T (r − 1) + t− 1]× [T (r − 1) + t− 1]-dimensional matrix.

C.2. Convergence Analysis

We prove the convergence of our FZooS (measured by the number of communication rounds to achieve ϵ convergence error)

under different assumptions, in addition to assuming that F is β-smooth, X ≜ [0, 1]d, and |fi(x)| ≤ 1 for any x ∈ X and

i ∈ [N ].

Theorem C.1. Define D0 ≜ ∥x0 − x∗∥2 and D1 ≜ F (x0) − F (x∗), to achieve an ϵ convergence error for our FZooS

(Algo. 2) with a constant probability when ρ < 1, the number M of random features and the number R of communication

rounds need to satisfy the following,

(i) If F is strongly convex and η ≤ 1
10βT , M = O

(
NG
ϵ2

)
and R = O

(
1
ηT ln D0

ϵ + ln
√
G
ϵ

)
.

8
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(ii) If F is convex and η ≤ 1
10βT , M = O

(
NG
ϵ2 + d2NG

ϵ4

)
and R = O

(
D0

ηTϵ +
√
G+

4√
d2G

ϵ

)
.

(iii) If F is non-convex and η ≤ 7
100βT , M = O

(
NG
ϵ2

)
and R = O

(
D1

ηTϵ +
√
G
ϵ

)
.

The proof is in Appx. E.5.2 Thm. C.1 suggests that the learning rate η in FZooS should be proportionally reduced w.r.t.

the number T of local updates, which is in fact consistent with the results in federated FOO [8]. Thm. C.1 also shows that

when client heterogeneity (i.e., measured by G) increases, both the number M of random features and the number R of

communication rounds in our FZooS should be increased in order to achieve the same convergence error, which is also

empirically verified in our Sec. 5 and Appx. H. Moreover, Thm. C.1 has revealed that given a constant learning rate η that

satisfies the conditions in Thm. C.1 under various T , a larger T usually improves the communication round efficiency (i.e.,

R) of our FZooS (see Appx. H). More importantly, compared with the convergence of other existing algorithms (provided

in Appx. F), FZooS enjoys an improved communication round efficiency, which can be attributed to the advantages of our

(5) as discussed in Sec. 4 (see Appx. F for a detailed comparison).

D. Random Fourier Features

According to [4], the random Fourier features can usually be represented as a M -dimensional row vector ϕ(x)⊤ =[
2√
M

cos(vjx+ bj)
]M
j=1

where every vj is independently randomly sampled from a distribution p(v) and every bj is

independently randomly sampled from the uniform distribution over [0, 2π]. Particularly, for the squared exponential kernel

k(x,x′) = exp
(
−∥x− x′∥2 /(2l2)

)
in which l is the length scale, p(v) = N (0, 1

l2 I). In FZooS, we typically adopt the

squared exponential kernel for the optimization. Importantly, before the start of our FZooS, {vj}Mj=1 and {bj}Mj=1 need to

be sampled and shared across all clients as well as server (as mentioned in Sec. 3.2.1), which however will only happen once

for whole optimization process.

2The poor convergence of our FZooS under convex F (vs. the one under non-convex F ) results from the drawback of the commonly
applied proof technique for convex F rather than the algorithm itself. This has been widely recognized in the literature [23], [24].
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E. Theoretical Analyses

E.1. Proof of Proposition B.1

Based on the definition of Ξ(i)
r,t in Appx. B.2, we have that

Ξ(i)
r,t =

∥∥∥ĝ(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥
2

=
∥∥∥g(i)r,t−1 + γ

(i)
r,t−1

(
gr−1(x

′)− g(i)r−1(x
′′)
)
−∇F (x(i)

r,t−1)
∥∥∥
2

=
∥∥∥g(i)r,t−1 −∇F (x

(i)
r,t−1)

∥∥∥
2

− 2γ
(i)
r,t−1

(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)
+

(
γ
(i)
r,t−1

)2 ∥∥∥gr−1(x
′)− g(i)r−1(x

′′)
∥∥∥
2

,

(9)

which is a quadratic function w.r.t. γ
(i)
r,t−1. It is easy to show that when

γ
(i)
r,t−1 = γ

(i)∗
r,t−1 ≜

(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)

∥∥∥gr−1(x′)− g(i)r−1(x
′′)
∥∥∥

, (10)

Ξ
(i)
r,t can achieve its global minimum w.r.t. γ

(i)
r,t−1 as

Ξ(i)
r,t =

∥∥∥g(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥
2

−

∥∥∥∥
(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)∥∥∥∥

2

∥∥∥gr−1(x′)− g(i)r−1(x
′′)
∥∥∥
2 . (11)

This therefore finishes the proof of the fist-part result in Prop. B.1. Interestingly, (11) implies that given the γ
(i)
r,t−1 in (10), a

better alignment between the gradient correction vector gr−1(x
′)− g(i)r−1(x

′′) and the shift∇F (x(i)
r,t−1)− g

(i)
r,t−1 leads to a

smaller gradient disparity Ξ
(i)
r,t.

Given the γ
(i)∗
r,t−1 = 1 in (10), when gr−1(x

′)− g(i)r−1(x
′′) = ∇F (x(i)

r,t−1)− g
(i)
r,t−1, we can easily verify that Ξ

(i)
r,t in (10)

has Ξ
(i)
r,t = 0. On the contrary, when Ξ

(i)
r,t = 0, we have that

∥∥∥g(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥ =

∥∥∥∥
(
∇F (x(i)

r,t−1)− g
(i)
r,t−1

)⊤ (
gr−1(x

′)− g(i)r−1(x
′′)
)∥∥∥∥

∥∥∥gr−1(x′)− g(i)r−1(x
′′)
∥∥∥

, (12)

which implies that ∇F (x(i)
r,t−1)− g

(i)
r,t−1 and gr−1(x

′)− g(i)r−1(x
′′) are linear dependent according to the Cauchy-Schwarz

inequality. Since γ
(i)∗
r,t−1 = 1, we further have

∥∥∥∇F (x(i)
r,t−1)− g

(i)
r,t−1

∥∥∥ =
∥∥∥gr−1(x

′)− g(i)r−1(x
′′)
∥∥∥ . (13)

These two results, i.e., (12) and (13) thus imply that ∇F (x(i)
r,t−1) − g

(i)
r,t−1 = gr−1(x

′) − g(i)r−1(x
′′), which therefore

concludes our proof.
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E.2. Proof of Theorem 1

E.2.1. GRADIENT ESTIMATION ERROR USING UNCERTAINTY

We introduce the following lemma that is adapted from [3] to bound the estimation error of our local gradient surrogates

using the uncertainty measure in our (8).

Lemma E.1. Let δ ∈ (0, 1) and ω ≜ d + 2(
√
d + 1) ln(1/δ). For any x ∈ X , i ∈ [N ], r ≥ 1 and t ≥ 1, the following

holds with probability of at least 1− δ,

∥∥∥∇µ(i)
r,t(x)−∇fi(x)

∥∥∥
2

≤ ω
∥∥∥∥∂
(
σ
(i)
r,t

)2
(x)

∥∥∥∥ .

E.2.2. RFF APPROXIMATION ERROR FOR GLOBAL GRADIENT SURROGATE

Lemma E.2 ([25]). If x1, · · · , xk are independent standard normal random variables, for y =
∑k

i=1 x2
i and any ϵ,

P(y− k ≥ 2
√
kϵ+ 2ϵ) ≤ exp(−ϵ) .

Following the general idea in [4], we present the following Lemma E.3 to bound the difference of our approximated kernel

using random features and the ground truth kernel k, as well as the difference between their partial derivatives first. To ease

our presentation, we let the kernel k be defined by an infinite dimensional vector ψ(x), which is defined by the corresponding

infinite number of features for k, throughout this section. That is, k(x,x′) = ψ(x)⊤ψ(x′) for any x,x′ ∈ X .

Lemma E.3. Let δ ∈ (0, 1). Assume that E
[
∥v∥2

]
≤ V , for any x,x′ ∈ X , the following holds with probability of at least

1− δ, ∣∣φ(x)⊤φ(x′)−ψ(x)⊤ψ(x′)
∣∣ ≤

√
8 ln(2/δ)/M ,

∥∥∇φ(x)⊤φ(x′)−∇ψ(x)⊤ψ(x′)
∥∥ ≤

√
4V/(Mδ)

where M is the number of random Fourier features.

Proof. Recall that φ(x)⊤φ(x′) = 1/M
∑M

j=1 2 cos(v
⊤
j x+ bj) cos(v

⊤
j x

′ + bj) as shown in Appx. D. Then, according to

[4], for any j ∈ [M ],

E
[
2 cos(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)
]
= ψ(x)⊤ψ(x′) ,

E
[
φ(x)⊤φ(x′)

]
= ψ(x)⊤ψ(x′) .

(14)

Since 2 cos(v⊤j x+ bj) cos(v
⊤
j x

′ + bj) ∈ [−2, 2] and both {v1, · · · ,vM} and {b1, · · · , bM} are randomly independently

sampled, according to Hoeffding’s inequality, the following inequality holds for any ϵ > 0

P
(∣∣φ(x)⊤φ(x′)−ψ(x)⊤ψ(x′)

∣∣ ≥ ϵ
)
≤ 2 exp

(
−Mϵ2

8

)
. (15)

Choose δ = 2 exp(Mϵ2), the following holds with a probability of at least 1− δ,

∣∣φ(x)⊤φ(x′)−ψ(x)⊤ψ(x′)
∣∣ ≤

√
8 ln(2/δ)

M
. (16)

Moreover, based on the interchangeability of derivative and expectation, we then have the following results derived from

(14)

E
[
−2 sin(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)v
⊤
j

]
= ∇ψ(x)⊤ψ(x′) ,

E
[
∇φ(x)⊤φ(x′)

]
= ∇ψ(x)⊤ψ(x′) .

(17)

Since both {v1, · · · ,vM} and {b1, · · · , bM} are randomly independently sampled, we then can bound the variance

11
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E

[∥∥∇φ(x)⊤φ(x′)−∇ψ(x)⊤ψ(x′)
∥∥2
]

as below

E

[∥∥∇φ(x)⊤φ(x′)−∇ψ(x)⊤ψ(x′)
∥∥2
]

(a)
=E




∥∥∥∥∥∥
1

M

M∑

j=1

(
−2 sin(v⊤j x+ bj) cos(v

⊤
j x

′ + bj)vj −∇ψ(x)⊤ψ(x′)
)
∥∥∥∥∥∥

2



(b)
=

1

M2
E




M∑

j=1

∥∥−2 sin(v⊤j x+ bj) cos(v
⊤
j x

′ + bj)vj −∇ψ(x)⊤ψ(x′)
∥∥2



(c)
=

1

M2

M∑

j=1

(
E

[∥∥−2 sin(v⊤j x+ bj) cos(v
⊤
j x

′ + bj)vj
∥∥2
]
− E

[∥∥∇ψ(x)⊤ψ(x′)
∥∥2
])

(d)

≤ 1

M2

M∑

j=1

E

[∥∥−2 sin(v⊤j x+ bj) cos(v
⊤
j x

′ + bj)vj
∥∥2
]

(e)

≤ 4

M2

M∑

j=1

E

[
∥vj∥2

]

(f)

≤ 4V

M

(18)

where (b) is from the independence among {v1, · · · ,vM} and {b1, · · · , bM} for variance derivation and (c) is based on the

definition of variance. In addition, (e) is due to the fact that sin(v⊤j x+ bj), cos(v
⊤
j x

′ + bj) ∈ [−1, 1] and (f) is because

of the assumption that E
[
∥v∥2

]
≤ V .

Therefore, according to Chebyshev’s inequality, we have the following inequalities for any ϵ > 0

P
(∥∥∇φ(x)⊤φ(x′)−∇ψ(x)⊤ψ(x′)

∥∥ > ϵ
)
≤

E

[∥∥∇φ(x)⊤φ(x′)−∇ψ(x)⊤ψ(x′)
∥∥2
]

ϵ2

≤ 4V

Mϵ2
.

(19)

Choose ϵ =
√
4V/(Mδ), the following holds for a probability of at least 1− δ,

∥∥∇φ(x)⊤φ(x′)−∇ψ(x)⊤ψ(x′)
∥∥ ≤

√
4V

Mδ
, (20)

which finally completes the proof.

Lemma E.4. For any x,x′ ∈ X and i ∈ [N ], assume that E
[
∥v∥2

]
≤ V ,

∥∥∇ψ(x)⊤ψ(x′)
∥∥ ≤ L and |fi(x)| ≤ 1, then

the following holds with a constant probability for all r ∈ [R],

∥∥∥∇µ̂(i)
r,T (x)−∇µ

(i)
r,T (x)

∥∥∥
2

≤ O
(

1

M

)
.

12



Heterogeneous Federated Zeroth-Order Optimization using Gradient Surrogates

Proof. Based on the definition in (8) and (3), we have that:

∥∥∥∇µ̂(i)
r,T (x)−∇µ

(i)
r,T (x)

∥∥∥
(a)
=

∥∥∥∥∇φ(x)⊤Φ
(i)
r,t−1

(
K̂

(i)
r,T + σ2

I

)−1

y
(i)
r,T −∇ψ(x)⊤Ψ

(i)
r,T

(
K

(i)
r,T + σ2

I

)−1

y
(i)
r,T

∥∥∥∥
(b)

≤
∥∥∥∥∇φ(x)⊤Φ

(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K

(i)
r,T + σ2

I

)−1
∥∥∥∥
∥∥∥y(i)

r,T

∥∥∥

(c)
=

∥∥∥∥∇φ(x)⊤Φ
(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1
∥∥∥∥

︸ ︷︷ ︸
1

∥∥∥y(i)
r,T

∥∥∥+

∥∥∥∥∇ψ(x)⊤Ψ
(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K

(i)
r,T + σ2

I

)−1
∥∥∥∥

︸ ︷︷ ︸
2

∥∥∥y(i)
r,T

∥∥∥

(21)

where (b) and (c) are from the Cauchy–Schwarz inequality and the triangle inequality, respectively.

We bound term 1 , term 2 and

∥∥∥y(i)
r,T

∥∥∥ above separately. Firstly, the following holds with probability of at least 1− rTδ′

1
(a)
=

∥∥∥∥∇φ(x)⊤Φ
(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1
∥∥∥∥

(b)

≤
∥∥∥∇φ(x)⊤Φ(i)

r,T −∇ψ(x)⊤Ψ
(i)
r,T

∥∥∥
∥∥∥∥
(
K̂

(i)
r,T + σ2

I

)−1
∥∥∥∥

(c)

≤

√√√√
rT∑

τ=1

∥∥∥∇φ(x)⊤φ(x(i)
τ )−∇ψ(x)⊤ψ(x(i)

τ )
∥∥∥
2
∥∥∥∥
(
K̂

(i)
r,T + σ2

I

)−1
∥∥∥∥

(d)

≤ 1

σ2

√
4rTV

Mδ′

(22)

Where (b) comes from the Cauchy–Schwarz inequality and (c) follows from the fact that for any matrix A with n rows

and each row identified as ai we have ∥A∥ ≤ ∥A∥F ≜
√∑n

i=1 ∥ai∥2. Finally, (d) is due to the fact that K̂
(i)
r,T is positive

semi-definite and therefore K̂
(i)
r,T + σ2

I ≽ σ2
I as well as the results in Lemma E.3.

Secondly, the following holds with probability of at least 1− r2T 2δ′′,

2
(a)
=

∥∥∥∥∇ψ(x)⊤Ψ
(i)
r,T

(
K̂

(i)
r,T + σ2

I

)−1

−∇ψ(x)⊤Ψ(i)
r,T

(
K

(i)
r,T + σ2

I

)−1
∥∥∥∥

(b)

≤
∥∥∥∇ψ(x)⊤Ψ(i)

r,t−1

∥∥∥
∥∥∥∥
(
K̂

(i)
r,T + σ2

I

)−1

−
(
K

(i)
r,T + σ2

I

)−1
∥∥∥∥

(c)
=
∥∥∥∇ψ(x)⊤Ψ(i)

r,T

∥∥∥
∥∥∥∥
(
K

(i)
r,T − K̂

(i)
r,T

)(
K̂

(i)
r,T + σ2

I

)−1 (
K

(i)
r,T + σ2

I

)−1
∥∥∥∥

(d)

≤

√√√√
rT∑

τ=1

∥∥∥∇ψ(x)⊤ψ(x(i)
τ )
∥∥∥
2 ∥∥∥K(i)

r,T − K̂
(i)
r,T

∥∥∥
∥∥∥∥
(
K̂

(i)
r,T + σ2

I

)−1
∥∥∥∥
∥∥∥∥
(
K

(i)
r,T + σ2

I

)−1
∥∥∥∥

(e)

≤ L

σ4

√
rT

√√√√
rT∑

τ,τ ′=1

∥∥∥ψ(x(i)
τ )⊤ψ(x

(i)
τ ′ )− φ(x(i)

τ )⊤φ(x
(i)
τ ′ )
∥∥∥
2

(f)

≤ L (rT )
3/2

σ4

√
8 ln(2/δ′′)

M

(23)

where (b) is from the Cauchy–Schwarz inequality. Besides, (c) and (e) come from the aforementioned inequality ∥A∥ ≤

13
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∥A∥F. In addition, (f) is based on the assumption that
∥∥∇ψ(x)⊤ψ(x′)

∥∥ ≤ L, ∥A∥ ≤ ∥A∥F, K̂
(i)
r,T + σ2

I ≽ σ2
I and

K
(i)
r,T + σ2

I ≽ σ2
I.

Thirdly, the following holds with probability of at least 1− rTδ′′′,

∥∥∥y(i)
r,T

∥∥∥ (a)
=

√√√√
rT∑

τ=1

(fi(xτ ) + ζτ )
2

(b)

≤

√√√√
rT∑

τ=1

2f2i (xτ ) + 2ζ2τ

(c)

≤

√√√√2rT + 2σ2

rT∑

τ=1

(
ζτ
σ

)2

(d)

≤
√
2rT + 2σ2

(
rT + 2

√
rT ln(1/δ′′′) + 2 ln(1/δ′′′)

)

(24)

where ζτ denote the observation noise associated with the input xτ . Besides, (c) is from the assumption that ζτ ∼ N (0, σ2)
for any τ in Sec. 2 and |fi(x)| ≤ 1 for any x ∈ X . Finally, (d) comes from our Lemma E.2.

By introducing (22), (23) and (24) with δ′ = δ
3rT , δ′′ = δ

3r2T 2 and δ′′′ = δ
3rT into (21), the following then holds with

probability of at least 1− δ,

∥∥∥∇µ̂(i)
r,T (x)−∇µ

(i)
r,T (x)

∥∥∥

≤
(
rT

σ2

√
12V

Mδ
+

4L (rT )
3/2

σ4

√
ln(6rT/δ)

M

)√
2rT + 2σ2

(
rT + 2

√
rT ln(3rT/δ) + 2 ln(3rT/δ)

)

=O
(
rT
√
rT√
M

+
r2T 2

√
ln(rT )√
M

)
.

(25)

Of note, it is easy to show that when (25) holds for r = R, it must hold for any r ≤ R. Therefore, the following finally

holds with a constant probability for all r ∈ [R],

∥∥∥∇µ̂(i)
r,T (x)−∇µ

(i)
r,T (x)

∥∥∥
2

≤ O
(

1

M

)
, (26)

which concludes our proof.

Remark. Note that the assumption E

[
∥v∥2

]
≤ V implies that the distribution p(v) in Appx. D has a bounded mean and

covariance since E

[
∥v∥2

]
= ∥E [v]∥2 + E

[
∥v − E [v]∥2

]
. This is usually valid for the widely applied kernels (e.g., the

squared exponential kernel in Appx. D) in practice.

Remarkably, (25) with r = R has demonstrated that a larger number M of random features is preferred to maintain the

approximation quality of ∇µ̂(i)
R,T (x) ≈ ∇µ

(i)
R,T when the number R of communication rounds and the number T of local

iterations increase. This in fact aligns with the intuition that a larger hypothesis space (defined by the M random features)

should be used when the target function (defined by the existing RT function queries) becomes more complex. However,

for any communication round r + 1 ∈ [R] in our FZooS, the approximation of∇µ(i)
r,T using∇µ̂(i)

r,T (x) needs to be accurate

only at the local updated inputs {x(i)
r+1,t−1}t∈[T ],i∈[N ] with a relatively small T (i.e., T ≤ 20), which consequently usually

does not requires an extremely large M to realize a good approximation quality in practice. This has actually been supported

by the empirical results in our Sec. 5 and Appx. H.

E.2.3. FINAL GRADIENT DISPARITY ANALYSIS USING UNCERTAINTY

We introduce the following Lemma E.5 and Lemma E.6 from [3] to ease our proof of Thm. 1:

14
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Lemma E.5. Let {v1, . . . ,vτ} be any τ vectors in R
d. Then the following holds for any a > 0:

∥vi∥ ∥vj∥ ≤
a

2
∥vi∥2 +

1

2a
∥vj∥2 , (27)

∥vi + vj∥2 ≤ (1 + a) ∥vi∥2 +
(
1 +

1

a

)
∥vj∥2 , (28)

∥∥∥∥∥

τ∑

i=1

vi

∥∥∥∥∥

2

≤ τ
τ∑

i=1

∥vi∥2 . (29)

Proof. For (27), we have that

a

2
∥vi∥2 +

1

2a
∥vj∥2 ≥ 2

√
a

2
∥vi∥2 ·

1

2a
∥vj∥2 = ∥vi∥ ∥vj∥ . (30)

For (28), we have that

(1 + a) ∥vi∥2 +
(
1 +

1

a

)
∥vj∥2 = ∥vi∥2 + ∥vj∥2 +

(
a ∥vi∥2 +

1

a
∥vj∥2

)

≥ ∥vi∥2 + ∥vj∥2 + 2

√
a ∥vi∥2 ·

1

a
∥vj∥2

= ∥vi + vj∥2 .

(31)

For (29), we can directly employ the convexity of function h(x) = ∥x∥2 and Jensen’s inequality:

∥∥∥∥∥
1

τ

τ∑

i=1

vi

∥∥∥∥∥

2

≤ 1

τ

τ∑

i=1

∥vi∥2 . (32)

By multiplying the inequality above with τ2, we conclude the proof.

Lemma E.6. Define ρi ≜ maxx∈X ,r≥1,t≥1

∥∥∥∥∂
(
σ
(i)
r,t

)2
(x)

∥∥∥∥
/∥∥∥∥∂

(
σ
(i)
r,t−1

)2
(x)

∥∥∥∥, we have that ρi ∈
[
1/(1 + 1/σ2), 1

]
,

and that for any x ∈ X , r ≥ 1, t ≥ 1 the following holds,
∥∥∥∥∂
(
σ
(i)
r,t

)2
(x)

∥∥∥∥ ≤ κρ
(r−1)T+t
i .

Let δ ∈ (0, 1), ϵ = O( 1
M ) and ω = d+ 2(

√
d+ 1) ln(2NRT/δ), the following inequalities then hold with a probability of

at least 1− δ:

∥∥∥∥∥∥
1

N

N∑

j=1,j ̸=i

(
∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

)
∥∥∥∥∥∥

2

(a)

≤ N − 1

N2

N∑

j=1,j ̸=i

∥∥∥∇µ̂(j)
r−1,T (x

(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥
2

(b)
=
N − 1

N2

N∑

j=1,j ̸=i

∥∥∥∇µ̂(j)
r−1,T (x

(i)
r,t−1)−∇µ

(j)
r−1,T (x

(i)
r,t−1) +∇µ

(j)
r−1,T (x

(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥
2

(c)

≤N − 1

N2

N∑

j=1,j ̸=i

(
N

N − 1

∥∥∥∇µ(j)
r−1,T (x

(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥
2

+N
∥∥∥∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇µ

(j)
r−1,T (x

(i)
r,t−1)

∥∥∥
2
)

(d)

≤ ω

N

N∑

j=1,j ̸=i

∥∥∥∥∂
(
σ
(j)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+
(N − 1)2

N
ϵ ,

(33)

15
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in which (a) is from (29) and (c) is from (28) with a = 1
N−1 . In addition, (d) comes from Lemma E.1 and Lemma E.4.

(N − 1)2

N2

∥∥∥∇fi(x(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥
2

(a)
=

(N − 1)2

N2

∥∥∥∇fi(x(i)
r,t−1)−∇µ

(i)
r−1,T (x

(i)
r,t−1) +∇µ

(i)
r−1,T (x

(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥
2

(b)

≤ (N − 1)2

N2

(
N

N − 1

∥∥∥∇fi(x(i)
r,t−1)−∇µ

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥
2

+N
∥∥∥∇µ(i)

r−1,T (x
(i)
r,t−1)∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥
2
)

(c)

≤
(
ω(N − 1)

N

∥∥∥∥∂
(
σ
(i)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+
(N − 1)2

N
ϵ

)
,

(34)

in which (c) is from (28) with a = 1
N−1 . In addition, (d) comes from Lemma E.1 and Lemma E.4.

By exploiting the inequalities above, we have

1

N

N∑

i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑

i=1

∥∥∥∇µ(i)
r,t−1(x

(i)
r,t−1) + γr,t−1

(
∇µ̂r−1(x

(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

)
−∇F (x(i)

r,t−1)
∥∥∥
2

(b)
=

1

N

N∑

i=1

∥∥∥∥∥∥
∇µ(i)

r,t−1(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1) + γr,t−1


 1

N

N∑

j=1,j ̸=i

(
∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

)

+

γr,t−1(N − 1)

N

(
∇fi(x(i)

r,t−1)−∇µ̂
(i)
r−1,T (x

(i)
r,t−1)

)
+ (1− γr,t−1)

(
∇fi(x(i)

r,t−1)−∇F (x
(i)
r,t−1)

)∥∥∥∥
2

(c)

≤ 1

N

N∑

i=1


4
∥∥∥∇µ(i)

r,t−1(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+ 4γ2r,t−1

∥∥∥∥∥∥
1

N

N∑

j=1,j ̸=i

(
∇µ̂(j)

r−1,T (x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

)
∥∥∥∥∥∥

2

+

4γ2r,t−1(N − 1)2

N2

∥∥∥∇fi(x(i)
r,t−1)−∇µ̂

(i)
r−1,T (x

(i)
r,t−1)

∥∥∥
2

+ 4(1− γr,t−1)
2
∥∥∥∇fi(x(i)

r,t−1)−∇F (x
(i)
r,t−1)

∥∥∥
2
)

(d)

≤ 4ω

N

N∑

i=1

∥∥∥∂
(
σ
(i)
r,t−1

)
(x

(i)
r,t−1)

∥∥∥+ 4γ2r,t−1


 ω

N2

N∑

i=1

N∑

j=1,j ̸=i

∥∥∥∥∂
(
σ
(j)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+
(N − 1)2

N
ϵ


+

4γ2r,t−1

(
ω(N − 1)

N2

N∑

i=1

∥∥∥∥∂
(
σ
(i)
r−1,T

)2
(x

(i)
r,t−1)

∥∥∥∥+
(N − 1)2

N
ϵ

)
+ 4(1− γr,t−1)

2G

(35)

where (c) is from the (29). In addition, (d) is from Lemma E.1, (33) and (34).

By introducing the results in Lemma E.6 into (35), we have

1

N

N∑

i=1

Ξ
(i)
r,t

(a)

≤ 4ω

N

N∑

i=1

κρ
(r−1)T+t−1
i + 4γ2r,t−1

(
2ω(N − 1)

N2

N∑

i=1

κρ
(r−1)T
i +

2(N − 1)2

N
ϵ

)

+ 4(1− γr,t−1)
2G

(b)

≤ 4ω

N

N∑

i=1

κρ
(r−1)T+t−1
i + 4γ2r,t−1

(
2ω

N

N∑

i=1

κρ
(r−1)T
i + 2Nϵ

)
+ 4(1− γr,t−1)

2G

(c)

≤ 4ωκρ(r−1)T+t−1 + 4γ2r,t−1

(
2ωκρ(r−1)T + 2Nϵ

)
+ 4(1− γr,t−1)

2G

(36)

where (c) is from Jansen’s inequality with ρ ≜ 1
N

∑N
i=1 ρi. This finally concludes our proof.
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Remark. Of note, the upper bound in our Thm. 1 is a quadratic function w.r.t. the gradient correction length γr,t−1. As a

consequence, it is easy to verify that in order to minimize the upper bound in our Thm. 1 (i.e., to achieve a better-performing

(5)) w.r.t. γr,t−1, γr,t−1 needs to be chosen as

γr,t−1 =
G

G+ 2ωρ(r−1)T + 2Nϵ
, (37)

as shown in our Cor. 1. This better-performing γr,t−1 therefore implies that (a) an adaptive γr,t−1 is indeed able to

theoretically reduce the gradient disparity, which therefore aligns with the conclusion from our Prop. B.1 and (b) when

the estimation error of our gradient correction vector (characterized by 2ωρrT + 2Nϵ) in (5) is smaller than the client

heterogeneity (characterized by G), a large γt−1 is suggested to be applied in order to minimize the gradient disparity
1
N

∑N
i=1 Ξ

(i)
r,t, as shown in our Sec. 4.

By introducing this γr,t−1 into the upper bound in Thm. 1, we have

1

N

N∑

i=1

Ξ
(i)
r,t

(a)

≤ 4ωκρ(r−1)T+t−1 + 4γ2r,t−1

(
2ωκρ(r−1)T + 2Nϵ

)
+ 4(1− γr,t−1)

2G

(b)
= 4ωκρ(r−1)T+t−1 +

4G
(
2ωκρ(r−1)T + 2Nϵ

)

G+
(
2ωρ(r−1)T + 2Nϵ

)

(c)

≤ 4ωκρ(r−1)T+t−1 + 2
√
2G(ωκρ(r−1)T +Nϵ)

(d)

≤ 4ωκρ(r−1)T+t−1 + 2
√

2ωκρ(r−1)TG+ 2
√
2NGϵ

(38)

where (c) is from the inequality of G + 2ωρ(r−1)T + 2Nϵ ≥ 2
√
G(2ωρ(r−1)T + 2Nϵ) (i.e., the relationship between

the geometric mean and arithmetic mean of G and 2ωρ(r−1)T + 2Nϵ) and (d) is from the fact that (
√

2ωκρ(r−1)TG +√
2NGϵ)2 > 2ωκρ(r−1)TG+ 2NGϵ. Interestingly, (38) enjoys two major aspects. (a) In contrast to the algorithm where

γr,t−1 = 0 (e.g., FedZO), the impact of client heterogeneity (i.e., G) is able to be reduced in our FZooS through decreasing

the estimation error of our gradient surrogates (i.e., ωκρ(r−1)T ) and the RFF approximation error (i.e., ϵ) for our global

gradient surrogates. (b) In contrast to the federated ZOO algorithms where γr,t−1 = 1 (e.g., SCAFFOLD), the impact of

the large estimation error of our gradient surrogates (i.e., ωκρ(r−1)T ) is also able to be mitigated in our FZooS through a

small client heterogeneity (i.e., G) in practice. As a result, these advantages will intuitively make our FZooS produce more

robust optimization performance under different scenarios in practice, as supported by our Sec. 5 and Appx. H.

17



Heterogeneous Federated Zeroth-Order Optimization using Gradient Surrogates

E.3. Gradient Estimation Analysis Based on Euclidean Distance

Of note, for every iteration t of round r, our global gradient surrogate in Sec. 3.2.1 is obtained based on the optimization

trajectory D(i)
r−1,T = {(x(i)

τ , y
(i)
τ )}T (r−1)

τ=1 and is not capable of being updated immediately although t − 1 new function

queries are given at this time. This is because the update of our global gradient surrogate only occurs when clients and

server can communicate with each other, i.e., at the end of each round. Intuitively, this will result in the phenomenon that

the quality of our global gradient surrogate and hence the quality of our (5) decays w.r.t. the iterations of local updates,

as empirically supported in Appx. H.1. This is likely because the Euclidean distance between the input to be evaluated

in our global gradient surrogate and the queried inputs from the optimization trajectory becomes larger and consequently

the optimization trajectory becomes less informative. Unfortunately, such a quality decay within the local updates fails to

be captured in Thm. 1 and hence may result in an impractical choice of γr,t−1 in Cor. 1. To this end, we develop another

uncertainty analysis of our global gradient surrogate that is based on Euclidean distance to capture such a phenomenon in

this section, which finally gives us a more practical choice of gradient correction length.

We first introduce the following lemma to ease our proof in this section.

Lemma E.7. For any matrix A, A⊤
A and AA

⊤ share the same non-zero eigenvalues.

Proof. Let λ be any non-zero eigenvalue of A⊤
A, for some x ̸= 0, we have

A
⊤
Ax = λx . (39)

By multiplying A on both sides above, we have

AA
⊤ (Ax) = λ (Ax) , (40)

which implies that λ is also the eigenvalue of AA
⊤ with Ax being the eigenvector. Following the same proof, it is easy to

show that any non-zero eigenvalue of AA
⊤ remains the eigenvalue of A⊤

A, which therefore concludes the proof.

We then introduce another estimation error analysis (different from the one presented in Appx. E.2) of our global gradient

surrogate as follows where we slightly abuse the notation and use x
(i)
τ ∈ D(i)

r,T to denote that x
(i)
τ is from the optimization

trajectory D(i)
r,T .

Proposition E.1. Let the shift-invariant kernel k(x,x′) = k(∥x− x′∥2) where k(·) is assumed to be non-increasing and

function h(ι) = ι∇k(ι)2 is assumed to be convex, the following then holds with a probability of at least 1 − δ for any

x ∈ X ,

∥∇µr(x)−∇F (x)∥2 ≤ ωκ−
4ωι2r∇k(ιr)2

k(0)d+ σ2d/(rT )

where ω = d+ 2(
√
d+ 1) ln(1/δ), ιr ≜ 1

rNT

∑N
i=1

∑
x

(i)
τ ∈D(i)

r,T

∥∥∥x− x(i)
τ

∥∥∥
2

, and k(0) = k(x,x).

Proof. Recall that the uncertainty measure function (see (8)) of our local gradient surrogate on client i for iteration T of

round r will be

∂
(
σ
(i)
r,T

)2
(x) = ∂z∂z′k(z, z′)− ∂zk(i)r,T (z)

⊤
(
K

(i)
r,T + σ2

I

)−1

∂z′k
(i)
r,T (z

′)
∣∣∣
z=z

′=x

(a)

≼ κI−
(
λmax(K

(i)
r,T ) + σ2

)−1

∂zk
(i)
r,T (z)

⊤∂z′k
(i)
r,T (z

′)
∣∣∣
z=z

′=x

(b)

≼ κI−
∂zk

(i)
r,T (z)

⊤∂z′k
(i)
r,T (z

′)
∣∣
z=z

′=x

rT max
x,x′∈D(i)

r,T

k(x,x′) + σ2

(41)

where (a) is based on the assumption on ∂z∂z′k(z, z′) in our Sec. 2 and the definition of maximum eigenvalue. In addition,

(b) comes from λmax(K
(i)
r,T ) ≤ rT max

x,x′∈D(i)
r,T

k(x,x′) (i.e., the Gershgorin theorem).

Based on the assumption that k(x,x′) = k(∥x− x′∥2) and k(·) is non-increasing, we have

max
x,x′∈D(i)

r,T

k(x,x′) ≤ k(x,x) = k(0) .
(42)
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Moreover, define ι ≜ ∥z − z′∥2, the partial derivative of kernel k(·, ·) will be

∂zk(z, z
′) = 2 (z − z′)∇k(ι)

∂z′k(z, z′) = 2 (z′ − z)∇k(ι) . (43)

Therefore, the each element in the rT × rT matrix ∂zk
(i)
r,T (z)∂z′k

(i)
r,T (z

′)⊤
∣∣
z=z

′=x
that is induced by the input pair

(x
(i)
τ ,x

(i)
τ ′ ) with x

(i)
τ ,x

(i)
τ ′ ∈ D(i)

r,T and τ, τ ′ ∈ [rT ] will be:

4
(
x− x(i)

τ

)⊤ (
x− x(i)

τ ′

)
∇k(ι(i)τ )∇k(ι(i)τ ′ ) (44)

where ι
(i)
τ ≜

∥∥∥x− x(i)
τ

∥∥∥
2

, ι
(i)
τ ′ ≜

∥∥∥x− x(i)
τ ′

∥∥∥
2

. Based on these results, the trace norm ∥·∥tr of

∂zk
(i)
r,T (z)∂z′k

(i)
r,T (z

′)⊤
∣∣
z=z

′=x
will be

∥∥∥∂zk(i)r,T (z)∂z′k
(i)
r,T (z

′)⊤
∣∣
z=z

′=x

∥∥∥
tr
=

rT∑

τ=1

4 ∥x− xτ∥2∇k(ιτ )2

=

rT∑

τ=1

4ιτ∇k(ιτ )2 .
(45)

By further assuming that the function h(ι) = ι∇k(ι)2 is convex, we then have

∥∥∥∂zk(i)r,T (z)
⊤∂z′k

(i)
r,T (z

′)
∣∣
z=z

′=x

∥∥∥
(a)

≥ 1

d

∥∥∥∂zk(i)r,T (z)
⊤∂z′k

(i)
r,T (z

′)
∣∣
z=z

′=x

∥∥∥
tr

(b)
=

1

d

∥∥∥∂zk(i)r,T (z)∂z′k
(i)
r,T (z

′)⊤
∣∣
z=z

′=x

∥∥∥
tr

(c)
=

1

d

rT∑

τ=1

4ι(i)τ ∇k(ι(i)τ )2

(d)

≥ 4rT

d
ι(i)r ∇k(ι(i)r )2

(46)

where (a) comes from the fact the maximum eigenvalue of a matrix is always larger or equal to its averaged eigenvalues

and (b) is based on Lemma E.7. In addition, (c) is obtained from (45) while (d) results from the definition of ι
(i)
r ≜

1
rT

∑
x

(i)
τ ∈D(i)

r,T

∥∥∥x− x(i)
τ

∥∥∥
2

as well as the Jansen’s inequality for the convex function h(·).

Finally, by introducing the results above, i.e., (42) and (46), into (41), we have

∥∥∥∥∂
(
σ
(i)
r,T

)2
(x)

∥∥∥∥ ≤ κ−
4ι

(i)
r ∇k(ι(i)r )2

k(0)d+ σ2d/(rT )
. (47)

Define ιr ≜ 1
N

∑N
i=1 ι

(i)
r , we then have

∥∇µr(x)−∇F (x)∥2
(a)
=

∥∥∥∥∥
1

N

N∑

i=1

(
∇µ(i)

r,T (x)−∇fi(x)
)∥∥∥∥∥

2

(b)

≤ 1

N

N∑

i=1

∥∥∥∇µ(i)
r,T (x)−∇fi(x)

∥∥∥
2

(c)

≤ 1

N

N∑

i=1

ωκ− 4ωι
(i)
r ∇k(ι(i)r )2

k(0)d+ σ2d/(rT )

(d)

≤ ωκ− 4ωιr∇k(ιr)2
k(0)d+ σ2d/(rT )

(48)
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where (b) is from the Cauchy-Schwarz inequality, (c) derives from Lemma E.1, and (d) results from the Jansen’s inequality

for convex function h(·). which finally concludes the proof.

Remark. Of note, the assumption that k(x,x′) = k(∥x− x′∥2) where k(·) is non-increasing and function h(ι) = ι∇k(ι)2
is convex can be satisfied by the widely applied squared exponential kernel k(x,x′) = exp

(
−∥x− x′∥2 /(2l2)

)
, which

has also been applied in our FZooS. To justify the validity of these assumptions on the squared exponential kernel, we

first show that this kernel can be represented as k(ι) = exp
(
−ι/(2l2)

)
, which is non-increasing w.r.t. its input ι, and

h(ι) = ι exp
(
−ι/l2

)
/(4l4) is convex when ι ≥ 2l2.

Remarkably, Prop. E.1 reveals that the quality of the gradient estimation at an input x ∈ X when using our global gradient

surrogate without RFF approximation is highly related to the averaged Euclidean distance between x and xτ ∈
⋃N

i=1D
(i)
r,T

(i.e., ιr in Prop. E.1). Specifically, when the input x to be evaluated in our global gradient surrogate leads to a larger

value of ιr∇k(ιr)2, the upper bound in our Prop. E.1 demonstrates that the gradient estimation error of our global

gradient surrogate tends to be more accurate. Note that when the kernel is the squared exponential kernel, we have that

h(ι) = ι∇k(ι)2 = ι exp
(
−ι/l2

)
/(4l4) decreases w.r.t. ι and that a smaller averaged Euclidean distance between x and

xτ ∈
⋃N

i=1D
(i)
r,T likely enjoys a smaller gradient estimation error. This is intuitively aligned with the common practice that

xτ ∈
⋃N

i=1D
(i)
r,T is more informative when it achieves a smaller averaged Euclidean distance with x. Intuitively, when the

iteration t of local updates is increased, the input xr,t−1 to be evaluated in our global gradient surrogate likely achieves a

larger distance with the history of function queries
⋃N

i=1D
(i)
r,T and consequently the quality of our global gradient surrogate

likely decays, which finally aligns with the phenomenon that we have mentioned at the beginning of this section.

More Practical Choice of γr,t−1. Finally, by introducing Prop. E.1 into the analysis in Appx. E.2, we achieve the

following better-performing choice of gradient correction length γr,t−1:

Corollary E.1. Based on our Prop. E.1, a better-performing choice choice of γr,t−1 should be

γr,t−1 =
G

G+ 2
(
ωκ− 4ωιr∇k(ιr)2

k(0)d+σ2d/(rT ) +Nϵ
) .

Cor. E.1 implies that γr,t−1 should decay w.r.t the iteration t of local updates if ιr∇k(ιr)2 decreases w.r.t. t. Particularly,

when k(x,x′) = exp
(
−∥x− x′∥2 /(2l2)

)
and ιr∇k(ιr)2 decreases at a rate of O( 1t ) for the iteration t of local updates,

we then have that better-performing choice of γr,t−1 in Prop. E.1 has the form of γr,t−1 = G
G+C0−C1/t

for some constant

C0 ≥ C1 > 0. Since we usually have no prior knowledge of client heterogeneity G as well as the constants C0, C1, we

commonly apply the approximated form of γr,t−1 = 1/t, which will be widely applied in our experiments as shown in our

Appx. G.
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E.4. Convergence of Algo. 1

We first introduce the following lemmas that are inspired by the results in [8].

Lemma E.8. For any α-strongly convex and β-smooth function f , and any x,y, z in the domain of f , we have

∇f(x)⊤ (y − z) ≤ f(y)− f(z)− α∥y − z∥2/4 + β∥z − x∥2

Proof. Since f is both α-strongly convex and β-smooth, we have that

f(z)− f(x) ≤ ∇f(x)⊤ (z − x) + β

2
∥z − x∥2

f(y)− f(x) ≥ ∇f(x)⊤ (y − x) + α

2
∥y − x∥2 .

(49)

Note that when α = 0, the inequalities above still hold. By aggregating the results above, we have

f(z)− f(y) = f(z)− f(x) + f(x)− f(y)

≤ ∇f(x)⊤ (z − x) +∇f(x)⊤ (x− y) + β

2
∥z − x∥2 − α

2
∥y − x∥2

≤ ∇f(x)⊤ (z − y) + β

2
∥z − x∥2 − α

4
∥y − z∥2 + α

2
∥x− z∥2

= ∇f(x)⊤ (z − y) + β + α

2
∥z − x∥2 − α

4
∥y − z∥2

(50)

where the second inequality comes from α ∥y − x∥2 /2 ≥ α ∥y − z∥2 /4 − α ∥x− z∥2 /2 (triangle inequality). When

α > 0, since β > α, we have

f(z)− f(y) ≤ ∇f(x)⊤ (z − y) + β ∥z − x∥2 − α

4
∥y − z∥2 . (51)

By rearranging the inequality above, we can directly derive the result in Lemma E.8 with α > 0. Even when α = 0, since

∥z − x∥2 ≥ 0, we have

f(z)− f(y) ≤ ∇f(x)⊤ (z − y) + β

2
∥z − x∥2

≤ ∇f(x)⊤ (z − y) + β ∥z − x∥2 .
(52)

By rearranging the inequality above, we show that the result in Lemma E.8 also holds for α = 0.

Lemma E.9. For any β-smooth function f , inputs x,y in the domain of f , the following holds for any η > 0

∥x− η∇f(x)− y + η∇f(y)∥2 ≤ (1 + ηβ)2∥x− y∥2 .

Proof. Since f is β-smooth, we have

∥x− η∇f(x)− y + η∇f(y)∥2 ≤
(
1 +

1

a

)
∥x− y∥2 + (1 + a) η2 ∥∇f(x)−∇f(y)∥2

≤
(
1 +

1

a
+ (1 + a) η2β2

)
∥x− y∥2

(53)

where the first inequality derives from Lemma E.5 and the second inequality comes from the smoothness of f . By choosing

a = 1/(ηβ), we conclude our proof.

Remark. Lemma E.9 only requires the smoothness of function f . When f is both β-smooth and α-strongly convex (α > 0),

we will have a tighter bound as below when η < α/β2 (see proof below),

∥x− η∇f(x)− y + η∇f(y)∥2 ≤ (1− ηα)∥x− y∥2 , (54)

which can lead to a better convergence (by achieving a smaller constant term) compared with the inequality (62) we will

prove later. However, for simplicity and consistency under various assumptions on the function to be optimized, we only use

Lemma E.9 for the convergence analysis of our Thm. C.1 in the main paper.
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Proof. Based on the strong convexity of f , for any inputs x,y in the domain of f , we have

f(y)− f(x) ≥ ∇f(x)⊤(y − x) + α

2
∥y − x∥2 ,

f(x)− f(y) ≥ ∇f(y)⊤(x− y) + α

2
∥y − x∥2 .

(55)

By summing up these inequalities, we have

(∇f(y)−∇f(x))⊤ (y − x) ≥ α ∥y − x∥2 . (56)

Finally, we have

∥x− η∇f(x)− y + η∇f(y)∥2
(a)
= ∥x− y∥2 + η2 ∥∇f(x)−∇f(y)∥2 − 2η (∇f(x)−∇f(y))⊤ (x− y)
(b)

≤ ∥x− y∥2 + η2β2 ∥x− y∥2 − 2ηα ∥x− y∥2
(c)
=
(
1 + η2β2 − 2ηα

)
∥x− y∥2

(57)

where (b) comes from the smoothness of f and (56). Since α > 0, by introducing η ≤ α/β2 into (57), we can complete our

proof.

Lemma E.10. Let f be β-smooth and x∗ = argmin f(x), then for any input x in the domain of f , the following holds

∥∇f(x)∥2 ≤ 2β (f(x)− f(x∗))

Proof. Since f is β-smooth, we have the following inequality for any x, y in the domain of f

f(y) ≤ f(x) +∇f(x)⊤(y − x) + β

2
∥y − x∥2 . (58)

By setting y = x−∇f(x)/β, we have

f(x∗) ≤ f(x− 1

β
∇f(x))

≤ f(x) +∇f(x)⊤
(
x− 1

β
∇f(x)− x

)
+
β

2

∥∥∥∥x−
1

β
∇f(x)− x

∥∥∥∥
2

= f(x)− 1

2β
∥∇f(x)∥2 .

(59)

We finally conclude our proof by rearranging the inequality above.

We then bound the drift between x
(i)
r,t and xr for every iteration t of any round r as below, which is the key difference

between the convergence of general federated ZOO and centralized optimization.

Lemma E.11. Assume that F is β-smooth. Then the updated input x
(i)
r,t at any iteration t ≥ 1 of round r ≥ 1 on client i in

Algo. 1 has the following bounded drift with η ≤ 1
βT

∥∥∥x(i)
r+1,t − xr

∥∥∥
2

≤ 2η2T
t∑

τ=1

St−τΞ
(i)
r+1,τ + 22η2T 2 ∥∇F (xr)∥2

where S ≜ (T + 1)2/(T (T − 1)).
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Proof. Since x
(i)
r+1,t = x

(i)
r+1,t−1 − ηĝ

(i)
r+1,t−1, we have the following inequalities when T > 1

∥∥∥x(i)
r+1,t − xr

∥∥∥
2

(a)
=
∥∥∥x(i)

r+1,t−1 − ηĝ
(i)
r+1,t−1 − xr

∥∥∥
2

(b)
=
∥∥∥x(i)

r+1,t−1 − η∇F (x
(i)
r+1,t−1) + η∇F (xr)− xr + η

(
∇F (x(i)

r+1,t−1)− ĝ
(i)
r+1,t−1 −∇F (xr)

)∥∥∥
2

(c)

≤ T

T − 1

∥∥∥x(i)
r+1,t−1 − η∇F (x

(i)
r+1,t−1) + η∇F (xr)− xr

∥∥∥
2

+ η2T
∥∥∥∇F (x(i)

r+1,t−1)− ĝ
(i)
r+1,t−1 −∇F (xr)

∥∥∥
2

(d)

≤ T

T − 1

∥∥∥x(i)
r+1,t−1 − η∇F (x

(i)
r+1,t−1) + η∇F (xr)− xr

∥∥∥
2

+ 2η2T

[∥∥∥∇F (x(i)
r+1,t−1)− ĝ

(i)
r+1,t−1

∥∥∥
2

+ ∥∇F (xr)∥2
]

(60)

where (c) and (d) come from the (28) in Lemma E.5 by setting a = 1/(T −1) and a = 1, respectively. Since F is β-smooth,

we can introduce Lemma E.9 into (60) to obtain the following result given the constant S ≜ (T + 1)2/(T (T − 1))

∥∥∥x(i)
r+1,t − xr

∥∥∥
2

(a)

≤ T (1 + ηβ)2

T − 1

∥∥∥x(i)
r+1,t−1 − xr

∥∥∥
2

+ 2η2T

[∥∥∥∇F (x(i)
r+1,t−1)− ĝ

(i)
r+1,t−1

∥∥∥
2

+ ∥∇F (xr)∥2
]

(b)
=2η2T

t−1∑

τ=0

(
T (1 + ηβ)2

T − 1

)t−τ−1 ∥∥∥∇F (x(i)
r+1,τ )− ĝ

(i)
r+1,τ

∥∥∥
2

+ 2η2T ∥∇F (xr)∥2
t−1∑

τ=0

(
(1 + ηβ)2T

T − 1

)τ

(c)

≤2η2T

t−1∑

τ=0

(
(T + 1)2

T (T − 1)

)t−τ−1 ∥∥∥∇F (x(i)
r+1,τ )− ĝ

(i)
r+1,τ

∥∥∥
2

+ 2η2T ∥∇F (xr)∥2
t−1∑

τ=0

(
(T + 1)2

T (T − 1)

)τ

(d)

≤2η2T
t−1∑

τ=0

St−τ−1
∥∥∥∇F (x(i)

r+1,τ )− ĝ
(i)
r+1,τ

∥∥∥
2

+ 22η2T 2 ∥∇F (xr)∥2

(e)
=2η2T

t∑

τ=1

St−τΞ
(i)
r+1,τ + 22η2T 2 ∥∇F (xr)∥2

(61)

where (b) comes from the summation of geometric series and (c) is from the fact that η ≤ 1/(βT ). In addition, (d) results

from the definition of S as well as the following results

t−1∑

τ=0

(
(T + 1)2

T (T − 1)

)τ

≤
T−1∑

τ=0

(
(T + 1)2

T (T − 1)

)τ

=

(
(T + 1)2/[T (T − 1)]

)T − 1

(T + 1)2/[T (T − 1)]− 1

=
T (T − 1)

3T + 1

((
1 +

3T + 1

T (T − 1)

)T

− 1

)

<
T (T − 1)

3T + 1

(
exp

(
3T + 1

T

)
− 1

)

<
T

3

(
exp

(
7

2

)
− 1

)

< 11T .

(62)
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Finally, (e) results from the definition of Ξ
(i)
r+1,t ≜

∥∥∥ĝr+1,t−1 −∇F (x(i)
r+1,t−1)

∥∥∥
2

in our Appx. B.2.

We finally present the convergence of Algo. 1 in the following theorem for the general federated ZOO framework, which

then can be easily applied to prove the convergence of our FZooS in Appx. E.5 and the convergence of existing federated

ZOO algorithms in Appx. F.

Theorem E.1. Define Ξ
(i)
r,t ≜

∑T
t=1

∥∥∥ĝ(i)r,t−1 −∇F (x
(i)
r,t−1)

∥∥∥
2

, S ≜ (T + 1)2/(T (T − 1)), and x∗ ≜ argminF (x).

Algo. 1 then has the following convergence when F is under different assumptions:

(i) When F is β-smooth and α-strongly convex, by defining pr ≜ (1−αηT/4)R−r

∑
R
r=0(1−αηT/4)R−r and choosing a constant learning

rate η ≤ 1
10βT ,

min
r∈[R+1)

F (xr)− F (x∗) ≤ 2α exp

(
−αηTR

4

)
∥x0 − x∗∥2

+
R∑

r=0

N∑

i=1

T∑

t=1

pr

(
η

NT

t∑

τ=1

St−τΞ
(i)
r+1,τ +

8(ηT + 1/α)

αNT
Ξ
(i)
r+1,t

)
.

(ii) When F is β-smooth and convex, by choosing a constant learning rate η ≤ 1
10βT ,

min
r∈[R+1)

F (xr)− F (x∗) ≤ 2 ∥x0 − x∗∥2
ηRT

+
1

R

R∑

r=0

N∑

i=1

T∑

t=1

(
η

NT

t∑

τ=1

St−τΞ
(i)
r+1,τ

+
8η

N
Ξ
(i)
r+1,t +

4
√
d

NT

√
Ξ
(i)
r+1,t

)
.

(iii) When F is only β-smooth, by choosing a constant learning rate η ≤ 7
100βT ,

min
r∈[R+1)

∥∇F (xr)∥2 ≤
13(F (x0)− F (x∗))

ηRT
+

13

ηRT

R∑

r=0

N∑

i=1

T∑

t=1

(
(0.14η + 1/(2βT ))

N
Ξ
(i)
r+1,t

+
1.02η2β

N

t∑

τ=1

St−τΞ
(i)
r+1,τ

)
.

Proof. Recall that the global update on server in Algo. 1 is given as

xr+1 =
1

N

N∑

i=1

x
(i)
r+1 =

1

N

N∑

i=1

(
x(i)
r − η

T∑

t=1

ĝ
(i)
r+1,t−1

)
= xr −

η

N

N∑

i=1

T∑

t=1

ĝ
(i)
r+1,t−1 . (63)

Therefore, we have

∥xr+1 − x∗∥2 =

∥∥∥∥∥xr −
η

N

N∑

i=1

T∑

t=1

ĝ
(i)
r+1,t−1 − x∗

∥∥∥∥∥

2

= ∥xr − x∗∥2−2 (xr − x∗)
⊤ η

N

N∑

i=1

T∑

t=1

ĝ
(i)
r+1,t−1

︸ ︷︷ ︸
1

+

∥∥∥∥∥
η

N

N∑

i=1

T∑

t=1

ĝ
(i)
r+1,t−1

∥∥∥∥∥

2

︸ ︷︷ ︸
2

.
(64)

We then bound 1 and 2 based on the different assumptions on F separately.
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Strongly Convex F . Since F is β-smooth and α-strongly convex, we have

1
(a)
= 2 (x∗ − xr)

⊤ η

N

N∑

i=1

T∑

t=1

(
ĝ
(i)
r+1,t−1 −∇F (x

(i)
r+1,t−1)

)
+ 2 (x∗ − xr)

⊤ η

N

N∑

i=1

T∑

t=1

∇F (x(i)
r+1,t−1)

(b)

≤ 2 ∥x∗ − xr∥
η

N

N∑

i=1

T∑

t=1

∥∥∥ĝ(i)r+1,t−1 −∇F (x
(i)
r+1,t−1)

∥∥∥

+
2η

N

N∑

i=1

T∑

t=1

[
F (x∗)− F (xr)−

α

4
∥xr − x∗∥2 + β

∥∥∥x(i)
r,t−1 − xr

∥∥∥
2
]

(c)

≤ 2η

N
∥x∗ − xr∥

N∑

i=1

T∑

t=1

√
Ξ
(i)
r+1,t + 2ηT

[
F (x∗)− F (xr)

]
− αηT

2
∥xr − x∗∥2

+
4η3Tβ

N

N∑

i=1

T∑

t=1

t∑

τ=1

St−τΞ
(i)
r+1,τ + 44η3T 3β ∥∇F (xr)∥2

(d)

≤ −αηT
4
∥x∗ − xr∥2 + 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2 +

N∑

i=1

T∑

t=1

(
4η3Tβ

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η

αN
Ξ
(i)
r+1,t

)
.

(65)

where (b) is from Lemma E.8 by setting y = x∗, z = xr and x = x
(i)
r,t−1 in Lemma E.8. In addition, (c) comes from

the definition of Ξ
(i)
r+1,t ≜

∥∥∥ĝr+1,t−1 −∇F (x(i)
r+1,t−1)

∥∥∥
2

in our Appx. B.2 and Lemma E.11. Finally, (d) comes from the

following results

2η

N
∥x∗ − xr∥

N∑

i=1

T∑

t=1

√
Ξ
(i)
r+1,t =

2η

N

N∑

i=1

T∑

t=1

∥x∗ − xr∥
√
Ξ
(i)
r+1,t

≤ η

N

N∑

i=1

T∑

t=1

(
α

4
∥x∗ − xr∥2 +

4

α
Ξ
(i)
r+1,t

)

=
αηT

4
∥x∗ − xr∥2 +

4η

αN

N∑

i=1

T∑

t=1

Ξ
(i)
r+1,t .

(66)

We then bound term 2 in (64) as below

2
(a)
=

∥∥∥∥∥
η

N

N∑

i=1

T∑

t=1

ĝ
(i)
r+1,t−1

∥∥∥∥∥

2

(b)
=

∥∥∥∥∥
η

N

N∑

i=1

T∑

t=1

(
ĝ
(i)
r+1,t−1 −∇F (x

(i)
r+1,t−1) +∇F (x

(i)
r+1,t−1)−∇F (xr)

)
+ ηT∇F (xr)

∥∥∥∥∥

2

(c)

≤ 2η2T

N

N∑

i=1

T∑

t=1

(
2
∥∥∥ĝ(i)r+1,t−1 −∇F (x

(i)
r+1,t−1)

∥∥∥
2

+ 2
∥∥∥∇F (x(i)

r+1,t−1)−∇F (xr)
∥∥∥
2
)
+

2η2T 2 ∥∇F (xr)∥2

(d)

≤ 4η2T

N

N∑

i=1

T∑

t=1

Ξ
(i)
r+1,t +

4η2Tβ2

N

N∑

i=1

T∑

t=1

∥∥∥x(i)
r+1,t−1 − xr

∥∥∥
2

+ 2η2T 2 ∥∇F (xr)∥2

(e)

≤
N∑

i=1

T∑

t=1

(
8η4T 2β2

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η2T

N
Ξ
(i)
r+1,t

)
+
(
88η4T 4β2 + 2η2T 2

)
∥∇F (xr)∥2

(67)

where (c) is obtained by applying Lemma E.5 multiple times and (d) is from the smoothness of F . Besides, (e) comes from

our Lemma E.11 and the fact that η ≤ 1/(βT ).
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By combining (65) and (67), we have

∥xR+1 − x∗∥2
(a)

≤
(
1− αηT

4

)
∥xR − x∗∥2 + 2ηT

[
F (x∗)− F (xR)

]

+ 2η2T 2
(
44η2T 2β2 + 22ηTβ + 1

)
∥∇F (xR)∥2

+

N∑

i=1

T∑

t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑

τ=1

St−τΞ
(i)
R+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
R+1,t

)

(b)

≤
(
1− αηT

4

)
∥xR − x∗∥2 + 2ηT

(
1− 2ηTβ

(
44η2T 2β2 + 22ηTβ + 1

)) [
F (x∗)− F (xR)

]

+

N∑

i=1

T∑

t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)

(c)
=

(
1− αηT

4

)R+1

∥x0 − x∗∥2 +
R∑

r=0

(
1− αηT

4

)R−r

H
[
F (x∗)− F (xr)

]

+

R∑

r=0

(
1− αηT

4

)R−r N∑

i=1

T∑

t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)

(68)

where (b) is from Lemma E.10 and (c) is from H ≜ 2ηT
(
1− 2ηTβ

(
44η2T 2β2 + 22ηTβ + 1

))
as well as the repeated

application of (b).

Define pr ≜ (1−αηT/4)R−r

∑
R
r=0(1−αηT/4)R−r . Note that when choose the learning rate η that satisfies η ≤ 1

10βT , we have H ≥ 0.544 ηT .

Based on this and ∥xR+1 − x∗∥2 ≥ 0 for (68), we further have

min
r∈[R+1)

F (xr)− F (x∗)
(a)

≤
R∑

r=0

pr
[
F (xr)− F (x∗)

]

(b)

≤ (1− αηT/4)R+1 ∥x0 − x∗∥2

H
∑R

r=0 (1− αηT/4)
r

+
1

H

R∑

r=0

N∑

i=1

T∑

t=1

pr

(
η2

2N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)

(c)

≤ αηT

H
exp

(
−αηTR

4

)
∥x0 − x∗∥2

+
1

H

R∑

r=0

N∑

i=1

T∑

t=1

pr

(
η2

2N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η(ηT + 1/α)

αN
Ξ
(i)
r+1,t

)

(d)

≤ 2α exp

(
−αηTR

4

)
∥x0 − x∗∥2

+

R∑

r=0

N∑

i=1

T∑

t=1

pr

(
η

NT

t∑

τ=1

St−τΞ
(i)
r+1,τ +

8(ηT + 1/α)

αNT
Ξ
(i)
r+1,t

)

(69)

where (b) is from the rearrangement of (68) and the fact that η ≤ 1
10βT . Besides, (c) comes from the inequality 1− x ≤
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exp(−x) as well as the following results when R+ 1 ≥ 4 ln(3/4)/(αηT )

R∑

r=0

(
1− αηT

4

)r

=
1− (1− αηT/4)R+1

1− (1− αηT/4)

≥ 4 [1− exp(−αηT (R+ 1)/4)]

αηT

≥ 1

αηT
.

(70)

Finally, (d) is due to the fact that H ≥ 0.544 ηT .

Convex F . When α = 0, following the derivation in (65), we have

1
(a)

≤ 2η

N
∥x∗ − xr∥

N∑

i=1

T∑

t=1

√
Ξ
(i)
r+1,t + 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2

+
4η3Tβ

N

N∑

i=1

T∑

t=1

t∑

τ=1

St−τΞ
(i)
r+1,τ

(b)

≤ 2η
√
d

N

N∑

i=1

T∑

t=1

√
Ξ
(i)
r+1,t + 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2

+
4η3Tβ

N

N∑

i=1

T∑

t=1

t∑

τ=1

St−τΞ
(i)
r+1,τ

(c)
= 2ηT

[
F (x∗)− F (xr)

]
+ 44η3T 3β ∥∇F (xr)∥2

+

N∑

i=1

T∑

t=1

(
4η3Tβ

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

2η
√
d

N

√
Ξ
(i)
r+1,t

)

(71)

where the (b) comes from the diameter of X , i.e., ∥x− x′∥ ≤
√
d for any x,x′ ∈ X = [0, 1]d.

For term 2 in (64), similar to (67), we also have

2 ≤
N∑

i=1

T∑

t=1

(
8η4T 2β2

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η2T

N
Ξ
(i)
r+1,t

)
+
(
88η4T 4β2 + 2η2T 2

)
∥∇F (xr)∥2 . (72)

By combining (71) and (72), we have

∥xR+1 − x∗∥2
(a)

≤ ∥xR − x∗∥2 + 2ηT
(
1− 2ηTβ

(
44η2T 2β2 + 22ηTβ + 1

)) [
F (x∗)− F (xR)

]

+

N∑

i=1

T∑

t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑

τ=1

St−τΞ
(i)
R+1,τ +

4η2T

N
Ξ
(i)
R+1,t +

2η
√
d

N

√
Ξ
(i)
R+1,t

)

(b)

≤ ∥x0 − x∗∥2 +
R∑

r=0

H
[
F (x∗)− F (xr)

]

+

N∑

i=1

T∑

t=1

(
4η3Tβ(2ηTβ + 1)

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η2T

N
Ξ
(i)
r+1,t +

2η
√
d

N

√
Ξ
(i)
r+1,t

)

(73)

where (a) is from Lemma E.10 and (b) is from H ≜ 2ηT
(
1− 2ηTβ

(
44η2T 2β2 + 22ηTβ + 1

))
as well as the repeated

application of (a).
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Note that when choose the learning rate η that satisfies η ≤ 1
10βT , we have H ≥ 0.544 ηT . Based on this and

∥xR+1 − x∗∥2 ≥ 0 for (73), we further have

min
r∈[R+1)

F (xr)− F (x∗)
(a)

≤ 1

R

R∑

r=0

[
F (xr)− F (x∗)

]

(b)

≤ ∥x0 − x∗∥2
RH

+
1

RH

R∑

r=0

N∑

i=1

T∑

t=1

(
η2

2N

t∑

τ=1

St−τΞ
(i)
r+1,τ

+
4η2T

N
Ξ
(i)
r+1,t +

2η
√
d

N

√
Ξ
(i)
r+1,t

)

(c)

≤ 2 ∥x0 − x∗∥2
ηR

+
1

R

R∑

r=0

N∑

i=1

T∑

t=1

(
η

NT

t∑

τ=1

St−τΞ
(i)
r+1,τ

+
8η

N
Ξ
(i)
r+1,t +

4
√
d

NT

√
Ξ
(i)
r+1,t

)

(74)

where (c) is due to the fact that H ≥ 0.544 ηT .

Non-Convex F . When F is only β-smooth, we have

F (xr+1)− F (xr)

(a)

≤∇F (xr)
⊤ (xr+1 − xr) +

β

2
∥xr+1 − xr∥2

(b)
= − η

N
∇F (xr)

⊤
N∑

i=1

T∑

t=1

ĝ
(i)
r+1,t−1 +

β

2

∥∥∥∥∥
η

N

N∑

i=1

T∑

t=1

ĝ
(i)
r+1,t−1

∥∥∥∥∥

2

(c)

≤ − η

N
∇F (xr)

⊤
N∑

i=1

T∑

t=1

(
ĝ
(i)
r+1,t−1 −∇F (x

(i)
r+1,t−1) +∇F (x

(i)
r+1,t−1)−∇F (xr) +∇F (xr)

)

+
β

2

[
N∑

i=1

T∑

t=1

(
8η4T 2β2

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

4η2T

N
Ξ
(i)
r+1,t

)
+
(
88η4T 4β2 + 2η2T 2

)
∥∇F (xr)∥2

]

(d)

≤ η

N

N∑

i=1

T∑

t=1

∥∇F (xr)∥
(∥∥∥ĝ(i)r+1,t−1 −∇F (x

(i)
r+1,t−1)

∥∥∥+
∥∥∥∇F (x(i)

r+1,t−1)−∇F (xr)
∥∥∥
)

+

N∑

i=1

T∑

t=1

(
4η4T 2β3

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

2η2βT

N
Ξ
(i)
r+1,t

)
+
(
44η4T 4β3 + η2T 2β − ηT

)
∥∇F (xr)∥2

(e)

≤ η

N

N∑

i=1

T∑

t=1

(
ηβT ∥∇F (xr)∥2 +

1

2ηβT

∥∥∥ĝ(i)r+1,t−1 −∇F (x
(i)
r+1,t−1)

∥∥∥
2

+
β

2ηT

∥∥∥x(i)
r+1,t−1 − xr

∥∥∥
2
)
+

+
N∑

i=1

T∑

t=1

(
4η4T 2β3

N

t∑

τ=1

St−τΞ
(i)
r+1,τ +

2η2βT

N
Ξ
(i)
r+1,t

)
+
(
44η4T 4β3 + η2T 2β − ηT

)
∥∇F (xr)∥2

(f)

≤
(
44η4T 4β3 + 13η2T 2β − ηT

)
∥∇F (xr)∥2 +

N∑

i=1

T∑

t=1

((
4η4T 2β3 + η2β

)

N

t∑

τ=1

St−τΞ
(i)
r+1,τ

+

(
2η2βT + 1/(2βT )

)

N
Ξ
(i)
r+1,t

)

(75)

where (a) comes from the smoothness of F and (b) is from the one-round update (63) for input x. In addition, (c) derives

from (67) and (e) results from (27) in Lemma E.5 by setting a = ηβT in (27). Finally, (f) comes from Lemma E.11.
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Define H ≜ ηT − 44η4T 4β3 − 13η2T 2β and choose η ≤ 7
100βT , we have that H > 0.08ηT . Based on this, we further

have

min
r∈[R+1)

∥∇F (xr)∥2
(a)

≤ 1

R

R∑

r=0

∥∇F (xr)∥2

(b)

≤ 1

RH

R∑

r=0

[
F (xr)− F (xr+1)

]
+

1

RH

R∑

r=0

N∑

i=1

T∑

t=1

((
2η2βT + 1/(2βT )

)

N
Ξ
(i)
r+1,t

+

(
4η4T 2β3 + η2β

)

N

t∑

τ=1

St−τΞ
(i)
r+1,τ

)

(c)

≤ 13(F (x0)− F (x∗))

ηRT
+

13

ηRT

R∑

r=0

N∑

i=1

T∑

t=1

(
(0.14η + 1/(2βT ))

N
Ξ
(i)
r+1,t

+
1.02η2β

N

t∑

τ=1

St−τΞ
(i)
r+1,τ

)

(76)

where (c) is due to the fact that H ≥ 0.08 ηT .

Remark. Of note, Thm. E.1 has presented the convergence of the general optimization framework for federated ZOO

problems (i.e., Algo. 1). So, it can be easily adapted to provide the convergence for those algorithms that follow this

optimization framework (e.g., our Thm. C.1 and the results in Appx. F). This advancement demonstrates superiority over

existing federated optimization approaches, such as FedZO, FedProx, and SCAFFOLD, in terms of universality. Notably,

these prior works primarily focus on providing convergence guarantees exclusively for their specific algorithmic designs.
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E.5. Proof of Theorem C.1

To establish the proof for Thm. C.1, we introduce the upper bound of gradient disparity 1
N

∑N
i=1 Ξ

(i)
r,t derived from our

Thm. 1, into Thm. E.1. This is in fact facilitated by leveraging the gradient correction length in our Cor. 1 to improve the

bound in our Thm. 1 (refer to the remark of Appx. E.2). To begin with, we first derive a set of inequalities below based on

our (38) since they are frequently required in the results of Thm. E.1. It is important to note that for the sake of simplicity in

our proof, we present the validity of these inequalities with a constant probability, without explicitly providing the exact

form of this probability.

1

NR

R∑

r=0

T∑

t=1

N∑

i=1

t∑

τ=1

St−τΞ
(i)
r+1,τ

(a)
=

1

R

R∑

r=0

T∑

t=1

t∑

τ=1

St−τ
(
4ωκρrT+τ−1 + 2

√
2ωκρrTG+ 2

√
2NGϵ

)

(b)
=

T∑

t=1

1

R

R∑

r=0

(
4ωκρrT (St − ρt)

S − ρ +
(
2
√
2ωκρrTG+ 2

√
2NGϵ

) St − 1

S − 1

)

(c)
=

T∑

t=1

[
4ωκ (St − ρt) (1− ρ(R+1)T )

R(S − ρ)(1− ρT ) +

(
2
√
2ωκG(1− ρ(R+1)T/2)

R(1− ρT/2)(S − 1)
+

2
√
2NGϵ

S − 1

)
(St − 1)

]

(d)
=

4ωκ(1− ρ(R+1)T )

R(S − ρ)(1− ρT )

(
S(ST − 1)

S − 1
− ρ(1− ρT )

1− ρ

)
+

(
2
√
2ωκG(1− ρ(R+1)T/2)

R(1− ρT/2)(S − 1)

+
2
√
2NGϵ

S − 1

)(
S(ST − 1)

S − 1
− 1

)

(e)
=O

(
T 2(
√
G+ 1)

R
+ T 2

√
NG

M

)

(77)

where (b), (c), (d) are from the summation of geometric series. In addition, (e) comes from the fact that S ≜ (T+1)2

T (T−1) (i.e.,

S ≤ 4.5), ST−1
S−1 ≤ 11T in (62), S

S−1 = (T+1)2

3T+1 = O (T ) and ϵ = O
(

1
M

)
.

1

NR

R∑

r=0

T∑

t=1

N∑

i=1

Ξ
(i)
r+1,t

(a)
=

1

R

R∑

r=0

T∑

t=1

(
4ωκρrT+t−1 + 2

√
2ωκρrTG+ 2

√
2NGϵ

)

(b)
=

1

R

R∑

r=0

(
4ωκρrT (1− ρT )

1− ρ + 2T
√
2ωκρrTG+ 2T

√
2NGϵ

)

(c)
=

4ωκ(1− ρ(R+1)T )

R(1− ρ) +
2T
√
2ωκG(1− ρ(R+1)T/2)

R(1− ρT/2)
+ 2T

√
2NGϵ

(d)
= O

(
T
√
G+ 1

R
+ T
√
NGϵ

)

(78)

where (c), (d) are from the summation of geometric series.
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1

NR

R∑

r=0

T∑

t=1

N∑

i=1

√
Ξ
(i)
r+1,t

(a)

≤ 1

R

R∑

r=0

T∑

t=1

√√√√ 1

N

N∑

i=1

Ξ
(i)
r+1,t

(b)

≤ 1

R

R∑

r=1

T∑

t=1

(√
4ωκρrT+t−1 +

√
2
√

2ωκρrTG+

√
2
√
2NGϵ

)

(c)
=

1

R

R∑

r=0

(√
4ωκρrT (1− ρT/2)

1− ρ1/2 + T

√
2
√

2ωκρrTG+ T

√
2
√
2NGϵ

)

(d)
=

√
4ωκ(1− ρT/2)(1− ρ(R+1)T/2)

R(1− ρ1/2)(1− ρT/2)
+
T 4
√
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R(1− ρT/4)
+ T

4
√
8NGϵ

(e)
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(
T 4
√
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R
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4

√
NG

M

)

(79)

where (a) is from Cauchy–Schwarz inequality and (b) is from the inequality of
∑

j cj ≤
(∑

j

√
cj

)2
for any cj > 0.

Besides, (c), (d) are from the summation of geometric series.

Subsequently, we proceed to establish the proof for the results in Thm. C.1 that are conditioned on different assumptions of

F by systematically demonstrating each case individually as follows.

Strongly Convex F . Define c ≜ 1 − αηT/4. 3 When R + 1 ≥ 4 ln(3/4)/(αηT ), we then have that pr ≤ αηTcR−r

according to (70), which finally yields the following result

1

N

R∑

r=1

pr

T∑

t=1

N∑

i=1

t∑

τ=1

St−τΞ(i)
r,τ

(a)
=

R∑

r=1

4prωκρ
rT

S − ρ

(
S(ST − 1)

S − 1
− ρ(1− ρT )

1− ρ

)
+

R∑

r=1

2pr
√
2ωκGρrT/2

S − 1

(
S(ST − 1)

S − 1
− 1

)

+
2
√
2NGϵ

S − 1

(
S(ST − 1)

S − 1
− 1

)

(b)

≤ 4αηTωκ(cR+1 − ρ(R+1)T )

(S − ρ)(c− ρT )

(
S(ST − 1)

S − 1
− ρ(1− ρT )

1− ρ

)

+
2αηT

√
2ωκG(cR+1 − ρ(R+1)T/2)

(S − 1)(c− ρT/2)

(
S(ST − 1)

S − 1
− 1

)
+

2
√
2NGϵ

S − 1

(
S(ST − 1)

S − 1
− 1

)

(c)

≤O
(
αηT 3cR(

√
G+ 1) + T 2

√
NG

M

)

(d)
=O

(
αT 2cR

β
(
√
G+ 1) + T 2

√
NG

M

)

(80)

where (a) follows from the derivation in (77) and (b) is due to the fact that pr ≤ αηTcR−r as well as the summation of

geometric series. Besides, (c) comes from cR+1 > ρ(R+1)T/2 > ρ(R+1)T and c > ρT/2 > ρT when we choose c properly

in the proof of (69) as well as ϵ = O
(

1
M

)
. Finally, (d) results from the fact that η ≤ 1

10βT and α < β.

3Note that according to (66), we can always find a
√
ρ < c < 1 such that (69) still holds with only different constant terms. As a

result, cR+1 > ρ(R+1)T/2 > ρ(R+1)T and c > ρT/2 > ρT .
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Following from the derivation above, we also have

1

N

R∑

r=0

pr

T∑

t=1

N∑

i=1

Ξ
(i)
r+1,t

=
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2ωκG(cR+1 − ρ(R+1)T/2)
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√
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NG

M

)
.

(81)

Finally, by introducing (80) and (81) into Thm. E.1, we have

min
r∈[R+1)

F (xr)− F (x∗)

(a)

≤2α exp

(
−αηTR

4

)
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)
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√
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√
NG
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)

(82)

where (b) is due to the fact that η ≤ 1
10βT . Let each item above achieve an ϵ/4 error, we then realize the result in our

Thm. C.1 when F is α-strongly convex and β-smooth.

Convex F . By introducing (77), (78) and (79) into Thm. E.1, we have

min
r∈[R+1)

F (xr)− F (x∗)
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√
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(83)

where (b) is due to the fact that η ≤ 1
10βT . Let each item above achieve an ϵ/4 error, we then realize the result in our

Thm. C.1 when F is convex and β-smooth.
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Non-Convex F . By introducing (77) and (78) into Thm. E.1, we have

min
r∈[R+1)

∥∇F (xr)∥2

(a)

≤ 13(F (x0)− F (x∗))

ηRT
+

13

ηRT

R∑

r=0
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(
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N
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T
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√
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(84)

where (b) is due to the fact that η ≤ 7
100βT . Let each item above achieve an ϵ/3 error, we then realize the result in our

Thm. C.1 when F is non-convex and β-smooth. This hence finally concludes our proof of Thm. C.1.
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F. Theoretical Results for Existing Federated ZOO Algorithms

F.1. Gradient Estimation in Existing Federated ZOO Algorithms

We first introduce the following lemma from the Thm. 2.6 in [22] to bound the gradient estimation error of the standard FD

method, which usually serves as the foundation of existing federated ZOO baselines, e.g., [2].

Lemma F.1. Let δ ∈ (0, 1). Assume that function f is β-smooth in its domain and uq ∼ N (0, I) in (7), then the following

holds with a probability of at least 1− δ,

∥∆(x)−∇f(x)∥ ≤ βλ
√
d+

ϵ
√
d

λ
+

√
3n

δQ

(
3 ∥∇f(x)∥2 + β2λ2

4
(d+ 2)(d+ 4) +

4ϵ2

λ2

)

where sup
x∈X |y(x)− f(x)| ≤ ϵ.

Remark. In our setting (see Sec. 2), we in fact have the following result with a probability of at least 1− δ by applying the

Chernoff bound on the Gaussian observation noise ζ:

ϵ =
√

2 ln(2/δ)σ , (85)

which is regarded as a constant in our following proofs. By additionally assuming that the gradient of f be bounded (i.e.,

∥∇f(x)∥ ≤ c for any x in the domain of f and some c > 0), we have

∥∆(x)−∇f(x)∥ ≤ Λ+O
(

1√
Q

)
(86)

where the constant Λ is defined as Λ ≜ βλ
√
d+ ϵ

√
d

λ . Note that this additional constant term in (86) can not be avoided,

which thus is another pitfall of the FD method in addition to its query inefficiency as discussed in our Appx. B.2.

Based on the results above, we can get the following upper bounds for the gradient estimation methods in the existing

federated ZOO algorithms. Note that, we usually keep the constant before O
(

1
Q

)
to deliver a more detailed comparison

among different federated ZOO algorithms throughout this section.

FedZO Algorithm. For FedZO [2], it applies the following gradient estimation for every local update in Algo. 1:

ĝ
(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1) . (87)

That is, γ
(i)
r,t−1 = 0 and g

(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1) in (6). We provide the following gradient disparity bound for such a gradient

estimation method when it is applied in Algo. 1.

Proposition F.1. Assume that 1
N

∑N
i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any x ∈ X and fi is β-smooth with bounded

gradient for any i ∈ [N ]. When applying (87) in Algo. 1, the following then holds with a constant probability for some

Λ > 0,
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N
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(88)

where (c) comes from Lemma E.5 and (d) is based on Lemma E.5 as well as the result in (86).
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FedProx Algorithm. For FedProx in the federated ZOO setting (i.e., by simply combining FedProx from [16] with the

standard FD method in (7)), it has the gradient estimation form as follows:

ĝ
(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1) + γ(x

(i)
r,t−1 − xr−1) (89)

where γ is a constant. That is, γ
(i)
r,t−1 = γ, g

(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1) and gr−1(x

′)− g(i)r−1(x
′′) = x

(i)
r,t−1 − xr−1 in (6). We

provide the following gradient disparity bound for such a gradient estimation method when it is applied in Algo. 1.

Proposition F.2. Assume that 1
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i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any x ∈ X and fi is β-smooth with bounded

gradient for any i ∈ [N ]. When applying (89) in Algo. 1, the following then holds with a constant probability for some
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(90)

Similarly, (c) is from Lemma E.5 and (d) is based on Lemma E.5 as well as the result in (86).

SCAFFOLD (Type I) Algorithm. For SCAFFOLD using its Type I gradient correction in the federated ZOO setting

(i.e., by simply combining SCAFFOLD (Type I) from [8] with the standard FD method in (7)), it has the gradient estimation

form as follows:

ĝ
(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1) +

1

N

N∑

j=1

∆
(j)(xr−1)−∆

(i)(xr−1) . (91)

That is, γ
(i)
r,t−1 = 1, g

(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1) and gr−1(x

′) − g(i)r−1(x
′′) = 1

N

∑N
j=1 ∆

(j)(xr−1) −∆
(i)(xr−1) in (6). Of

note, similar to our FZooS where an additional transmission is required when we actively query in the neighborhood of

xr in line 7 of Algo. 2, SCAFFOLD (Type I) also needs another server-client transmission of 1
N

∑N
j=1 ∆

(j)(xr−1) for

gradient correction. We provide the following gradient disparity bound for such a gradient estimation method when it is

applied in Algo. 1.

Proposition F.3. Assume that fi is β-smooth with bounded gradient for any i ∈ [N ]. When applying (91) in Algo. 1, the

following then holds with a constant probability for some Λ > 0,

1

N

N∑

i=1

Ξ
(i)
r,t ≤ 18Λ2 +

6β2

N

N∑

i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥
2

+ 18O
(

1

Q

)
.
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Proof.

1

N

N∑

i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑

i=1

∥∥∥∥∥∥
∆

(i)(x
(i)
r,t−1) +


 1

N

N∑

j=1

∆
(j)(xr−1)−∆

(i)(xr−1)


−∇F (x(i)

r,t−1)

∥∥∥∥∥∥

2

(b)
=

1

N

N∑

i=1

∥∥∥∥∥∥
∆

(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1) +

1

N

N∑

j=1,j ̸=i

(
∆

(j)(xr−1)−∇fj(x(i)
r,t−1)

)

+
N − 1

N

(
∇fi(x(i)

r,t−1)−∆
(i)(xr−1)

)∥∥∥∥
2

(c)

≤ 3

N

N∑

i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+
3

N3

N∑

i=1

∥∥∥∥∥∥

N∑

j=1,j ̸=i

(
∆

(j)(xr−1)−∇fj(x(i)
r,t−1)

)
∥∥∥∥∥∥

2

+
3(N − 1)2

N3

N∑

i=1

∥∥∥∇fi(x(i)
r,t−1)−∆

(i)(xr−1)
∥∥∥
2

(d)

≤ 3

N

N∑

i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+
3(N − 1)

N3

N∑

i=1

N∑

j=1,j ̸=i

∥∥∥∆(j)(xr−1)−∇fj(x(i)
r,t−1)

∥∥∥
2

+
3(N − 1)2

N3

N∑

i=1

∥∥∥∇fi(x(i)
r,t−1)−∆

(i)(xr−1)
∥∥∥
2

(e)

≤ 3

N

N∑

i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+
6(N − 1)

N2

N∑

j=1

∥∥∥∆(j)(x
(i)
r,t−1)−∇fj(x

(i)
r,t−1)

∥∥∥
2

+
6β2(N − 1)2

N2

N∑

j=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥
2

(f)

≤ 9

N

N∑

i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+ 6β2
N∑

i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥
2

(g)

≤ 18Λ2 + 6β2
N∑

i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥
2

+ 18O
(

1

Q

)

(92)

Similarly, (c), (d) are from Lemma E.5 and (e) is because of the smoothness of F as well as (28) with a = 1
N−1 . Finally,

(g) follows from the results in (86) as well as the result in Lemma E.5.

SCAFFOLD (Type II) Algorithm. For SCAFFOLD using its Type II gradient correction in the federated ZOO setting

(i.e., by simply combining SCAFFOLD (Type II) from [8] with the standard FD method in (7)), it has the gradient

estimation form as follows:

ĝ
(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1) +

1

NT

N∑

j=1

T∑

τ=1

∆
(j)(x

(j)
r−1,τ−1)−

1

T

T∑

τ=1

∆
(i)(x

(i)
r−1,τ−1) . (93)

That is, gr−1(x
′) − g(i)r−1(x

′′) = 1
NT

∑N
j=1

∑T
τ=1 ∆

(j)(x
(j)
r−1,τ−1) − 1

T

∑T
τ=1 ∆

(i)(x
(i)
r−1,τ−1), g

(i)
r,t−1 = ∆

(i)(x
(i)
r,t−1)

and γ
(i)
r,t−1 = 1 in (6). Interestingly, SCAFFOLD (Type II) servers as an approximation of SCAFFOLD (Type I), which

in fact does not require another server-client transmission for gradient correction as discussed in [8]. This is because
1

NT

∑N
j=1

∑T
τ=1 ∆

(j)(x
(j)
r−1,τ−1) can be computed before the aggregation of {x(i)

r−1,T }Ni=1 on server. We provide the

following gradient disparity bound for such a gradient estimation method when it is applied in Algo. 1.

Proposition F.4. Assume that fi is c-continuous and β-smooth for any i ∈ [N ] and the randomly sampled {uq}Qq=1 in

(7) are shared across all iterations and rounds. When applying (93) in Algo. 1, the following then holds with a constant
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probability for some Λ, a > 0,

1

N

N∑

i=1

Ξ
(i)
r,t ≤ 18Λ2 +

24ac2

λ2T

N∑

i=1

T∑

τ=1

∥∥∥x(i)
r,t−1 − x

(i)
r−1,τ−1

∥∥∥
2

+ 6O
(

1

Q

)
+ 12O

(
1

TQ

)
.

Proof. We slightly abuse notation and use ∆
(i)
T (x

(i)
r,t−1) to denote the FD method in (7) using TQ function queries for the

gradient estimation at input x
(i)
r,t−1 on client i. Based on this notation, we then have

1

N

N∑

i=1

Ξ
(i)
r,t

(a)
=

1

N

N∑

i=1

∥∥∥∥∥∥
∆

(i)(x
(i)
r,t−1) +


 1

NT

N∑

j=1

T∑

τ=1

∆
(j)(x

(j)
r−1,τ−1)−

1

T

T∑

τ=1

∆
(i)(x

(i)
r−1,τ−1)


−∇F (x(i)

r,t−1)

∥∥∥∥∥∥

2

(b)
=

1

N

N∑

i=1

∥∥∥∥∥∆
(i)(x

(i)
r,t−1)−∇fi(x

(i)
r,t−1) +

N − 1

N

(
∇fi(x(i)

r,t−1)−
1

T

T∑

τ=1

∆
(i)(x

(i)
r−1,τ−1)

)

+
1

NT

N∑

j=1,j ̸=i

T∑

τ=1

(
∆

(j)(x
(j)
r−1,τ−1)−∇fj(x

(j)
r,t−1)

)
∥∥∥∥∥∥

2

(c)

≤ 3

N

N∑

i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+
3(N − 1)2

N3

N∑

i=1

∥∥∥∥∥
(
∇fi(x(i)

r,t−1 −∆
(i)
T (x

(i)
r,t−1)

)
+

(
∆

(i)
T (x

(i)
r,t−1)−

1

T

T∑

τ=1

∆
(i)(x

(i)
r−1,τ−1)

)∥∥∥∥∥

2

+
3

N3

N∑

i=1

∥∥∥∥∥∥

N∑

j=1,j ̸=1

[(
∇fj(x(j)

r,t−1)−∆
(j)
T (x

(j)
r,t−1)

)
+

(
∆

(j)
T (x

(j)
r,t−1)−

1

T

T∑

τ=1

∆
(j)(x

(j)
r−1,τ−1)

)]∥∥∥∥∥∥

2

(d)

≤ 3

N

N∑

i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+
3(N − 1)2

N3

N∑

i=1

((
1 +

1

N − 1

)∥∥∥∇fi(x(i)
r,t−1 −∆

(i)
T (x

(i)
r,t−1)

∥∥∥
2

+N

∥∥∥∥∥∆
(i)
T (x

(i)
r,t−1)−

1

T

T∑

τ=1

∆
(i)(x

(i)
r−1,τ−1)

∥∥∥∥∥

2)

+
3(N − 1)

N3

N∑

i=1

N∑

j=1,j ̸=1

((
1 +

1

N − 1

)∥∥∥∇fj(x(j)
r,t−1)−∆

(j)
T (x

(j)
r,t−1)

∥∥∥
2

+N

∥∥∥∥∥∆
(j)
T (x

(j)
r,t−1)−

1

T

T∑

τ=1

∆
(j)(x

(j)
r−1,τ−1)

∥∥∥∥∥

2)

(94)

Similarly, (c) are from (29) in Lemma E.5 and (d) is because of (28) in Lemma E.5 with a = N
N−1 .
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We then bound

∥∥∥∆(i)
T (x

(i)
r,t−1)− 1

T

∑T
τ=1 ∆

(i)(x
(i)
r−1,τ−1)

∥∥∥
2

as below

∥∥∥∥∥∆
(i)
T (x

(i)
r,t−1)−

1

T

T∑

τ=1

∆
(i)(x

(i)
r−1,τ−1)

∥∥∥∥∥

2

(a)

≤ 1

T

T∑

τ=1

∥∥∥∆(i)(x
(i)
r,t−1)−∆

(i)(x
(i)
r−1,τ−1)

∥∥∥
2

(b)
=

1

T

T∑

τ=1

∥∥∥∥∥
1

Q

Q∑

q=1

(
yi(x

(i)
r−1,τ−1 + λuq)− yi(x(i)

r,t−1 + λuq) + yi(x
(i)
r,t−1)− yi(x

(i)
r−1,τ−1)

) uq

λ

∥∥∥∥∥

2

(c)

≤ 1

λ2TQ

T∑

τ=1

Q∑

q=1

∣∣∣yi(x(i)
r−1,τ−1 + λuq)− yi(x(i)

r,t−1 + λuq) + yi(x
(i)
r,t−1)− yi(x

(i)
r−1,τ−1)

∥∥∥
2

∥uq|2

(d)
=

1

λ2TQ

T∑

τ=1

Q∑

q=1

2
∣∣∣fi(x(i)

r−1,τ−1 + λuq)− fi(x(i)
r,t−1 + λuq) + fi(x

(i)
r,t−1)− fi(x

(i)
r−1,τ−1)

∣∣∣
2

∥uq∥2

+
1

λ2TQ

Q∑

q=1

2
∣∣∣ζ(i)r−1,τ−1 − ζ

(i)
r,t−1 + ζ

(i)′

r−1,τ−1 − ζ
(i)′

r,t−1

∣∣∣
2

∥uq∥2

(e)

≤ 1

λ2TQ

T∑

τ=1

Q∑

q=1

4

(∣∣∣fi(x(i)
r−1,τ−1 + λuq)− fi(x(i)

r,t−1 + λuq)
∣∣∣
2

+
∣∣∣fi(x(i)

r,t−1)− fi(x
(i)
r−1,τ−1)

∣∣∣
2
)
∥uq∥2

+
1

λ2TQ

Q∑

q=1

8ϵ2 ∥uq∥2

(f)

≤ 8

λ2T

T∑

τ=1

(
c2
∥∥∥x(i)

r,t−1 − x
(i)
r−1,τ−1

∥∥∥
2

+ ϵ2
)(

1

Q

Q∑

q=1

∥uq∥2
)

(g)

≤ 8a

λ2T

T∑

τ=1

(
c2
∥∥∥x(i)

r,t−1 − x
(i)
r−1,τ−1

∥∥∥
2

+ ϵ2
)

(95)

where (a), (d), (e) are due to (29) in Lemma E.5. Note that (d) is valid because {uq}Qq=1 in (7) is assumed to be shared across

all iterations and rounds. In addition, (c) is from the Cauchy–Schwarz inequality and (f) is based on the continuity of F , i.e.,

∥F (x)− F (x′)∥ ≤ c for any x,x′ ∈ X . Finally, (g) is from Lemma E.2 and a ≜ d+ 2
√
dQ−1 ln(1/δ) + 2Q−1 ln(1/δ).

Finally, by introducing (95) into (94), we have

1

N

N∑

i=1

Ξ
(i)
r,t

(a)

≤ 3

N

N∑

i=1

∥∥∥∆(i)(x
(i)
r,t−1)−∇fi(x

(i)
r,t−1)

∥∥∥
2

+
6(N − 1)

N2

N∑

i=1

∥∥∥∇fi(x(i)
r,t−1)−∆

(i)
T (x

(i)
r,τ−1)

∥∥∥
2

+
24a(N − 1)2

λ2TN2

N∑

i=1

T∑

τ=1

(
c2
∥∥∥x(i)

r,t−1 − x
(i)
r−1,τ−1

∥∥∥
2

+ ϵ2
)

+
24a(N − 1)

λ2TN2

N∑

j=1,j ̸=1

T∑

τ=1

(
c2
∥∥∥x(j)

r,t−1 − x
(j)
r−1,τ−1

∥∥∥
2

+ ϵ2
)

(b)

≤18Λ2 +
24ac2

λ2T

N∑

i=1

T∑

τ=1

∥∥∥x(i)
r,t−1 − x

(i)
r−1,τ−1

∥∥∥
2

+ 6O
(

1

Q

)
+ 12O

(
1

TQ

)

(96)

Finally, (b) follows from the results in (86) as well as the result in Lemma E.5, which finally concludes our proof.

Comparison and Discussion. By comparing the upper bounds in Prop. F.1, F.2, F.3, and F.4 above with the one in our

Thm. 1, we can summarize certain interesting insights as follows, which, to the best of our knowledge, has never been

38



Heterogeneous Federated Zeroth-Order Optimization using Gradient Surrogates

formally presented in the literature of federated ZOO.

(i) The gradient disparity of existing federated ZOO algorithms consistently has an additional constant error term (i.e.,

Λ
2) that can not be avoided. Remarkably, no additional constant error term occurs in the gradient disparity bound of

our (5).

(ii) The gradient disparity of existing federated ZOO algorithms typically can only be reduced at a polynomial rate of Q
whereas our (5) is able to achieve an exponential rate of reduction for its gradient disparity.

(iii) FedProx achieves an even worse gradient disparity when compared with FedZO by introducing an additional error

term 3γ2

N

∑N
i=1

∥∥∥x(i)
r,t−1 − xr−1

∥∥∥
2

. This may explain its worst convergence in Sec. 5.

(iv) SCAFFOLD (Type I) and SCAFFOLD (Type II) are typically able to mitigate the impact of client heterogeneity

(i.e., G) by enlarging the impact of the gradient estimation error that is resulting from the FD method applied in these

two algorithms. This may lead to worse practical performance when the gradient estimation error outweighs the client

heterogeneity, as shown in our Sec. 5.

(v) Although SCAFFOLD (Type II) is proposed to approximate SCAFFOLD (Type I) in the original paper [8], SCAF-
FOLD (Type II) in fact has the advantage of achieving a smaller gradient estimation error for gradient correction

by increasing the number of additional function queries (i.e., the term O
(

1
TQ

)
in Prop. F.4), which is however at

the cost of a likely increased input disparity (i.e., the term 24ac2

λ2T

∑N
i=1

∑T
τ=1

∥∥∥x(i)
r,t−1 − x

(i)
r−1,τ−1

∥∥∥
2

in Prop. F.4).

Interestingly, federated ZOO usually prefers gradient correction of smaller gradient estimation errors, as suggested

by the empirical results in our Sec. 5. This explains the reason why SCAFFOLD (Type II) usually outperforms

SCAFFOLD (Type I) in federated ZOO, which differs from the scenario of federated FOO and therefore highlights

the importance of an accurate gradient correction in federated ZOO.

F.2. Convergence of Existing Federated ZOO Algorithms

To establish the proof for the convergence of existing federated ZOO algorithms, we introduce the upper bound of gradient

disparity 1
N

∑N
i=1 Ξ

(i)
r,t derived from our Prop. F.1, F.2, F.3, and F.4, into Thm. E.1. Particularly, to ease our proof, we mainly

prove the convergence of existing federated ZOO algorithms when F is non-convex and β-smooth. Similar to our Thm. C.1,

we define D0 ≜ ∥x0 − x∗∥2 and D1 ≜ F (x0) − F (x∗), and assume that 1
N

∑N
i=1 ∥∇fi(x)−∇F (x)∥

2 ≤ G for any

x ∈ X .

Theorem F.1. FedZO enjoys the following convergence with a constant probability for some Λ > 0 when η ≤ 7
100βT ,

min
r∈[R+1)

∥∇F (xr)∥2 ≤ O
(
D1

ηRT
+Λ

2 +G+
1

Q

)
.

Proof. Following the proof in our Appx. E.5, we have

min
r∈[R+1)

∥∇F (xr)∥2 ≤
13(F (x0)− F (x∗))

ηRT
+

13

ηRT

R∑

r=0

N∑

i=1

T∑

t=1

(
(0.14η + 1/(2βT ))

N
Ξ
(i)
r+1,t

+
1.02η2β

N

t∑

τ=1

St−τΞ
(i)
r+1,τ

)

≤ O
(
D1

ηRT
+

(
Λ

2 +G+
1

Q

)
+

1

β

(
Λ

2 +G+
1

Q

))

= O
(
D1

ηRT
+Λ

2 +G+
1

Q

)
,

(97)

which concludes our proof.

Remark. Of note, this convergence aligns with one provided in [2], which hence supports the validity of our Thm. E.1 and

Prop. F.1.

39



Heterogeneous Federated Zeroth-Order Optimization using Gradient Surrogates

Discussion. Of note, the key to proving the convergence of other existing federated ZOO algorithms (i.e., FedProx and

SCAFFOLD) lies in the bounded client drift (i.e., Lemma E.11) when additional input disparity is introduced in these

algorithms. This in fact takes up a lot of space as shown in their original paper and is also out of the scope of this paper.

As a consequence, we leave out the proof of the convergence of FedProx and SCAFFOLD in federated ZOO. Fortunately,

the convergence (i.e., Thm. E.1) for the general optimization framework Algo. 1 implies that the key difference among the

convergence of various federated ZOO algorithms in fact lies in their difference of gradient disparity. In light of this, based

on our theoretical insights about the gradient disparity in different federated ZOO algorithms (Appx. F.1), we are still able to

present the following insights into the advantages of our FZooS intuitively from the perspective of convergence:

(i) In general, the convergence of our FZooS in Appx. E.5 avoids the constant error term that can not be omitted in

existing federated ZOO algorithms. Note that even the error term caused by RFF approximation (see Thm. C.1) is in

fact able to be mitigated by using a large number M of random features.

(ii) Compared with the convergence of FedZO in Thm. F.1, the convergence of FZooS in Appx. E.5 demonstrates that the

client heterogeneity can be effectively mitigated in FZooS and the gradient estimation term enjoys a better reduction

rate (i.e., exponential rate vs. polynomial rate).

(iii) The bounded client drift in Lemma E.11 for the framework Algo. 1 implies that the additional input disparity from

the FedProx in Prop. F.2, the SCAFFOLD (Type I) in Prop. F.3 and the SCAFFOLD (Type II) in Prop. F.4 likely

leads to a larger client drift and consequently results in worse convergence compared with our FZooS, which has been

empirically supported by the results in our Sec. 5 and Appx. H.
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G. Experimental Settings

General Settings. The gradient correction length is set to be γ
(i)
r,t−1 = 1/t such that it decays with the iteration of local

updates t. We set the learning rate η = 0.01 and use Adam as the optimizer. As we described in line 7-8 of Algo. 2 and in

Sec. 3.2.1, at each local update iteration, we actively query in the neighborhood of the input x(i)
r,t on each client. Each time

we generate 100 values of x(i)
r,t + δ where each dimension of δ′ is uniformly sampled from [−0.01, 0.01]. We select the

top 5 values with the highest uncertainty
∥∥∂(σ(i)

r,t)
2(x(i)

r,t + δ)
∥∥. We set the number of random features M = 10000 for the

squared exponential kernel with a length scale of 1. Each dimension of the function input is normalized to be within [0, 1]
using the min-max normalization. The number of clients N , the number of local updates T , and the number of rounds R
vary for different experiments.

G.1. Synthetic Experiments

Let input x = [xj ]
d
j=1 ∈ [−10, 10]d, a(i) = [a

(i)
j ]dj=1, and b(i) = [b

(i)
j ]dj=1, then the quadratic functions on each client i

that has been applied in our Sec. 5.1 is in the form of

fi(x) =
1

10d


∑

j∈[d]

[(
1 + C

(
a
(i)
j −

1

N

))
x2j +

(
1 + C

(
b
(i)
j −

1

N

))
xj

]
+ 1
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where every [a
(i)
j ]Ni=1 and [b

(i)
j ]Ni=1 are independently randomly sampled from the same Dirichlet distribution Dir(α) where

α = 1
N · 1. So, given any C > 0, the final objective function remains

F (x) =
1

10d


∑

j∈[d]

[
x2j + xj

]
+ 1


 . (99)

Of note, C is the constant that controls the client shift in our federated setting. Specifically, a larger C typically leads to

larger client shifts whereas a smaller C usually enjoys smaller client shifts. We set the number of clients to be N = 5. We

set C ∈ {0.5, 5, 50} to vary the degree of heterogeneity (i.e., client shifts) among the local functions. The dimension of

the function input is set to be d = 300. We set the number of local updates to be T = 10 and the number of rounds to be

R = 50.

G.2. Federated Black-Box Adversarial Attack

We set the number of clients N = 10 in this experiment. Before we conduct the adversarial attack, we need to train N = 10
models on different datasets to get the heterogeneous local model functions. To control the degree of heterogeneity among

these functions, each time we sample P × 10 classes among the 10 classes of the dataset (i.e., MNIST or CIFAR-10) and

construct a dataset that only contains data points from these P × 10 classes where P ∈ [0, 1]. Repeat the above procedures

for 10 times to get 10 different datasets. Consequently, a higher P means that the degree of heterogeneity among the local

model functions is lower. As an example, when P = 1, all the local models of these clients will be exactly the same since

they are all trained on the dataset with all 10 classes data points. For MNIST, we train a convolutional neural network (CNN)

with two convolution layers followed by two fully connected layers on each dataset. For CIFAR-10, we train a ResNet18 on

each dataset.

After obtaining these 10 local model functions for the clients, we proceed to select 15 data points from the test dataset.

Specifically, we choose these data points among the ones that have been correctly classified by all of the 10 local models.

These selected data points will be used as the targets for our attack. The goal is to find a perturbation x, such that the

modified image z + x will be classified incorrectly by the model of each client. The local function takes the perturbed

image z + x as input and outputs the difference between the logit of the true class and the highest logit among all other

classes except the true class. The condition for the attack to be successful is that the averaged output of N = 10 models

misclassify the image z + x. The success rate is the portion of images that are successfully attacked among the selected 15
images. We set the number of local updates T = 10 and the number of rounds to be R = 100.
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Figure 3. Comparison of the cosine similarity between ĝ
(i)
r,t−1 and ∇F (xr,t−1) within one round (with local iterations T = 20) among

different federated ZOO algorithms, where the y-axis denotes the cumulatively averaged similarity w.r.t. the x-axis (i.e., the iterations of

local updates). Of note, for every iteration, our (5) will actively query only 5 additional function values, which is much fewer than the 20

additional queries in other existing algorithms based on FD methods.
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Figure 4. Comparison of the communication round and query efficiency between our FZooS and other existing baselines on the federated

synthetic functions with a varying number T of local updates.

G.3. Federated Non-Differentiable Metric Optimization

Following the practice in [3], we first train a 3-layer MLP model on the training dataset of Covertype [26] using the

Cross-Entropy loss to obtain its fully converged parameters θ∗. This is to simulate the federated learning (i.e., fine-tuning) of

a pre-trained model with other non-differentiable metrics. Similar to the setting in Appx. G.2, we construct N = 7 datasets

by sampling P × 7 (P ∈ [0, 1]) classes from the test dataset each time. Again, the degree of heterogeneity among the local

functions of the clients is controlled by P . The higher the value of P , the more heterogeneous local functions will be. In this

experiment, we aim to find a perturbation x to the model parameters θ∗, such that θ∗ + x will yield better performance

for other non-differentiable metrics, e.g., precision and recall, by using the distributed datasets on clients. Specifically,

the local function takes the perturbed model parameter as input and outputs the result of a non-differentiable metric (e.g.,

1− precision) that evaluates the performance of the model on the corresponding constructed dataset. We set T = 10 and

R = 50. As in [3], we conduct experiments on four non-differentiable metrics, namely precision, recall, Jaccard score, and

F1 score.

H. More Results

H.1. Synthetic Experiments

In this section, we first compare the gradient disparity of existing federated ZOO algorithms and our FZooS algorithm using

the quadratic functions (see Appx. G.1) with d = 300, N = 5, and C = 5. The results are in Fig. 3, showing that our

proposed adaptive gradient estimation is indeed able to realize significantly improved estimation quality than other existing

methods while requiring fewer function queries. This consequently verified the theoretical insights of Thm. 1. Interestingly,

we notice that the quality of our (5) decreases when the number of iterations for local updates is increased, which is likely

because the performance of our gradient surrogates suffers when the input x for gradient estimation is far away from the

historical function queries (i.e., few function information at x can be used for predictions), as theoretically supported in our

Appx. E.3. This also indicates the importance of active queries in our FZooS for consistently high-quality (5) by collecting

more function information in the neighborhood of the potential updated inputs within the local updates.
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Figure 5. Comparison of the communication round efficiency of our FZooS (a) with a varying number M of random features and (b)

without adaptive gradient correction. Of note, γr,t−1 = 1 means a fixed gradient correction length and x
′ = x

′′ = xr−1 stands for a

fixed gradient correction vector as in SCAFFOLD.
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Figure 6. Comparison of the success rate achieved by FZooS and other existing federated ZOO algorithms on CIFAR-10 under a varying

number T of local updates.

In addition to the comparison using a quadratic function that is under varying heterogeneity through different C in our

Fig. 1, we present the comparison using a quadratic function that is under a varying number T of local updates in Fig. 4.

Remarkably, our FZooS still considerably outperforms other baselines in terms of both communication round efficiency

and query efficiency. Interestingly, Fig. 4 shows that a larger T usually improves the communication round efficiency of

both our FZooS, as theoretically supported in our Thm. C.1. However, such an improvement is usually smaller than the

increasing scale of T . This also aligns with our Thm. C.1 since our Thm. C.1 demonstrates that the increasing T fails to

mitigate the impact of client heterogeneity. That is, term G in Thm. C.1 can not be reduced when T is increased.

We finally present the comparison of the communication round efficiency of our FZooS (a) with a varying number M of

random features and (b) without adaptive gradient correction under varying client heterogeneity in Fig. 5. Of note, in Fig. 5,

we only apply M = 1000 random features to facilitate a clear and direct comparison. Interestingly, Fig. 5(a) demonstrates

that our FZooS of a larger number M of random features generally is preferred for an improved communication round

efficiency when the client heterogeneity (i.e., C) is increased, which thus aligns with the theoretical insights from our

Thm. C.1 in Appx. C.2. Nevertheless, when client heterogeneity is small (e.g., C ≤ 5.0), a moderate number of random

features can already produce compelling and competitive convergence. Meanwhile, Fig. 5(b) illustrates that, in general,

both our adaptive gradient correction vector and adaptive gradient correction length are essential for our FZooS to achieve

remarkable convergence in practice. Surprisingly, our FZooS with fixed gradient correction outperforms its counterpart

with adaptive gradient correction when client heterogeneity is large (i.e., C = 50). This is likely because a small number of

random features (i.e., M = 1000) are applied when C = 50, making adaptive gradient correction generally inaccurate for a

long horizon of local updates since the quality of our gradient surrogates decays w.r.t. the horizon (i.e., iterations) as shown

in Fig. 3. This can also be verified from Fig. 5(a). On the contrary, the fixed gradient correction is already of reasonably

good quality due to the smoothness of the global function F (i.e., its gradients are continuous), which consequently can

provide consistently good gradient correction along a long horizon of local updates when client heterogeneity is large (i.e.,

C = 50).

H.2. Federated Black-Box Adversarial Attack

In addition to depicting the success rate of attacks on CIFAR-10 in Fig.2, which accounts for varying client heterogeneity,

we also present the success rate of attacks on CIFAR-10 considering a variable number of local updates, as showcased
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Figure 7. Comparison of the success rate in federated black-box adversarial attack achieved by FZooS and other existing federated ZOO

algorithms on MNIST under varying client heterogeneity (controlled by P ∈ [0, 1], a larger P implies smaller client heterogeneity) and a

varying number T of local updates. The x and y-axis are the number of rounds/queries and the corresponding success rate (higher is

better).
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Figure 8. Comparison of the non-differentiable metric optimization between FZooS and other existing federated ZOO algorithms under

varying client heterogeneity (controlled by P ∈ [0, 1], a larger P implies smaller client heterogeneity). The y-axis is (1−precision)×100%
and each curve is the mean ± standard error from five independent runs.

in Fig.6. Furthermore, we provide an illustration of the attack success rate on MNIST, considering both varying client

heterogeneity and a variable number of local updates, as presented in Fig. 7. Notably, our proposed algorithm consistently

demonstrates enhanced efficiency in terms of communication rounds when compared to other baselines, across different

levels of client heterogeneity and varying numbers of local updates.

H.3. Federated Non-Differentiable Metric Optimization

Besides the non-differentiable metric optimization result for the precision score that is under a varying heterogeneity

through different P in Fig. 8, we also report the corresponding result under a varying number T of local updates in Fig. 9.

Moreover, we provide results for recall, F1 score, and Jaccard as the non-differentiable metric in Fig. 10, Fig. 11, and Fig. 12

respectively. Notably, our FZooS still consistently outperforms other baselines in terms of both communication round

efficiency and query efficiency when under the comparison of varying client heterogeneity and a varying number of local

updates with different non-differentiable metrics.
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Figure 9. Comparison of the non-differentiable metric optimization between FZooS and other existing federated ZOO algorithms under a

varying number T of local updates. Note that the y-axis is (1− precision)× 100% and each curve is the mean ± standard error from five

independent runs.
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Figure 10. Comparison of the non-differentiable metric optimization between FZooS and other existing federated ZOO algorithms under

varying client heterogeneity (controlled by P ∈ [0, 1], a larger P implies smaller client heterogeneity) and a varying number T of local

updates. Note that the y-axis is (1− recall)× 100% and each curve is the mean ± standard error from five independent runs.
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Figure 11. Comparison of the non-differentiable metric optimization between FZooS and other existing federated ZOO algorithms under

varying client heterogeneity (controlled by P ∈ [0, 1], a larger P implies smaller client heterogeneity) and a varying number T of local

updates. Note that the y-axis is (1− F1 score)× 100% and each curve is the mean ± standard error from five independent runs.
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Figure 12. Comparison of the non-differentiable metric optimization between FZooS and other existing federated ZOO algorithms under

varying client heterogeneity (controlled by P ∈ [0, 1], a larger P implies smaller client heterogeneity) and a varying number T of local

updates. The y-axis is (1− Jaccard score)× 100% and each curve is the mean ± standard error from five independent runs.
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