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Abstract

In the performance landscape of the multiple NAS

benchmarks, only a few operations contribute to

higher performance while others have detrimen-

tal effects. This motivates tailoring a posterior

distribution by imposing a higher prior quantity

on a sparser supernetwork to progressively prune

unimportant operations. Moreover, the Bayesian

scheme enables the straightforward generation of

architecture samples when provided with an esti-

mated architecture from any NAS method. To that

end, we propose BPNAS, a Bayesian progressive

neural architecture search (NAS) method under

the differentiable NAS framework that combines

recent advances in the differentiable NAS frame-

work with Bayesian inference adopting sparse

prior on network architecture for faster conver-

gence and uncertainty quantification in architec-

ture search. With numerical experiments on the

popular NAS search space, we show that BPNAS

improves the accuracy and convergence speed

compared to state-of-the-art NAS approaches on

benchmark datasets.

1. Introduction

Neural Architecture Search (NAS) has emerged as a critical

field in modern deep learning, focusing on automating the

design of neural network architectures. This automation

addresses the challenges of manual design, which is labori-

ous, resource-intensive, and requires significant expertise.

Rapid advancements in NAS, evidenced by a surge in re-

search publications [1]–[3], have introduced methods such

as neuro-evolutionary algorithms, reinforcement learning-

based algorithms, and differentiable architecture search ap-

proaches. These innovations have proven to be effective in

diverse applications, such as computer vision [4] and natural

language processing [5]. Traditional NAS methods based on
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neuro-evolutionary and reinforcement learning, character-

ized by their exhaustive and combinatorial search strategies,

often face significant computational challenges. Differen-

tiable NAS, however, marks a significant paradigm shift

in this field. By leveraging gradient-based optimization, it

substantially reduces computational load and enhances the

efficiency and effectiveness of exploring the architectural

space. Pioneered notably by [6], this framework converts the

combinatorial optimization problem of NAS into a continu-

ous one through weight sharing and continuous relaxation,

a transformation that is crucial to applying gradient-based

methods. This streamlined approach in the architectural

search process not only accelerates the discovery but also fa-

cilitates the uncovering of more effective and efficient neural

network architectures, showcasing the innovative potential

of Differentiable NAS in the realm of machine learning.

In current NAS research, differentiable NAS methods show

promise but struggle with instability and generalization [7],

[8]. Addressing these issues, probabilistic modeling, in-

cluding Bayesian approaches and deep ensembling, offers

robustness and better uncertainty quantification [9]–[11].

However, their integration in differentiable NAS, as seen

in a few recent works [12]–[14], remains limited to learn-

ing point estimates of architecture and weight parameters.

Recently, Neural Ensemble Search (NES) has emerged, fo-

cusing on optimal ensembles of diverse networks rather

than single architectures, as explored in NESBS [15] and

UraeNAS [16]. This approach improves accuracy and ro-

bustness but faces challenges in selecting architectures that

effectively curate a collection of architectures that function

cohesively as an ensemble. Random selection risks forming

less than optimal ensembles, undermining this approach’s

intended benefits.

The contributions of this paper are as follows:

- We propose a unified framework, Bayesian Progressive

Neural Architecture Search (BPNAS) for architecture

search (NAS) and ensemble (NES) under the differ-

entiable search schemes. The key concept involves

incorporating a sparse prior on the network structure,

progressively guiding any supernetwork structure to-

wards a single architecture.

- Our Bayesian framework naturally leads to operation

pruning algorithms for NAS and NES, similar to the
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backward elimination procedure in linear regression.

Our algorithms ensure efficient model selection from

the high-dimensional search space of architectures.

- We compare our framework against state-of-the-art

NAS and NES approaches on the popular NAS-Bench-

201 search space [17]. We empirically show that

BPNAS is more accurate with faster convergence than

these approaches on CIFAR-10, CIFAR-100, and

ImageNet-16-120 datasets.

2. Background

2.1. Landscape of the search space

Analyzing how performance varies among different archi-

tectural structures is crucial for developing a better algo-

rithm. However, the analysis is exceedingly difficult due to

the complexity, for example, given the potential existence

of as many as 1018 candidates in the DARTS space [6].

As described in Section B in the appendix, NAS-Bench-

201 [17] enables us to glimpse the performance landscape

by evaluating the performance of each architecture on three

different datasets and providing some diagnostic informa-

tion. It utilizes a cell-based search space, where a cell is

represented by a densely connected directed acyclic graph

(DAG) (V = [N ], E) by assigning a direction from the

i-th node to the j-th node, if i < j for i, j ∈ [N ], where

[N ] = {1, . . . , N} and every edge (i, j) ∈ E is associated

with one of the elements o(i,j) of a predefined set of opera-

tions O. In NAS-Bench-201, the number of edges in E is 6

and the operation set contains 5 operations.

2.2. Differentiable architecture search for architecture

ensemble

As there are infinitely many possible architectures, it is

necessary to restrict the search space, opting not to search for

candidates from scratch. The prevalent approach involves

utilizing a cell-based search space defined in Section 2.1.

The whole architecture is then composed by stacking these

cells sequentially multiple times. The cell-based design, as

introduced by [18], markedly diminishes the complexity of

search spaces and has become widely adopted [1].

Given the inherent difficulty in searching within a discrete

space, differential NAS has become the most widely adopted

method to address this challenge. DARTS [6] enables the ef-

ficient architecture search using a gradient-based optimizer

by employing a supernetwork of operations within each

edge. To be more specific, let ∆k = {z ∈ R
k :

∑k
j=1 zj =

1, zj ≥ 0 for j ∈ [k]} denote the k-simplex space. we can

define the output of j-th node xj =
∑

i<j ô
i,j(xi) where

ôi,j(x) =
∑

k∈[|O|] θko
(i,j)
k (x) for θ ∈ ∆|O| where | · | de-

notes the cardinality of a set. This framework transforms

Figure 1. The figure shows box plots illustrating the distribution of

the accuracy for different architecture groups based on the Ham-

ming distance from the highest accuracy architecture (the best

architecture) from NAS-Bench-201 dataset (CIFAR10). Each box

plot depicts the accuracy of architectures with a k-Hamming dis-

tance from the best architecture, for k = 1, . . . , 6. It indicates that

greater structural dissimilarity from the best architecture generally

results in lower accuracy.

the problem of selecting categorical operations into learning

continuous architecture mixing weights θ. The parameters

subject to optimization are two-fold: the network weight

W = (W o
i,j) where W o

i,j is the associated network weight

parameter for an operation o in an edge e ∈ E, and the

latent architecture parameter α = (αe) where αe is a pa-

rameter to define mixing weights θe = θe(αe) ∈ ∆|O|.

There are variations for the function form, such as θe = αe

([19]), θe = Softmax(αe) ([6]), or θe = EDirichlet(αe)(η)
([12]). The bi-level objective L(α,W ) is to find the solution

(α∗,W ∗) satisfying

min
α

Lval(α,W
∗) s.t. W ∗ = argmin

W
Ltrain(α,W ). (1)

3. The proposed approach

We propose a unified Bayesian framework BPNAS for neu-

ral architecture search and its ensemble. The framework

not only facilitates the discovery of a single maximum a

posteriori (MAP) architecture, but also enables uncertainty

quantification at the architecture structure level. Addition-

ally, it provides an efficient neural ensemble search (NES)

scheme to sample a set of architectures, naturally enhancing

performance through model averaging.

Let O the set of operations with |O| = nop. For sim-

plicity, we assume that the candidate architectures contain

only one operation per edge. Let |E| = nedge, then we

have total n
nedge
op models in the search space. We define

the structure of (super)network as Γ = (γ1, . . . , γnedge
),
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where the nop vector γm = (γ1m, . . . , γnopm)T be the in-

clusion vector of operations for each m ∈ [nedge], i.e.,

for ` ∈ [nop], γ`m = 1 means the supernetwork contains

`-th operation in m-th edge, otherwise, γ`m = 0. Let

M = {Γ : ‖γm‖0 = 1 for all m ∈ [nedge]} be the set

of the candidate architectures where ‖·‖0 denotes the L0

norm. We define dHD(Γ,Γ
′) =

∑nedge

m=1 1(γm 6= γ′
m) for

Γ,Γ′ ∈ M as the Hamming distance, which indicates the

number of different edges between Γ and Γ′. We define

1n,n′ (resp. 1n) as the n× n′ matrix (resp. n vector) whose

elements are all one, and let 1 be an indicator function.

We can rewrite the bi-level objective function (1) as

L(α,W ) = L(α(Γ),W (Γ)|Γ = 1nedge,nop
),

since the supernetwork structure remains intact throughout

the training. By using (1), given the above form of L , we

define the conditional posterior distribution on (α,W )

π(α,W |Γ) ∝ e−L(α(Γ),W (Γ)|Γ), (2)

as a Gibbs distribution. Putting the prior on

π(Γ) ∝

nedge
∏

m=1

π(γm) =

nedge
∏

m=1

e−c‖γm‖01{|γm|>0}(γm),

the posterior distribution is defined as

π(α,W,Γ) ∝ π(α,W |Γ)π(Γ). (3)

Note that the prior enforces the sparsity in the supernet-

work to eventually find one of the candidate architectures

Γ ∈ M as one of the modes with one operation per

edge. This can be done by choosing c sufficiently large,

π(α,W,Γ) ≤ π(α′,W ′,Γ′) if ‖Γ‖0 > ‖Γ′‖0 , so that

modes of the distribution can be formed at M. Therefore,

the objective is to find a single architecture Γ̂MAP ∈ M
where

(α̂MAP, ŴMAP, Γ̂MAP) = arg max
α,W,Γ

π(α,W,Γ).

Finding a solution from π(α,W,Γ) is hard since the poste-

rior distribution is a joint distribution of discrete and con-

tinuous variables, and the continuous parameters α,W de-

pend on the discrete parameter Γ. It is necessary to devise

efficient movement between different dimensional spaces.

Note that this setup is commonly associated with reversible

jump Markov chain Monte Carlo (MCMC) algorithms [20],

which are commonly applied to Bayesian model selection

problems, although we are only interested in finding a MAP

estimate of Γ. Among many ways to construct these jumps

and automate the process, we propose an efficient algorithm

that prunes less important operations progressively after a

sufficient amount of time for training the continuous vari-

ables α(Γ) and W (Γ) until we obtain a single network in

M.

Pruning criterion For m-th edge with ‖γm‖0 > 1, we

prune an operation if

θ(αm) /∈ Bδ(c),

where Bδ(c) = {r ∈ R
‖γm‖0 : ‖r − c‖2 ≤ δ}, ‖·‖2 de-

notes the L2 norm, and c = 1‖γm‖0
/‖γm‖0 is the center of

∆‖γm‖0 . In our experiments, we have considered θ(αm) as

a random sample drawn from Dirichlet(αm). Intuitively,

the criterion implies pruning if the current architecture mix-

ing weights of the supernetwork deviate too far away (con-

trolled by δ) from a uniform distribution. This is analogous

to the backward elimination procedure [22], where the algo-

rithm starts with all operations on all edges and then decides

which operation to keep on each edge for the architecture

by sequentially excluding the others.

Algorithm 1 Bayesian Progressive Architecture search

(BPNAS)

Input: An initial supernetwork Γ with architecture pa-

rameters α and weights W , posterior distribution

π(W,α,Γ), and a threshold δ
while ‖γm‖0 > 1 for some m do

Update W,α by stochastic gradient descent.

if ‖θ(αm)−
1‖γm‖0

‖γm‖0
‖2 ≥ δ then

Select (`,m) = argmin{(`′,m′):Γ`′m′=1} α`′,m′

and set Γ`m = 0.

Reset α.

Output: An architecture Γ with a single operation for each

edge.

Sampling architectures for ensemble One prominent

advantage of this framework is an efficient method to sample

a set of architectures given one architecture Γ̂ ∈ M from

any NAS algorithms. For a predefined number q ∈ [nedge],
we let Sq be a set of q numbers randomly sampled from

[nedge] and define the reconstructed supernetwork Γ̂recon as

γ̂recon
m =

{

1nop
, if m ∈ Sq,

γ̂m, otherwise,

which reconstructs supernetworks partially for some edges.

We run Algorithm 1 with Γ̂recon as the initial supernetwork.

The final output Γ̃ from the procedure is at most q-Hamming

distance away from the given architecture Γ̂. We empirically

find that the performance of the architecture is similar to

that of the given architecture, probably due to its structural

similarity (Figure 1). We repeat this procedure N times to

curate an ensemble of well-performing architectures. Note

that, since each repetition initializes only a partial supernet-

work, this procedure is less memory intensive and can be

efficiently parallelized.
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Methods
CIFAR-10 CIFAR-100 ImageNet-16-120

test epochs validation test epochs validation test epochs

ResNet [21] 93.97 100 70.42 70.86 100 44.53 43.63 100

DrNAS [12] 94.36 ± 0.00 100 70.25 ± 1.53 71.00 ± 1.27 100 46.37 ± 0.00 46.34 ± 0.00 100

BPNAS 94.26 ± 0.22 70 73.38 ± 0.23 73.40 ± 0.19 50 46.37 ± 0.00 46.34 ± 0.00 26

Optimal 94.37 - 73.49 73.51 - 46.77 47.31 -

Table 1. Performance compared to the state-of-the-art methods on NAS-Bench-201.On the CIFAR-10 and ImageNet, BPNAS performs

similarly to DrNAS; however, it outperforms DrNAS on the CIFAR-100. On all datasets, BPNAS significantly reduces the computational

cost of the architecture search.

Methods Cifar-10 CIFAR-100 ImageNet-16-120

NES-RS [9] 94.17 ± 0.33 74.42 ± 0.84 45.66 ± 1.67

NESBS [15] 94.08 ± 0.07 75.00 ± 0.17 47.32 ± 0.35

BPNAS 95.10 ± 0.07 77.47 ± 1.04 50.27 ± 0.45

Table 2. Comparison of performances of the state-of-the-art NES methods on NAS-Bench-201. For all datasets, BPNAS outperforms all

other methods.

4. Experiments

In this section, we describe the experiments conducted to

study both the efficiency and effectiveness of BPNAS in

the popular NAS search space: the NAS-Bench-201 [17].

In this search space, we compare the BPNAS architecture

search algorithm (Algorithm 1) with the state-of-the-art

NAS algorithms [12], and the BPNAS ensemble algorithm

is compared with the state-of-the-art NES algorithms [15].

We compare these methods on CIFAR-10, CIFAR-100, and

ImageNet-16-120 datasets.

4.1. Architecture search results

Table 1 presents the mean accuracies of the NAS meth-

ods across 10 seeds on the three datasets, along with the

standard deviations. We also report the accuracies of a base-

line ResNet network [21] and the highest accuracy attained

among all architectures from the NAS-Bench-201 database.

In all the datasets, We observe that BPNAS can find archi-

tectures that perform similarly to the optimal architecture

in NAS-Bench-201, with a gap of less than 1%. As Dr-

NAS [12] has been reported as the state-of-the-art method,

we compare its performance with BPNAS. While BPNAS

performs similarly to DrNAS on CIFAR-10 and ImageNet,

it outperforms DrNAS on CIFAR-100 by more than 2% in

average accuracy.

One of the key properties of BPNAS is the pruning criterion

described in the previous section which prunes the less im-

portant operations from the edges of the cell as the training

progresses. The amount of pruning applied is controlled

through the parameter δ which we treat as a hyperparameter.

The setting of δ is done by maximizing the accuracy and

speed of convergence of Algorithm 1 on the validation set.

More details are presented in Appendix C.

In Table 1, we report the average number of epochs it took

for BPNAS to arrive at a final architecture on each data set

across replications. For the other methods, the default num-

ber of epochs was set at 100 across all datasets. We observe

that across all datasets, BPNAS significantly reduces com-

putational time without any significant detrimental effect

on classification performance, notably requiring 70% fewer

epochs on ImageNet-16-120.

4.2. Ensemble results

In Table 2, we compare BPNAS with state-of-the-art NES

methods on the three datasets. We present the mean test

accuracies and standard deviations of the BPNAS algorithm

with an ensemble size of 3, as well as those of the two

most recent NES methods [15]. For each BPNAS ensemble,

we set the number of perturbed edges q = 1 for the initial

supernetwork.

BPNAS ensembling achieves the highest test accuracy

across all datasets, significantly outperforming the other

NES methods. By setting q small, the algorithm quickly

converges to a candidate architecture for the ensemble. In

addition, the BPNAS ensembling approach builds upon an

architecture generated by any NAS algorithm; in our case,

we use Algorithm 1, making it efficient in finding a set of

candidates for the ensemble.

5. Discussion

In this paper, we propose BPNAS, a Bayesian framework

for fast exploration and uncertainty quantification of the

neural architecture search space. A pruning procedure is

proposed to sample well-performing architectures from the

posterior distribution. The experiments demonstrate the effi-

cacy of BPNAS, revealing improved efficiency and accuracy

compared to the state-of-the-art NAS and NES methods on

benchmark datasets. It would be interesting to extend our

framework by incorporating uncertainty in edge weights

and biases, potentially further improving accuracy.
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A. Related Works

Differentiable NAS In the landscape of Differentiable NAS, recent efforts have concentrated on overcoming the collapse

problem in DARTS [6], with various methodologies emerging. FairDARTS [23] mitigates exclusive competition using the

sigmoid function, while SGAS [24] adopts a greedy strategy. DARTS+ [25] and Progressive DARTS [26] employ early

stopping to regulate identity operations. While approaches like FairDARTS, SGAS, DARTS+, and Progressive DARTS

offer some remedies, they often require significant human intervention and struggle with flexibility and task transferability.

Innovations such as Hessian eigenvalues as indicators [7] and unsupervised representation learning [27] address these issues

to some extent. However, distribution-based methods [12]–[14] present more effective solutions. DrNAS [12], for instance,

formulates differentiable NAS as a distribution learning problem using Dirichlet distribution, optimizing it with pathwise

derivative estimators and a distance regularizer for stability and generalization. BaLeNAS [14] tackles the instability with

Bayesian Learning and NGVI, enhancing exploration and stability. BayesNAS [13] adopts a Bayesian approach, using

hierarchical automatic relevance determination priors to ensure sparsity and interconnectedness in the pruned network

structure. These methods collectively signify a shift towards more stable, explorative, and effective architecture search

techniques in NAS. However, these works only learn a point estimate of the architecture and weights, so additional properties

of distributional formulation such as uncertainty quantification, ensembling, or robustness have not been explored.

Neural Ensemble Search In the realm of Neural Ensemble Search (NES), various methodologies have been developed

to optimize ensembles of neural networks. NES-RS [9] introduced a technique that uses random search and regularized

evolution, achieving enhanced accuracy and robustness, albeit with considerable computational demands. MH-NES [11]

proposed a Multi-headed NES approach that applies differentiable NAS to multi-headed networks, optimizing ensemble

loss and promoting diversity among predictions, thereby reducing computational intensity. NESBS approach [15] utilized

a supernetwork to estimate ensemble performance, incorporating Bayesian sampling for efficient selection. Similarly,

NADS [28] employed an evolutionary search with a focus on improving uncertainty estimates and out-of-distribution

detection, demonstrating the growing versatility and sophistication of NES strategies.

B. NAS-Bench-201 space

The NAS-Bench-201 database contains 15,625 pre-trained models with varying cell architectures on CIFAR-10, CIFAR-100,

and ImageNet-16-120 datasets. Given an architecture, we can query this database to get the final accuracy and thus save

time for running the expensive evaluation stage for any NAS method. Therefore, this database enables us to separately

compare the architecture search phase and the evaluation phase of the NAS algorithms.

(a) (b)

Figure 2. The effect of δ0 on the accuracy of the architecture selected by the BPNAS algorithm 1 on NAS-BENCH-201 search space for

CIFAR-10 and CIFAR-100. It is observed that lower δ0 leads to lower accuracy and higher instability in the results.

C. On hyperparameter δ

In Algorithm 1, the pruning criterion depends on the hyperparameter δ. This hyperparameter controls how fast the algorithm

proposes a candidate architecture.In our implementation, we considered δ as the 95-th percentile value of the distribution of
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the random variable ‖Dirichlet(δ01‖γm‖0
) −

1‖γm‖0

‖γm‖0
‖2 for some m. Therefore, increasing δ or equivalently δ0 results in

more aggressive pruning as the Dirichlet(.) distribution becomes increasingly dense around its mean
1‖γm‖0

‖γm‖0
. In Section 4,

we presented the experimental results for a single δ0 value. In this section, we explore the sensitivity of the results with

changing δ0.

In Fig. 2, we plot the mean accuracy across 10 seeds (with the standard deviations) against four δ0 values on CIFAR-10

and CIFAR-100. We observe that lower δ0 on these datasets resulted in higher standard deviation and lower accuracy on

both the test and validation set. In the experiments, we found the accuracy on ImageNet-16-120 to be insensitive to the

hyperparameter δ0.
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