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Abstract

We present a differentiable version of the short-

time Fourier transform (STFT), enabling gradient-

based optimization of its parameters. This ap-

proach integrates with neural networks, allowing

joint learning of both STFT and network parame-

ters. Tests on simulated and real data demonstrate

an improved time-frequency representation and

enhanced performance on downstream tasks, illus-

trating the potential of our method as a standard

for setting spectrogram parameters automatically.

1. Introduction

Context: The short-time Fourier transform (STFT) is a

widely used technique for analyzing non-stationary signals

in a variety of fields, including audio processing [1] and

medical applications [2]. STFT-based representations such

as spectrograms are popular tools for visualizing and pro-

cessing signals. They are often used to visualize the fre-

quency content of music [3] or speech [4]. They can also

be combined with other processing methods such as neural

networks to perform advanced tasks. They have been exten-

sively utilized in various tasks, including speech recognition

[5], [6], music detection [7], and data augmentation [8] etc.

The combination of neural networks and spectrograms has

shown remarkable success in these applications.

Motivation: Nevertheless, accurate STFT-based represen-

tations require careful parameter selection. The window

length determines the trade-off between temporal and fre-

quency resolution: shorter windows offer better time res-

olution but suffer in frequency resolution, and vice versa.

The selection of an appropriate window length depends on

the specific characteristics of the signal and the application

requirements. (e.g., transient events favor shorter windows

and slowly varying components favor longer windows).
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Similarly, the hop or overlap length (window shift between

frames) controls the trade-off between smooth frequency

evolution and computational cost. It also affects frame po-

sitioning relative to signal components. Misalignment can

lead to energy leakage in the spectrogram, highlighting the

importance of aligning frames with signal components to

capture the signal’s temporal dynamics. These parameters

are crucial and influence the accuracy and interpretability

of the STFT representation [9], [10].

Contributions: This paper gathers and extends previous

works [11]–[15] by proposing a gradient-based optimization

approach for tuning STFT parameters, paving the way for

a standard approach in neural networks (STFT as a learn-

able layer). Our gradient-based approach avoid exhaustive

search of traditional discrete approaches. In addition, con-

tinuous parameters allow for more precise optimization of

time-frequency resolution and window positioning. Our key

contribution lies in modifying the STFT definition to make

window length and hop size continuous and the STFT rep-

resentation differentiable with respect to these parameters.

The key ideas are to decompose the window length L into an

integer numerical window support N and a continuous time

resolution θ, and to use the continuity of the tapering func-

tion to differentiate with respect to the temporal position of

the frames.

Outline: The paper is organized as follows. In Section 2 we

present the STFT, introduce the differentiable STFT with

respect to both the window and hop lengths. In Section 3 we

propose two optimization approaches for the STFT param-

eters: representation learning and end-to-end learning and

we demonstrate the effectiveness of our approach through

several applications.

2. Differentiable short-time Fourier transform

2.1. Short-time Fourier transform

The STFT is a two-step operation that consists of window-

ing an input signal into segments and computing the discrete

Fourier Transform (DFT) on each of these chunks, resulting

in a two-dimensional complex matrix SωL
[i, f ], where i is

an integer expressing the starting frame index and f the as-

sociated frequency. The concept involves sliding a window
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over the signal s[t] to be analyzed, selecting a specific time

interval within the signal. At each position of the window, a

Fourier transform is computed, representing the frequency

content within that particular time span. It is common to

multiply these signal slices by an analysis window of unit

norm, which is a smooth function called tapering function.

Let ωL denote the tapering function, the STFT of s[t] can

be then explicitly written as:

SωL
[i, f ] = F (ωLs [ti : ti + L− 1]) [f ]

=

ti+L−1
∑

k=ti

ωL[k − ti]s[k]e
−2jπkf

L

(1)

In (1), each column SωL
[i, :] is the DFT F(.)[f ] of a ta-

pered chunk ωLs [ti : ti + L− 1] of length L of the signal

s, starting from an index ti to an index ti +L− 1. The time

indices ti of signal intervals on which spectra are computed

are usually equally spaced, so we only have to set the first

index t0 and the spacing H = ti+1 − ti, known as the hop

length, between ti and ti+1.

2.2. Differentiable STFT with respect to window and

hop lengths

Defining a differentiable STFT (DSTFT) with respect to its

parameters (i.e., the window length and window temporal

position) involves modifying the definition of the STFT op-

erator to obtain a formula similar to Equation (1), where

L and ti are continuous parameters and SωL
[i, f ] is differ-

entiable with respect to L and ti. Note that differentiating

the STFT with respect to the frame temporal position (or

window temporal position) is equivalent to differentiating

SωL
[i, f ] with respect to the hop length, which is the differ-

ence between two consecutive frames.

There are some challenges to overcome in order to make

the STFT differentiable with respect to these parameters. In

fact, L appears in the formula (1) in the lower bound of the

sum and as denominator in the exponential. In both cases, L
must be an integer as we can only sum over integers along

the length of the tapering window and the values ranging

from ti to ti + L− 1 must be uniformly distributed on the

unit circle in the complex exponential.

To overcome these challenges, i.e., window length upper

bound of the sum and denominator of the complex exponen-

tial, we decompose L into two parameters:

• An integer window support N (upper bound),

• A continuous time resolution θ (learnable parameter).

The window support will be fixed and serve to define an

upper bound of the tapering window length. We can now

have a sum over integers namely over an integer valued

support of the analysis window. The next step is to introduce

a tapering function that is differentiable with respect to the

window lengths and temporal positions of the windows.

Let ω(x, θ) : R×]0,+∞[→ R+ be a non-negative function

that is continuous and differentiable with respect to both of

its parameters (x, θ) and with compact support such that:

∀x /∈ [0, θ], ω(x, θ) = 0 (2)

An example of such a function is the common Hann function

given by (see Figure 1):

ω(x, θ) =
1

2

(

1− cos

(

2πx

θ

))

10≤x≤θ (3)

θ

ω(x, θ)

x

Figure 1. An example of tapering function : the Hann window

Another common example is the Gaussian function centred

on θ/2 and with standard deviation θ/3:

ω(x, θ) =
3√
2πθ2

exp

(

−9(x− θ/2)2

2θ2

)

10≤x≤θ (4)

In the latter expression of the Gaussian window, we set the

standard deviation to be equal to θ/3 because we assumed

that the Gaussian function is approximately zero outside of

the interval centered around the mean and with a half-length

of three times the standard deviation i.e, 3× θ/3 = θ. Then,

θ can be interpreted as the length of the window function.

Let N > 0 be a positive integer and define the translated

version of ω on the first variable x denoted by:

ωN (x, θ) = ω

(

x+
1

2
(θ −N + 1), θ

)

(5)

From Equation (2), we obtain:

∀θ ∈]0, N − 1[,∀x /∈] 1
2
(N − 1− θ),

1

2
(N − 1 + θ)[,

ωN (x, θ) = 0 (6)

We can then rewrite the STFT in Equation (1) as follows:

SωN
[i, f ] =

∑

k∈Z

ωN (k − ti, θi,f )s[k]e
− 2jπ

N
kf (7)

where θi,f and ti are continuous window length and tempo-

ral positions variables respectively.
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Figure 2. Differentiable STFT: The window support N of the subsignal on which DFT is computed is fixed, while on other hand, the

temporal resolution θif of the tapering function ωN (k − {ti}, θτf), which actually determines time resolution is allowed to vary.

Additionally, the position of the tapering windows can smoothly shift along the time axis, while the window supports start at the integer

part of the temporal position of the tapering windows. The exponent j denotes the iteration in the gradient descent optimizer.

Proposition 2.1. The modified STFT defined in Equation

(7) is differentiable with respect to both the window and hop

lengths (or window temporal positions).

Proof. The modified STFT in Equation (7) is a finite sum

since function x → ωN (x, θ) has support contained in

] 12 (N − 1 − θ), 1
2 (N − 1 + θ)[⊂ [0, N − 1]. We can

thus differentiate SωN
with respect to θi,f and ti as all

terms involved are differentiable, namely tapering function

is differentiable with respect to its first and second param-

eter, and exponential is differentiable too. Since the hop

lengths Hi are defined as the difference between the start-

ing points of two consecutive window temporal positions

Hi = ti − ti−1, the STFT is also differentiable with respect

to the hop lengths.

The time resolution parameter θi,f has a meaning similar

to that of L: it sets the time length of the signal chunk on

which a local spectrum is computed. The difference with

the classical STFT is that the slice is filled with zeros in

order to always be of size N . As a result, the maximum

frequency resolution (number of frequency bins) of the local

spectra is no longer controlled by θi,f but by the second

parameter N > θ. This frequency resolution is unrealistic

because the signal was padded with zeros, which amounts

to interpolating in the frequency domain. Increasing N
does not bring more information. In fact, N should only be

considered as an upper bound on the temporal resolution

θi,f that allows differentiation (see Figure 2).

In our differentiable STFT definition, all frames and frequen-

cies have their own window length value, and all frames

have their own hop length. It is however possible to share

same values of parameters around one or both axes in

the time-frequency plane. For instance, one can assume

frequency-only varying window θf as for the S-transform,

time-only varying window θi or time-and-frequency varying

θ as for the Gabor transform or in the classical STFT case.

The same remark is valid for the window temporal position.

Note that the classical STFT defined in (1) can be obtained

by setting θi,f = L and Hi = H ∈ N.

In Appendix A we provide all the gradient and backpropa-

gation formulas. In Appendix B we discuss computational

complexity and specify numerical implementation.

3. Applications

Our proposed DSTFT can be of particular interest in two

types of applications.

3.1. Representation Learning

The objective is to find optimal STFT parameters (window

and hop lengths) for a specific signal, in order to adapt

STFT parameters to each different signal. To define optimal-

ity, we establish criteria translating desired representation

properties into objective functions. Common criteria from

literature include energy concentration i.e. sparsity such

as norm ratios ℓp-over-ℓq [16] and the Renyi entropy [17].

In Appendix C we performed two experiments for optimal

representation. The first experiment optimized a time- and
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frequency-varying window length. The second experiment

optimized a time-varying window and hop lengths.

3.2. End-to-End Learning

A promising advantage of DSTFT is the capability to op-

timize window and hop lengths within neural networks.

Unlike traditional methods with fixed parameters, our ap-

proach treats the DSTFT as a learnable layer with trainable

weights representing these parameters. This allows for joint

optimization of all parameters alongside the network for

tasks like classification or regression. Notably, this is ap-

plicable beyond neural networks to any learning algorithm

using STFT-based representations. It is worth to note that

the optimal representation for learning tasks might differ

from what’s ideal for visualization. In the following, we

will investigate the joint optimisation of the window length

with the weights of a convolutional neural network for a

spoken digit classification task.

Joint optimization with a neural network: In this exam-

ple, we show how DSTFT can be easily integrated into

existing neural networks. We train a convolutional neural

network to classify spoken digits from the Free Spoken

Digit Dataset (FSDD), also called the audio MNIST. The

goal is to find the best window size for the spectrogram and

the best network weights together in a joint optimisation

by minimizing the cross-entropy with the ground truth. To

evaluate the impact of window size on network performance,

we trained a 2-layer convolutional neural network (CNN)

with 16 filters per layer. Depthwise separable convolutions

were employed to achieve a balance between efficiency and

accuracy. The network utilized ReLU (REctified Linear

Unit) activation functions for hidden layers, dropout for reg-

ularization to prevent overfitting, and the Adam optimizer

for efficient training. We see in Table 1, that the window

size parameter is very important because the accuracy of

the same trained network for different values of the win-

dow size varies strongly. Also, whatever the initial value of

time resolution is, during a joint optimization with network

weights, the time resolution window length parameter con-

verges to an optimal value as shown in the first row of Figure

3. Indeed, losses decrease by jointly optimizing the weights

of the neural network and the time resolution continuous

parameter θ that converged to an optimal value: at the end

of the gradient descent, the window length reached the value

34.9 whereas we started the training with a window size of

200. The second row of Figure 3 shows the spectrogram of

a sample at the end of the convergence. We note that the

obtained spectrogram is not the best for visualization but

the best representation for the neural network.

This simple simulation proves the effectiveness of our back-

propagation procedure based on a differentiable version of

STFT. It illustrates a general window length tuning method-

Table 1. Training, validation and testing losses of CNN per fixed

window length.

window length train loss val loss test loss

10 0.3672 1.1442 1.0391

20 0.0304 0.4443 0.3177

30 0.0089 0.2408 0.0306

40 0.0064 0.2550 0.1249

50 0.0061 0.4859 0.2868

Figure 3. Training loss, validation loss and window length per

epoch (left) and Spectrogram of a sample obtained at the end of

the training (right)

ology applicable to any existing signal processing algorithm

or neural network involving spectrograms: replace the spec-

trogram computation step by the computation of our differ-

entiable spectrogram, then optimize the window length by

gradient descent based on the backpropagation formulas we

have introduced.

4. Conclusion

We have defined a differentiable version of the STFT, which

is differentiable with respect to its parameters, enabling

to optimize by gradient descent the window lengths and

the window temporal positions. This capability has the

potential to establish this approach as a standard method

for parameter selection in STFT and STFT-based represen-

tations. This contribution aligns with the ongoing efforts

within the machine learning community to provide differ-

entiable relaxations of various traditional tools for efficient

optimization with gradient-based algorithms.
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A. Gradients and backpropagation formulas

We introduced the DSTFT that admit continuous parameters namely the window length and the frame position (or

equivalently the hop length). We showed that the DSTFT is differentiable with respect to its parameters. This means that
∂SωN

[i,f ]

∂θi,f
and

∂SωN
[i,f ]

∂ti
exist and are finite. In this section, we start by giving the analytical expression of these derivatives

and show how these formulas can be integrated in more general applications. Finally, we specify numerical implementation.

A.1. Analytical formulas for DSTFT gradients

In the following, we will denote by ∂xωN and ∂θωN the derivatives of ωN in Equation 5 with respect to the first and second

variables, respectively. Let us compute the differential of our proposed DSTFT with respect to the window length θi,f , frame

temporal position ti, and hop length Hi. SωN
[i, f ] being complex, we apply the term-by-term differentiation by considering

complex numbers as vectors with two real components, in particular exp (jx) ≡ [cos(x), sin(x)].

A.1.1. GRADIENT WITH RESPECT TO WINDOW LENGTH

Time-and-frequency varying window length First, we consider the case of a time-and-frequency varying window length

θi,f . By compute the partial derivative of each value in the time-frequency plane with respect to the window length θi,f , we

obtain the Jacobian of size (2, 1) as follows :

∂SωN
[i, f ]

∂θi,f
=

∑

k∈Z

∂ωN (k − ti, θi,f )

∂θi,f
s [k] e−

2jπkf
N (8)

where we recognize the STFT of s where the tapering function ωN (k, θi,f ) is replaced by the function

ω̄N (k, θi,f ) = ∂θωN (k, θi,f ) (9)

Then, we can write:
∂SωN

[η, f ]

∂θi,f
= Sω̄N

[i, f ]1i(η)1f (f) (10)

where 1a(.) is the Dirac function in a.

Shared window length In the case of shared window length, the derivative of the STFT with respect to window length θ
writes

∂SωN
[η, f ]

∂θ
= Sω̄N

[η, f ] (11)

A.1.2. GRADIENT WITH RESPECT TO WINDOW POSITION AND HOP LENGTH

The derivative of the STFT with respect to window position writes

∂SωN
[i, f ]

∂ti
=

∑

k∈Z

ω̃N (k − ti, θi,f )s [k] e
− 2jπkf

N (12)

where

ω̃N (k, θi,f ) = ∂xωN (k, θi,f ) (13)

This results in:
∂SωN

[η, f ]

∂ti
= Sω̃N

[i, f ]1i(η). (14)

Time-varying hop length Using the formula of a time-varying hop length ti =
∑i

t=0 Ht, we can deduce that the

derivatives for the hop length are given by:

∂S[η, f ]
∂Hi

= Sω̃N
[η, f ]1[0,η](τ) (15)

where 1[0,η] is the indicator function defined on the interval [0, η].
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Shared hop length Using the formula of a shared hop length ti = (i+ 1)H , we can deduce that the derivatives for the

hop length are given by:
∂S[η, f ]
∂H

= (i+ 1)Sω̃N
[η, f ] (16)

Remark A.1. One interesting feature of our DSTFT is that all derivative expressions share the same form as the forward

pass. In other words, they can always be represented as a DSTFT transform step, by using modified tapering functions.

A.2. Backpropagation formulas

The above derivative expressions enable us to optimize any almost everywhere smooth differentiable scalar loss function

with respect to DSTFT parameters. This is fulfilled by employing gradient descent and the backpropagation algorithm [18]

and automatic differentiation (AD) [19], [20] two fundamental tools in machine learning.

Let L be the loss to be optimized. With the STFT and automatic differentiation tools, such as PyTorch [21], which allow

for the automatic calculation of gradients, we can optimize a loss the DSTFT parameters using gradient descent. In this

section, we provide the analytical expressions for backpropagation through the STFT and then we compare them to the ones

computed numerically using PyTorch.

A.2.1. ANALYTICAL EXPRESSIONS

Let L be the loss function to be differentiated with respect to our DSTFT parameters.

Variable parameters In the general case of time-and-frequency varying window length and time-varying hop-length, we

obtain:

∂L
∂θi,f

=
∂L

∂SωN
[i, f ]

∂SωN
[i, f ]

∂θi,f
=

∂L
∂SωN

[i, f ]
Sω̄N

[i, f ] (17)

∂L
∂ti

=

N−1
∑

f=0

∂L
∂SωN

[i, f ]

∂SωN
[i, f ]

∂ti

=
N−1
∑

f=0

∂L
∂SωN

[i, f ]
Sω̃N

[i, f ] (18)

∂L
∂Hi

=

T−1
∑

η=0

N−1
∑

f=0

∂L
∂SωN

[η, f ]

∂SωN
[η, f ]

∂Hi

=

τ
∑

η=0

N−1
∑

f=0

∂L
∂SωN

[η, f ]
Sω̃N

[η, f ] (19)

where ∂L
∂SωN

(i,f) is the vector of derivatives with respect to real and imaginary parts of size (1, 2) and S is understood as a

vector of size (2,1).

Shared parameters In the classical STFT case of window and hop length sharing, we obtain:

∂L
∂θ

=

T−1
∑

i=0

N−1
∑

f=0

∂L
∂SωN

[i, f ]

∂SωN
[i, f ]

∂θ
=

〈

∂L
∂SωN

,Sω̄

〉

, (20)

∂L
∂H

=

T−1
∑

i=0

N−1
∑

f=0

∂L
∂SωN

[i, f ]

∂SωN
[i, f ]

∂H
=

〈

∂L
∂SωN

,Sω̃

〉

(21)

where ⟨·, ·⟩ denotes the Frobenius scalar product of two matrices : ⟨A,B⟩ = ∑

i,j Re(Aj,i)Re(Bi,j) + Im(Aj,i)Im(Bi,j)
with Re(X) and Im(X) the real part and imaginary part of X , respectively.

Remark A.2. These analytical expressions are highly flexible and enable differentiation of any scalar function L of the

STFT’s outputs with respect to its tuning parameters. In fact, all backpropagation computation can be performed efficiently
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using matrix multiplications, where the matrices involved have the same dimension as the forward propagation, since

individual derivatives are just DSTFT operations. In the following section, we will show that this approach reduces

computational complexity over automatic differentiation tools, is conducive to faster gradient calculations, and use exact

gradient values.

B. Computational complexity and numerical implementation

B.1. Computational complexity

Our proposed approach (SωN
) shares a computational space and time complexity of O(N2) with the classical STFT using

the DFT. However, by leveraging the FFT computation, our approach can achieve a reduced complexity of O(N logN).
This improved complexity is attainable when using only a shared window length θi,f = θ or a time-varying window

length θi,f = θi. This efficient computational complexity makes the time-varying window length approach particularly

advantageous for real-time applications where fast processing is essential. On the other hand, for applications that do not

have memory or time constraints but require higher precision with respect to the temporal positions of windows or the

lengths of windows in frequency, the complexity is O(N2).

Regarding the gradient computation in Appendix A, the backward pass has a computational complexity equivalent to the

forward pass, i.e., O(N log N) when using the FFT, otherwise, the complexity is O(N2).

B.2. Numerical implementation

To implement the DSTFT transformation, we need to modify the infinite sum to a finite one because the tapering function

has limited support. The tapering function is nonzero only within the support interval [0, N −1], so we perform the sum only

over this interval. To achieve this, we make a variable transformation, so that k is an integer within the interval [0, N − 1].
More specifically, we execute the following transformation: k → k+ ⌊ti⌋, taking advantage of the fact that ti = ⌊ti⌋+ {ti}.

Here, {ti} represents the fractional part of ti, and ⌊ti⌋ is the integer part of ti. Consequently, we obtain the following

expression:

SωN
[i, f ] =

∑

k∈Z

ωN (k − ti, θi,f )s[k]e
− 2jπkf

N

=
N−1
∑

k=0

ωN (k − {ti}, θi,f )s [⌊ti⌋+ k] e−
2jπ
N

(k+⌊ti⌋)f

= e−
2jπ⌊ti⌋f

N

N−1
∑

k=0

ωN (k − {ti}, θi,f )s [⌊ti⌋+ k] e−
2jπkf

N

(22)

Therefore, to overcome the constraint of starting on integer values, we start the window at ⌊ti⌋ and compensate for the effect

of the integer part by the combination of a small shift, {ti} = ti − ⌊ti⌋, in the argument of ωN and a factor e−2jπ⌊ti⌋f/N in

the exponential. Note that the above equation, we set the lower bound of the sum to be 0 and the upper bound to be N − 1
because 0 ≤ {ti} < 1, and the tapering function ωN is zero at the boundaries of its support.

C. Additional experiments

C.1. Representation-driven optimization

In this section, we will demonstrate, through simulated and real signals, the immediate interest and significance of DSTFT,

highlighting its potential for finding a good representation. The optimal settings for STFT, such as the choice of the best

window and hop lengths, should be adapted to the specific input signal and its unique features. The DSTFT allows the

window lengths to flexibly adapt locally to the signal’s frequency content. This improves the ability to capture both time

and frequency information accurately, enhancing the overall time-frequency resolution of the transformation. Second, it

fine-tunes the hop lengths, which determine the temporal positions of the analysis windows. By aligning these positions

with the frequency components of the input signal, energy leakage can be then minimized and short-time signals can be well

localized in the spectrogram. That is why, the DSTFT can be seen as an adaptive time-frequency transform, automatically

adjusting its parameters to track the unique characteristics of the input signal. To establish an optimal representation.
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Figure 4. Spectrograms (left) and Zoomed-in spectrograms (right)

with respectively from top to bottom small window of length 100,

long window of length 1000, single-window DSTFT with a time-

and-frequency-varying window length without (middle) and with

(bottom) regularisation. Spectrograms (left) and distributions of

window lengths (right).

Figure 5. Spectrograms (left) and Zoomed-in spectrograms (right)

with respectively from top to bottom small window of length 100,

long window of length 1000, single-window DSTFT with a time-

and-frequency-varying window length without (middle) and with

(bottom) regularisation. Spectrograms (left) and distributions of

window lengths (right).
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C.1.1. TIME AND FREQUENCY VARYING WINDOW LENGTH

We consider a simulated signal composed of 3 components: a main non-stationary component, a close and stationary

component, and a transient signal. In this example, we focus on optimizing the window length. A small window length

gives fine temporal resolution to localize the transient event in time but a coarse frequency resolution to distinguish nearby

frequencies as displayed in the first row of Figure 4. In contrast, a long window length (in second row of Figure 4) enables to

distinguish the main component from the stationary frequency but a poor temporal resolution of the transient event. We now

optimize DSTFT with a single window length by minimizing the entropy loss H(SωN
; θ) = −∑

i,f pif log(pif ) where

pif =
∥SωN

[i,f ]∥
∑

k,l ∥SωN
[k,l]∥ . At the end of the optimization, we obtain a spectrogram, displayed in the third row of Figure 4 that is

optimal given the criterion. Our optimization is done in a number of iterations much lower than the grid-search case. In this

specific case, for grid-search, we have tested all integer values between 100 and 1000, which is a fixed computational cost

proportional to 900 forward steps. In the case of DSTFT, the number of iterations depends on the choice of hyperparameters,

including the gradient descent optimizer hyperparameters (e.g. learning rate, stopping condition). It is therefore possible

to perform the optimization between 10 and 100 iterations. Knowing that one iteration consists of a forward pass and

a backward pass, and that a backward pass is exactly equivalent to a forward pass in terms of computational cost as we

saw in the previous section, we obtain a variable computational cost between 20 and 200 iterations. This is much lower

than traditional grid-search. We will see that the gap is even greater in the case of a window length that varies in time and

frequency. In this case of single window length, DSTFT gives an interesting compromise between time and frequency

resolution. But since we use only one window length for the whole spectrogram, we are not able to localize precisely in time

transient event, and in frequency close frequencies. As we can see in this specific simulated example, it is difficult to find an

optimal unique window length for all different components in the spectrogram. We need for different window lengths, more

precisely a time-and-frequency-varying window length, to adapt to the time-varying spectral structure of the signal.

We now optimize DSTFT using time-and-frequency-varying window length by minimizing the following criteria:

L(Θ) = H(SωN
; Θ) + λR(Θ) (23)

where R(Θ) a regularization term that constrains nearby windows in the time-frequency plane to have close values, which

smooths the distribution of window lengths and improves robustness to noise and λ is an hyperparameter controlling

trade-off between these two terms. Particularly, we consider R(Θ) =
∑

i,f

√

∑

(j,k)∈Vi,f
γ(j,k);(i,f)(θi,f − θj,k)2 where

Vi,f is a neighboring index set for the bin (i, f) and γj,k is a weight given to the neighbor θj,k to measure the similarity

between the frequency content of the regions (i, f) and (j, k). These weights can be equal or set from a previously computed

spectrogram with a constant window length. The above regularization is related to the non-local total variation penalization

used in image processing [22]. Results with DSTFT using time-and-frequency-varying window length are shown in fourth

and fifth row of Figure 4 for spectrograms and window length distribution respectively. We see that we can localize precisely

all the components of our signal both in time and in frequency, thanks to time-and-frequency-varying window length. In fact,

the latter adapts to each component as expected e.g. small windows for transient events and long windows for stationary

components.

C.1.2. TIME-VARYING WINDOW AND HOP LENGTHS

In this section, we will show on a simulated signal that differentiable STFT with respect to both window length and hop

length (or frame temporal position) can be of immediate interest and deserves more attention. We consider a signal that

simulates shocks of different frequencies and durations. We also added noise to the signal as shown in the first row of

Figure 5. Classical STFT uses frames that are uniformly spread along the signal which may not be the optimal positioning

to localize frequency changes as frequencies have a variable length. In fact, using small, medium, or long window size,

where the frames are uniformly spaced along the signal, produce a spectrogram with a lot of energy leakage ad shown

in the the second, third and fourth rows of Figure 5 respectively. We then consider optimizing the window positions and

lengths by gradient descent using our DSTFT. More specifically, our goal is to find windows that are well-distributed over

the overall signal, ensuring that there are no gaps and loss of information, and that allow for minimal energy leakage while

achieving a better concentration of energy in the time-frequency plane. To promote energy concentration in each frame, we

maximize the kurtosis of frame spectrum which is defined as K(SωN
; Ω) = 1∑T−1

i=0
λi

∑T−1
i=0 λi

Ef [∥SωN
[i,f ]∥4]

Ef [∥SωN
[i,f ]∥2]2 where λi is

a weight used to minimize the contribution of windows that share the same segment of the signal. More specifically, we set

λ0 = t1 − t0, λT−1 = tT−1 − tT−2 and λi =
ti+1−ti−1

2 for every i ∈ {1, . . . , T − 2}. To avoid information loss, we also
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want to maximize the spectrogram coverage defined as C(Ω) = 1
M

∑T−1
i=0 min

(

θi, H̃i+1

)

with H̃T = +∞ and M is the

signal length. Let us recall that in cases where the window’s support extends beyond the signal, we zero-pad the signal for

the calculation of the STFT. However, it is important to note that the coverage metric only takes into account the part of the

window that overlaps with the signal. While we observe that the spectrogram obtained at the end of the optimization has a

better concentration of energy due to reduced spectral leakage resulting from the proper positioning of frames, which are no

longer straddling two different frequencies, as shown in the fifth row of Figure 5. However, caution must be exercised when

reading the time-axis of the resulting time-frequency representation as the distribution of frames is no longer uniform.
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