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Abstract

We introduce a general framework to train a deep

neural network to output a graph from a variety

of input modalities. The framework is built using

a novel Optimal Transport loss that exhibits all

necessary properties (permutation invariance and

differentiability) and allows for handling graphs

of any size. We showcase the versatility and state-

of-the-art performances of the proposed approach

on various real-world tasks and a novel challeng-

ing synthetic dataset.

1. Introduction

This work addresses Supervised Graph Prediction (SGP),

a supervised task where the output of the predictive model

is a graph. In contrast to supervised tasks involving graphs

as input that benefit from the hegemony of Graph Neural

Networks, there is no broadly accepted framework to ad-

dress SGP with deep learning. This can be explained by the

discrete nature of the output set which makes it challenging

to parameterize with a neural network. Consequently, most

existing methods rely on domain-specific heuristics, such

as introducing an ad hoc ordering of the nodes, to simplify

the task [1] [2] [3]. Another line of work is to leverage

energy-based models [4] or surrogate regression methods

[5] to circumvent the difficulty of directly predicting a graph.

However, these approaches typically suffer from an expen-

sive decoding step at inference time. To the best of our

knowledge, the graph barycenter of Brogat-Motte et al. [6]

and the Relationformer model [7] are the only approaches

that can tackle a variety of SGP tasks in a fully end-to-end

manner. Unfortunately, those methods suffer from some

limitations which we discuss in detail in section 3.

Contributions In this paper, we introduce Any2Graph, a

general framework for end-to-end SGP. Any2Graph lever-
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Figure 1: A sample of predictions from Any2Graph (our

model) and its direct competitor Relationformer for different

SGP tasks. Any2Graph can adapt to a variety of input

modalities and output graphs. We extend Relationformer

so that it can process inputs that are not images, but its loss

limits its performances when the nodes are not uniquely

identified by their features (e.g. for molecules). We provide

more qualitative results in appendix G.

ages a novel, fully differentiable, OT-based loss. The frame-

work is completed with a novel synthetic dataset suited to

the evaluation of SGP methods. We demonstrate that our ap-

proach is versatile and achieves state-of-the-art performance

for diverse real-world tasks, such as constructing maps from

satellite images (Sat2Graph) or predicting molecules from

fingerprints (Fingerprint2Graph).

Notations. An attributed graph g with m nodes can be

represented by a tuple (F,A) where F ∈ R
m×d encodes

node features and A ∈ R
m×m is the (symmetric) adja-

cency matrix. Further, we denote Gm the set of attributed

graphs of m nodes and G =
⋃M

m=1 Gm, the set of attributed

graphs of size up to M . In the following, 1m ∈ R
m is the

all one vector and we denote σm = {P ∈ {0, 1}m×m |
P1m = 1m,PT1m = 1m} the set of permutation matri-

ces. Two graphs g1 = (F1,A1), g2 = (F2,A2) ∈ Gm

are said to be isomorphic whenever there exists P ∈ σm

such that (F1,A1) = (PF2,PA2P
T ), in which case we

denote g1 ∼ g2. In this work, we consider all graphs to be

unordered, meaning that all operations should be invariant

by Graph Isomorphism (GI).
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Figure 2: Illustration of the architecture for a target graph of size 3 and M = 4

2. An Optimal Transport loss for SGP

2.1. Graph matching and optimal transport.

Designing a loss function to compare graphs is a challeng-

ing task. Even for two graphs of the same size ĝ = (F̂, Â),
g = (F,A), one cannot simply compute a point-wise com-

parison as it would not satisfy GI invariance. One of the

solutions is to solve a Graph Matching (GM) problem i.e.

find a one-to-one matching between the nodes of the graphs

before computing the pairwise errors between matched

nodes/edges. Formally, the graph matching discrepancy

is defined as GM(ĝ, g) = minP∈σm
E(ĝ, g,P) where the

matching cost E(ĝ, g,P) is

m
∑

i,j=1

Pi,jℓF (f̂i, fj) +

m
∑

i,j,k,l=1

Pi,jPk,lℓA(Âi,k, Aj,l) (1)

The minimization problem however is a Quadratic As-

signment Problem (QAP) which is known to be one of

the most difficult problems in the NP-Hard class [8]. To

mitigate this computational complexity, it has been sug-

gested to replace the space of permutation matrices with

a convex relaxation [9]. The Birkhoff polytope (doubly

stochastic matrices) πm = {T ∈ [0, 1]m×m | T1m =
1m,TT

1m = 1m} is the tightest of those relaxations

as it is exactly the convex hull of σm which makes it a

suitable choice [10]. Interestingly, the resulting metric

FGW(ĝ, g) = minT∈πm
E(ĝ, g,T) is known in the Op-

timal Transport (OT) [11] field as a special case of the

(Fused) Gromov-Wasserstein (FGW) distance proposed by

Mémoli [12]. FGW is differentiable, GI invariant and effi-

cient solvers are available which make it an ideal candidate

for SGP [13]. Unfortunately, this formulation is limited

to graphs of the same size, and existing variations are not

suited for SGP as discussed in appendix A.1.

2.2. A size-agnostic representation for graphs

Our first step toward building an End-To-End SGP frame-

work is to introduce a space Ŷ that can be used to represent

any graph of size up to M . We define Ŷ as:

{(h,F,A) | h ∈ [0, 1]M ,F ∈ R
M×d,A ∈ [0, 1]M×M}.

(2)

We refer to the elements of Ŷ as ’continuous’ graphs, in

opposition with ’discrete’ graphs of G. Here hi (resp. Ai,j)

should be interpreted as the probability of the existence of

node i (resp. edge [i, j] ). Any graph g = (Fm,Am) ∈ Gm

can be embedded into Ŷ with a Padding operator P that

adds m′ = M −m dummy nodes to g

P(g) =

((

1m

0m′

)

,

(

Fm

0m′

)

,

(

Am 0m′

0T
m′ 0m′,m′

))

. (3)

We denote Y = P(G) ⊂ Ŷ the space of padded graphs. For

any padded graph in Y , the padding operator can be inverted

to recover a discrete graph P−1 : Y 7→ G. Besides, any

continuous graph ŷ ∈ Ŷ can be projected back to padded

graphs Y by a threshold operator T : Ŷ 7→ Y . Note that Ŷ
is convex and of fixed dimension which makes it ideal for

parametrization with a neural network. Hence, the core idea

of our work is to use a neural network to make a prediction

ŷ ∈ Ŷ and to compare it to some target g ∈ G through some

loss ℓ(ŷ,P(g)). This calls for the design of an asymmetric

loss ℓ : Ŷ × Y 7→ R+.

2.3. An Asymmetric loss for SGP

The Partially Masked Fused Gromov-Wasserstein (PM-

FGW) is a loss between a padded target graph P(g) =
(h,F,A) ∈ Y with real size m = ∥h∥1 ≤ M and a

continuous prediction ŷ = (ĥ, F̂, Â) ∈ Ŷ , we define

PMFGW(ŷ,P(g)) as:

min
T∈πM

αh

M

∑

i,j

Ti,jℓh(ĥi, hj)

+
αf

m

∑

i,j

Ti,jℓf (f̂i, fj)hj

+
αA

m2

∑

i,j,k,l

Ti,jTk,lℓA(Âi,k, Aj,l)hjhl

(4)
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Table 1: Graph level, edge level, and node level metrics reported on test for the different models and datasets. ∗ denotes

methods that use the actual size of the graph at inference time, hence the performance reported is a non-realistic upper-bound.

DATASET MODEL
GRAPH LEVEL EDGE LEVEL NODE LEVEL ACC.

EDIT DIST. ↓ GI ACC. ↑ PMFGW ↓ PREC. ↑ REC. ↑ NODE ↑ SIZE ↑

COLORING

FGWBARY-ILE∗ 7.60 0.90 0.93 72.17 83.81 79.15 N.A.
RELATIONFORMER 5.47 18.14 0.32 80.39 86.34 92.68 99.32
ANY2GRAPH 0.33 84.44 0.03 98.63 98.87 99.99 99.85

TOULOUSE

FGWBARY-ILE∗ 9.00 0.00 1.21 72.52 56.30 1.62 N.A.
RELATIONFORMER 0.13 93.28 0.02 99.25 99.24 99.25 98.30
ANY2GRAPH 0.13 93.62 0.02 99.34 99.26 99.39 98.81

USCITIES
RELATIONFORMER 2.09 55.00 0.13 92.96 87.98 95.18 79.80
ANY2GRAPH 1.86 58.10 0.12 92.91 90.85 95.70 78.95

QM9
FGWBARY-ILE∗ 2.84 28.95 0.28 82.96 79.76 92.99 N.A.
RELATIONFORMER 3.80 9.95 0.22 86.07 73.31 99.34 96.0
ANY2GRAPH 2.13 29.85 0.14 90.19 88.08 99.77 95.45

GDB13
RELATIONFORMER 8.83 0.01 0.29 84.14 55.89 97.57 98.65
ANY2GRAPH 3.63 16.25 0.11 90.83 84.86 99.80 98.15

The loss takes simultaneously into account each property

of the graph. More precisely, the first term ensures that

the padding of a node is well predicted. In particular, this

requires the model to predict correctly the number of nodes

in the target graph. The second term ensures that the fea-

tures of all non-padding nodes (hi = 1) are well predicted.

Similarly, the last term ensures that the relationships be-

tween pairs of non-padding nodes (hi = hj = 1) are well

predicted. The normalization in front of the sums ensures

that each term is a weighted average of its internal losses

as
∑

Ti,j = M ,
∑

Ti,jhj = m and
∑

Ti,jTk,lhjhl = m2.

Finally α = [αh, αf, αA] ∈ ∆3 is a triplet of hyperparame-

ters on the simplex balancing the relative scale of the differ-

ent terms. For ℓA and ℓh we use the cross-entropy between

the predicted value after a sigmoid and the actual binary

value in the target. This is equivalent to a logistic regres-

sion loss after the OT plan has matched the nodes. For ℓf
we use the squared ℓ2 or the cross-entropy loss when the

node features are continuous or discrete, respectively. A key

feature of this loss is its flexibility. Not only any ground

losses can be considered but it is also straightforward to

introduce richer spectral representations of the graph [14].

For instance, we discuss the benefits of leveraging a diffused

version of the nodes features F in appendix D.2. Finally,

PMFGW translates all the good properties of FGW to the

new size-agnostic representation:

Proposition 1 (Complexity). Each step of the inner opti-

mization can be performed in O(M3).

Proposition 2 (GI Invariance). If ŷ ∼ ŷ′ and g ∼ g′ then

PMFGW(ŷ,P(g)) = PMFGW(ŷ′,P(g′)).

Proposition 3 (Positivity). PMFGW(ŷ,P(g)) ≥ 0 with

equality if and only if ŷ ∼ P(g).

We discuss PMFGW in greater detail in appendix A. The

proofs of the propositions are provided in Appendix C.

2.4. Any2Graph framework

We now wrap up the tools introduced above to build

Any2Graph, a general framework for SGP.

Formally, the goal of SGP is to learn a function f : X → G
using the training samples {(xi, gi)}

n
i=1 ∈ (X × G)n. In

Any2Graph, we relax the output space and learn a function

f̂ : X → Ŷ that predicts a continuous graph ŷ := f(x) as

defined in the previous section. Assuming f̂ is a parametric

model (in this work, a deep neural network) completely de-

termined by a parameter θ, the Any2Graph objective writes

as the following empirical risk minimization problem:

min
θ

1

n

n
∑

i=1

PMFGW(f̂θ(xi),P(gi)) (5)

At inference time, we recover a discrete prediction by a

straightforward decoding f(x) = P−1 ◦ T (ŷ). Where

T is the thresholding operator with threshold 1/2 on the

edges and nodes and P−1 is the inverse padding defined

in the previous section. In other words, the full decoding

pipeline P−1 ◦ T removes the nodes i (resp. edges (i, j))

whose predicted probability is smaller than 1/2 i.e. ĥi <1/2

(resp. Âi,j <1/2)). Unlike surrogate regression methods, this

decoding step does not induce any computational overhead.

The architecture we propose for f̂θ is heavily inspired by

that of Relationformer [7] and illustrated in figure 2. A full

description is provided in appendix B.1. The main novelty

is that we investigate more general encoders to enable graph

prediction from data other than images. We discuss how to

build encoders adapted to text, images, graphs and vectors

in appendix B.2 .

3



A framework for differentiable Supervised Graph Prediction

3. Numerical experiments

3.1. Experimental setting

We consider 5 datasets that cover a wide spectrum of differ-

ent input modalities, graph types and sizes. The 4 real-world

datasets Toulouse, USCities, QM9 and GDB13 are com-

pleted with Coloring, a novel synthetic dataset described in

appendix F. We compare Any2Graph to its direct competi-

tor Relationformer [7] and a surrogate regression approach

(FGW-Bary) based on FGW barycenters [6]. For a fair com-

parison, we use the same architecture for Relationformer

and Any2Graph and augment both with feature diffusion as

discussed in appendix D.2. Given the heterogeneity of the

datasets considered, we report task-agnostic metrics such

as average edit distance [15] or GI Accuracy (the fraction

of graphs that are perfectly predicted). The detailed experi-

mental setting is provided in appendix E.

3.2. Prediction Performances

Table 1 shows the performances of the different methods on

the five datasets. First, we observe that Any2Graph achieves

state-of-the-art performances for all datasets and graph-level

metrics. Relationformer is similar to PMFGW, except its

loss relies on a bipartite matching taking only the node fea-

tures into account. The consequence is that Relationformer

performs very close to Any2Graph on the Sat2Graph tasks

(Toulouse and USCities) but much poorly on any task where

nodes are not uniquely identified by their features. FGW-

Bary relies on a computationally heavy barycenter which

in its current implementation cannot scale to the datasets

featuring the larger graphs (GDB13 and USCities). The

SOTA kernel it leverages is very efficient for QM9, despite

this, it is still outperformed by Any2Graph given that we

use feature diffusion.

3.3. Computational Performances

Table 2 shows the ”speed” of each method both in training

and inference. Speed is expressed in terms of the number of

graph processes per second. Because of the barycenter com-

putation, FGWBary is several orders of magnitude slower

than Any2Graph. Note that Relationformer is faster at train-

ing time because it does not require solving a QAP. Overall

our proposed approach strikes the best of both worlds by

achieving SOTA prediction performances at all levels of

the graph, at a very low computational inference cost. All

values are computed on NVIDIA V100/Intel Xeon E5-2660.

3.4. Analysing the proposed approach

First, we explore the effect of M (the maximum number of

nodes) whose default value is that of the largest graph in the

train set. We train our model on Coloring for M between 10

(default value) and 25 and report the (test) edit distance. To

Table 2: Speed of the different methods on QM9 (in graph

per second). Training of FGWBary has a closed-form ex-

pression computed at once on CPU.

METHOD TRAIN. ↑ PRED. ↑

FGWBARY N.A. 1

RELATIONFORMER 2K 10K

ANY2GRAPH 1K 10K
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Figure 3: Effect of the choice of M (left) and α (right) on

the performances (test edit distance) for Coloring.

quantify the effective number of nodes used by the model,

we also record the number of active nodes i.e. that are

masked less than 99% of the time. Results are reported in

Figure 3 (left). Interestingly, we observe that performances

are robust w.r.t. the choice of M which can be explained by

the number of active nodes reaching a plateau. This suggests

that the model automatically learns how many nodes it needs

to reach the required expressiveness. Similarly, we check

that our model is robust to the choice of parameter α which

balances the terms of the loss. To this end, we train our

model on Coloring for different values α on the simplex

and report the (test) edit distance on Figure 3 (right). We

observe that performance is optimal for uniform α and

robust to other choices as long as there is not too much

weight on the structure loss term (corner αA = 1). We

further discuss this property in appendix D.1.

4. Conclusion and limitations

We present Any2Graph, a novel end-to-end deep learning

approach to SGP based on an original asymmetric Partially-

Masked Fused Gromov-Wasserstein loss. To the best of our

knowledge, it is the first complete and versatile framework

to achieve SOTA performance on various graph prediction

tasks and input modalities, both in terms of accuracy and

computational cost, which makes it a good candidate to be

used as a novel baseline in SGP.

The main limitation of Any2Graph is its scalability to large

graphs. We envision two approaches to address this issue.

First, we plan to explore more general diffusion schemes

on the adjacency matrix to capture higher-order interactions

that may occur in large graphs. Secondly, we wish to accel-

erate the OT plan computation with entropic regularization

[16] to fully parallelize the solver on a GPU.

4



A framework for differentiable Supervised Graph Prediction

References

[1] X. Bresson and T. Laurent, “A two-step graph convolu-
tional decoder for molecule generation,” arXiv preprint
arXiv:1906.03412, 2019.

[2] D. Belli and T. Kipf, “Image-conditioned graph gen-
eration for road network extraction,” arXiv preprint
arXiv:1910.14388, 2019.

[3] A. Babu, A. Shrivastava, A. Aghajanyan, A. Aly, A. Fan,
and M. Ghazvininejad, “Non-autoregressive semantic pars-
ing for compositional task-oriented dialog,” arXiv preprint
arXiv:2104.04923, 2021.

[4] M. Suhail, A. Mittal, B. Siddiquie, et al., “Energy-based
learning for scene graph generation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 13 936–13 945.

[5] C. Brouard, H. Shen, K. Dührkop, F. d’Alché-Buc, S.
Böcker, and J. Rousu, “Fast metabolite identification with
input output kernel regression,” Bioinformatics, vol. 32,
no. 12, pp. i28–i36, 2016.

[6] L. Brogat-Motte, R. Flamary, C. Brouard, J. Rousu, and
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A. Additional details about PMFGW

This section is organised as follows. First we discuss existing discrepancy to compare graphs of different sizes and why

we believe that they are not suited for SGP A.1. Then, we highlight the relationship between PMFGW and other existing

metrics A.2. Next, we describe the solver we use to compute the PMFGW optimal transport plan A.3. Finally, we introduce

a toy example illustrating the loss landscape of PMFGW on a toy example A.4

A.1. Comparing graphs of arbitrary size

The GM and FGW described in section 2.1 cannot directly be used to compare graphs of different sizes but several lines of

work have been proposed to address this limitation.

The first approach is to fully leverage Optimal Transport by introducing weights on the graph nodes. The Fused-Gromov-

Wasserstein distance can then be used to compare graphs of different sizes as long as they have the same total mass [13].

However, this approach raises specific issues. In scenarios where masses are uniform, nodes in larger graphs receive

lower mass which might not be suitable for practical applications. Conversely, employing non-uniform masses complicates

interpretation, as decoding a discrete object from a weighted one becomes less straightforward. Those issues can be mitigated

by leveraging Unbalanced Optimal Transport (UOT) [17], which relaxes marginal constraints, allowing for different total

masses in the graphs. Unfortunately, UOT introduces several additional regularization parameters that are difficult to tune,

especially in scenarios like SGP, where model predictions exhibit wide variability during training.

Another close line of work is Partial Matching (PM) [18], which consists in matching a small graph g to a subgraph of the

larger graph ĝ. In practice, this can be done by adding dummy nodes to g through some padding operator P after which

one can directly compute PM(ĝ, g) = GM(ĝ,P(g)) [10]. However, PM is not suited to train a model as the learned model

would only predict a graph that includes the target graph, with no indication of which subgraph is actually the correct

prediction. We discuss the relationship between PMFGW and Partial Matching in the next section.

A.2. Relation to existing metrics

PMFGW is an asymmetric extension of FGW [19] suited for comparing a continuous predicted graph with a padded target.

The extension is achieved by adding (1) a novel term to quantify the prediction of node padding, and (2) the partial masking

of the components of the second and third terms to reflect padding. It should be noted that in contrast to what is usually

done in OT, the node masking vectors (h and ĥ) are not used as a marginal distribution but directly integrated into the

loss. In that sense, the additional node masking term is very similar to the one of OTLp [20] that proposed to use uniform

marginal weight and move the part that measures the similarity between the distribution weights in an additional linear term.

However, OTLp is restricted to linear OT problems and does not use the marginal distributions as a masking for other terms

as in PMFGW.

PMFGW also relates to Partial GM/GW [18] as both metrics compare graphs by padding the smallest one with zero-cost

dummy nodes. The critical difference lies in the new vector ĥ which predicts which sub-graphs are activated, i.e., should be

matched to the target. To be precise, PMFGW and Partial Fused Gromov Wasserstein (PFGW) are equal if and only if lh is

set to 0. We prove this statement and provide a formal definition of PFGW in C.3. Note that setting lh = 0 would obviously

be undesirable since the vector ĥ would disappears from the loss and the model would not be trained to predict it correctly.

In particular, this would prevent the model from learning to predict the size of the target graph.

A.3. PMFGW solver

Computing PMFGW requires solving the inner optimization problem presented in Equation (4) whose objective rewrites

⟨T,U⟩+ ⟨T,L⊗T⟩

where U is a fixed matrix, L a fixed tensor and ⊗ the tensor matrix product. A standard way of solving this problem [21]

is to use a conditional gradient (CG) algorithm which iteratively solves a linearization of the problem. Each step of the

algorithm requires solving a linear OT/Matching problem of cost ⟨T,C(k)⟩ where the linear cost C(k) = U+ L⊗T(k) is

updated at each iteration. The linear problem can be solved with a Hungarian solver with cost O(M3) while the overall

complexity of computing the tensor product L⊗T(k) is theoretically O(M4). Fortunately, this bottleneck can be avoided

thanks to a O(M3) factorization (Proposition 1) that extend a result from Peyré et al. [22].
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A.4. Illustrating PMFGW On A Toy Example

On the one hand, we consider a target graph of size 2, g = (F2,A2) where

F2 =

(

f1
f2

)

;A2 =

(

0 1
1 0

)

for some node features f1 and f2. For M = 3 the padded target is P(g) = (h,F,A) where

h =





1
1
0



 ;F =





f1
f2
−



 ;A =





0 1 −
1 0 −
− − −



 .

On the other hand, we consider a predicted graph ŷa,h = (ĥ, F̂, Â) that has the form

ĥ =





1
h

1− h



 ; F̂ =





f1
f2
f2



 ; Â =





0 a 1− a
a 0 0

1− a 0 0





for some a, h ∈ [0, 1]. The loss between the prediction and the (padded) target is

Ltrain(a, h) = PMFGW(ŷa,h,P3(g))

We are interested in the landscape of this loss. First of all, it appears that ŷ1,1 and ŷ0,0 and P(g) are isomorphic,

thus we get two global minima Ltrain(1, 1) = Ltrain(0, 0) = 0. Going into greater detail, it can be shown that for

ℓh(a, b) = ℓA(a, b) = (a− b)2 we have the following expression

Ltrain(a, h) = min

(

(1− a)2 +
2

3
(1− h)2; a2 +

2

3
h2

)

and the optimal transport plan is the permutation (1, 2, 3) when (1− a)2 + 2
3 (1− h)2 < a2 + 2

3h
2 and (1, 3, 2) otherwise.

In this toy example, the optimal transport plan is always a permutation.

At inference time, we could similarly be interested in the edit distance between the (discrete) prediction and the target

Leval(a, h) = ED(P−1
3 T (ŷa,h),g).

Once again, the expression can be computed explicitly

Leval(a, h) = 1[a < 0.5 and h > 0.5] + 1[a > 0.5 and h < 0.5]

We provide in Figure 4 an illustration of the edit distance and the proposed loss that is clearly a continuous and smoothed

version of the edit distance which allows for learning the NN parameters.

0.0 0.5 1.0
0.0

0.5

1.0

h

0.0

0.2

0.4

0.6

0.0 0.5 1.0
0.0

0.5

1.0

h

0.0
0.2
0.4
0.6
0.8
1.0

Figure 4: Heatmap of Ltrain (left) and Leval (right). The red line represents the transition between the regime where the

optimal plan is the permutation (1, 2, 3) and that where it is (1, 3, 2). In both cases, the optimal plan is a permutation.
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B. Additional details about the architecture

B.1. Overview

The architecture that we use to parameterize f : X → Ŷ (left part of Figure 2) is composed of three modules , namely the

encoder that extracts features from the input, the transformer that convert these features into M nodes embeddings, that

are expected to capture both feature and structure information, and the graph decoder that predicts the properties of our

output graph, i.e., (ĥ, F̂, Â). As we will discuss later, the proposed architecture draws heavily on that of Relationformer [7]

since the latter has been shown to yield to state-of-the-art results on the Image2Graph task.

Encoder The encoder extracts k feature vectors in R
de from the input. Note that k is not fixed a priori and can depend on

the input (for instance sequence length in case of text input). This is critical for encoding structures as complex as graphs

and the subsequent transformer is particularly apt at treating this kind of representation. By properly designing the encoder,

we can accommodate different types of input data. We describe how to handle images, text, graphs, and vectors and provide

general guidelines to address other input modalities in the next section.

Transformer This module takes as input a set of feature vectors and outputs a fixed number of M node embeddings.

This resembles the approach taken in machine translation, and we used an architecture based on a stack of transformer

encoder-decoders, akin to [7].

Graph decoder This module decodes a graph from the set of node embeddings Z = [z1, . . . , zM ]T using the following

equation:

ĥi = σ(MLPm(zi)), F̂i = MLPf (zi), Âi,j = σ(MLP2
s(MLP1

s(zi) +MLP1
s(zj))) (6)

where σ is the sigmoid function and MLPm, MLPf , MLPk
s are multi-layer perceptrons heads corresponding to each

component of the graph (mask, features, structure). The adjacency matrix is expected to be symmetric which motivate us to

parameterize it as suggested by [23].

Positioning with Relationformer As discussed above, the architecture is similar to the one proposed in Relationformer [7],

with two modifications: (1) we use a symmetric operation with a sum to compute the adjacency matrix while Relationformer

uses a concatenation that is not symmetric; (2) we investigate more general encoders to enable graph prediction from data

other than images. However, as stated in the previous section, the main originality of our framework lies in the design of the

PMFGW loss. Interestingly Relationformer uses a loss that presents similarities with FGW but where the matching is done

on the node features only, before computing a quadratic-linear loss similar to PMFGW. In other words, they solve a bi-level

optimization problem, where the plan is computed on only part of the information, leading to potentially suboptimal results

on heterophilic graphs as demonstrated in the next section.

B.2. Encoding any input to graphs

Philosophy of the Any2Graph encoder Any2Graph is compatible with different types of inputs, given that one selects

the appropriate encoder. The role of the encoder is to extract a set of feature vectors from the inputs x i.e. each input is

mapped to a list of k feature vectors of dimension de where k is not necessarily fixed. This is critically different from

extracting a unique feature vector (k = 1). If k is set to 1, the rest of the architecture must reconstruct an entire graph from a

single vector, and the architecture is akin to that of an auto-encoder. In Any2Graph, we avoid this undesirable bottleneck by

opting for a richer (k > 1) and more flexible (k is not fixed) representation of the input. The k feature vectors are then fed

to a transformer which is well suited to process sets of different sizes. Since the transformer module is permutation-invariant

any meaningful ordering is lost in the process. To alleviate this issue, we add positional encoding to the feature vectors

whenever the ordering carries information. Finally, note that the encoder might highly benefit from pre-training whenever

applicable; but this goes beyond the scope of this paper.

We now provide a general description of the encoders that can be used for each input modality.

Images For Image2Graph task we use Convolutional Neural Networks (CNN) as suggested in [7]. From an input image of

shape h× w × c the CNN outputs a tensor of shape H ×W × C which is seen as H ×W feature vectors of dimension C.

The raw output of the CNN is reshaped and passed through a linear layer to produce the final output of shape H ×W × de.

Since the ordering of the H ×W features carries spatial information we add positional encoding accordingly.

9



A framework for differentiable Supervised Graph Prediction

Self-Attention

Input (Text) Set Of Features

A

Piece

Of

Text

Self-Attention

Set Of Features

Graph Neural
Network
(GNN)

Input (graph)

Graph Neural
Network
(GNN)

Input (graph) Set of Features

Set of Features

A

Piece

Of

Text

But

Longer

Input (Text)

Convolutionnal 
Neural  Network

(CNN)

Convolutionnal 
Neural  Network

(CNN)

Set Of Features

Set Of Features

Input (Image)

Input (Image)

Figure 5: Illustration of encoders extracting k features vectors for different input modalities. For text/fingerprint, k is the

number of input tokens. For graphs, k is the size of the input graph. For images, k depends on the resolution of the image

and the CNN kernel size.

Fingerprint/text For tasks where the input is a list of tokens (e.g. Text2Graph or Fingerprint2Graph) we use the classical

NLP pipeline: each token is transformed into a vector by an embedding layer and the list of vectors is then processed by a

transformer encoder module. In text2graph the tokens ordering carries semantic meaning and positionnal encoding should be

added. On the contrary, in Fingerprint2Graph, the fingerprint ordering carries no information and the permutation invariance

of the transformer module is a welcomed property.

Graph For a graph2graph task (not featured in this paper) we would suggest using a Graph Neural Network (GNN) [24].

A GNN naturally extracts k feature vectors from an input graph, where k is the number of nodes in the input graph. No

positional encoding is required.

Vector We explore a Vect2Graph task in Appendix F. The naive encoder we use is composed of k parallel MLPs devoted to

the extraction of the k feature vectors. This approach is arguably simplistic and more suited encoders should be considered

depending on the type of data.

C. Formal Statements And Proofs

In this section, we write

PMFGW(ŷ,P(g)) = min
T∈πM

∑

i,j

Ti,jℓh(ĥi, hj) +
∑

i,j

Ti,jℓf (f̂i, fj)hj +
∑

i,j,k,l

Ti,jTk,lℓA(Âi,k, Aj,l)hjhl,

meaning that we absorb the normalization factors in the ground losses to lighten the notation.

Alternatively, we also consider the matrix formulation:

PMFGW(ŷ,P(g)) = min
T∈πM

⟨T,C⟩+ ⟨T,L⊗T⟩,

where Ci,j = ℓh(ĥi, hj) + ℓf (f̂i, fj)hj , Li,j,k,l = ℓA(Âi,k, Aj,l)hjhl and ⊗ is the tensor/matrix product.

10
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C.1. PMFGW fast computation

The following results generalize Proposition 1 of [22] so that it can be applied to the computation of PMFGW.

Proposition 4. Assuming that the ground loss than can decomposed as ℓ(a, b) = f1(a) + f2(b) − h1(a)h2(b), for any

transport plan T ∈ R
n×m and matrices A,W ∈ R

n×n and A′,W′ ∈ R
m×m, then the tensor product of the form

(L⊗T)i,i′ =
∑

j,j′

Tj,j′ℓ(Ai,j , A
′
i′,j′)Wi,jW

′
i′,j′

can be computed as

L⊗T = U1TW′T +WTUT
2 −V1TVT

2 ,

where U1 = f1(A) ·W, U2 = f2(A
′) ·W′, V1 = h1(A) ·W, V2 = h2(A

′) ·W′ and [·] is the point-wise multiplication.

Proof. Thanks to the decomposition assumption the tensor product can be decomposed into 3 terms:

(L⊗T)i,i′ =
∑

j,j′

Tj,j′f1(Ai,j)Wi,jW
′
i′,j′ +

∑

j,j′

Tj,j′f2(A
′
i′,j′)Wi,jW

′
i′,j′ −

∑

j,j′

Tj,j′h1(Ai,j)h2(A
′
i′,j′)Wi,jW

′
i′,j′ .

=
∑

j

f1(Ai,j)Wi,j

∑

j′

Tj,j′W
′
i′,j′ +

∑

j′

f2(A
′
i′,j′)W

′
i′,j′

∑

j

Tj,j′Wi,j −
∑

j

h1(Ai,j)Wi,j

∑

j′

Tj,j′h2(A
′
i′,j′)W

′
i′,j′ .

Introducing U1,U2,V1 and U2 as defined above, we write:

(L⊗T)i,i′ =
∑

j

(U1)i,j
∑

j′

Tj,j′W
′
i′,j′ +

∑

j′

(U2)i′,j′
∑

j

Tj,j′Wi,j −
∑

j

(V1)i,j
∑

j′

Tj,j′(V2)i′,j′ ,

=
∑

j

(U1)i,j(TW
′T )j,i′ +

∑

j′

(U2)i′,j′(WT )i,j′ −
∑

j

(V1)i,j(Tj,j′V
T
2 )j,i′ ,

which concludes that L⊗T = U1TW′T +WTUT
2 −V1TVT

2 .

Remark 1 (Computational cost). U1,U2,V1,V2 can be pre-computed for a cost of O(n2 +m2), after which L⊗T can

be computed (for any T) at a cost of O(mn2 + nm2).

Remark 2 (Kullback-Leibler divergence decomposition). The Kullback-Leibler divergence KL(p, q) = q log q
p
+ (1 −

q) log (1−q)
(1−p) , which we use as ground loss in our experiments satisfies the required decomposition given f1(p) = − log(p),

f2(q) = q log(q) + (1− q) log(1− q), h1(p) = log( 1−p
p

) and, h2(q) = 1− q

Remark 3. The tensor product that appears in PMFGW is a special case of this theorem that corresponds to n = m = M ,

Wi,j = 1 and W ′
i′,j′ = hi′hj′ . Thus, proposition 1 is a direct corollary.

C.2. PMFGW divergence properties

First, we provide below a more detailed version of Proposition 2

Proposition 5 (GI Invariance). For any m ≤ M , ŷ, ŷ′ ∈ Ŷ and g, g′ ∈ Gm, we have that

ŷ ∼ ŷ′, g ∼ g′ =⇒ PMFGW(ŷ,P(g)) = PMFGW(ŷ′,P(g′)).

Proof. We denote ŷ = (ĥ, F̂, Â) and P(g) = (h,F,A). Since ŷ and ŷ′ are isomorphic, there exist a permutation P ∈ σM

such that ŷ′ = (Pĥ,PF̂,PÂPT ). Moreover, the fact that g and g′ are isomorphic implies that P(g) and P(g′) are

isomorphic as well, thus there exist a permutation Q ∈ σM such that P(g′) = (Qh,QF,QAQT ). Plugging into the

PMFGW objective we get

11
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PMFGW(ŷ′,P(g′)) = min
T∈πM

∑

i,j

Ti,jℓh((Pĥ)i, (Qh)j) +
∑

i,j

Ti,jℓf ((PF̂)i, (QF)j)(Qh)j

+
∑

i,j,k,l

Ti,jTk,lℓA((PÂPT )i,k, (QAQT )j,l)(Qh)j(Qh)l

= min
T∈πM

∑

i,j

(PTTQ)i,jℓh(ĥi,hj) +
∑

i,j

(PTTQ)i,jℓf (f̂i, fj)hj

+
∑

i,j,k,l

(PTTQ)i,j(P
TTQ)k,lℓA(Âi,k, Aj,l)hjhl.

Denoting T̃ = PTTQ we have that

PMFGW(ŷ′,P(g′)) = min
T̃∈πM

∑

i,j

T̃i,jℓh(ĥi, hj) +
∑

i,j

T̃i,jℓf (f̂i, fj)hj

+
∑

i,j,k,l

T̃i,j T̃k,lℓA(Âi,k, Aj,l)hjhl

= PMFGW(ŷ,P(g)).

We now provide a more detailed version of Proposition 3

Definition 1. We say that ℓ : X̂ × X 7→ R is positive when for any x, y ∈ X̂ × X , ℓ(x, y) ≥ 0 with equality if and only if

x = y.

Proposition 6 (Positivity). Let us assume that ℓh : [0, 1]× {0, 1} 7→ R, ℓf : Rd × R
d 7→ R and ℓA : [0, 1]× {0, 1} 7→ R

are positive. Then we have that for any ŷ ∈ Ŷ, g ∈ G :

• i) PMFGW(ŷ,P(g)) ≥ 0

• ii) There is equality if and only if ŷ ∼ P(g)

• iii) In that case P−1T (ŷ) ∼ g

Proof. The direct implication of ii) is the only statement that is not trivial. First, let us show that if PMFGW(ŷ,P(g)) = 0,

the optimal transport T∗ is a permutation. Recall that any transport plan is a convex combination of permutations [25] i.e.

there exist λ1, ..., λK ∈]0, 1] and P1, ...,PK ∈ σM such that
∑K

k=1 λk = 1 and T∗ =
∑K

k=1 λkPk. Thus

0 = ⟨T∗,C⟩+ ⟨T∗,L⊗T∗⟩ (7)

=

K
∑

k=1

λk⟨Pk,C⟩+

K
∑

k=1

λ2
k⟨Pk,L⊗Pk⟩+

K
∑

k ̸=l

λkλl⟨Pk,L⊗Pl⟩. (8)

This is a sum of positive terms, thus all terms are null and in particular, for any k

0 = ⟨Pk,C⟩+ ⟨Pk,L⊗Pk⟩. (9)

Thus all the Pk are optimal transport plans. In the following, we chose one of them and denote it P. Moving back to the

developed formulation of PMFGW we get that

12
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0 = PMFGW(ŷ,P(g)) =
∑

i,j

Pi,jℓh(ĥi, hj) +
∑

i,j

Pi,jℓf (f̂i, fj)hj +
∑

i,j,k,l

Pi,jPk,lℓA(Âi,k, Aj,l)hjhl.

Once again this is a sum of positive terms thus for all i, j, k, and l

0 = Pi,jℓh(ĥi, hj) = Pi,jℓf (f̂i, fj)hj = Pi,jPk,lℓA(Âi,k, Aj,l)hjhl

and thus

0 = ℓh((P
T ĥ)j , hj) = ℓf ((P

T F̂)j , Fj)hj = ℓA((P
T ÂP)j,l, Aj,l)hjhl.

And from the positivity of ℓh, ℓf and ℓA we get that: PT ĥ = h, PT F̂[: m] = F[: m] and PT ÂP[: m, : m] = A[: m, : m].

Since the nodes i > m are not activated, by abuse of notation we simply write PT F̂ = F and PT ÂP = A. This concludes

that ŷ ∼ P(g).

C.3. PMFGW and Partial Fused Gromov Wasserstein

Following [18], we define an OT relaxation of the Partial Matching problem.

For a large graph ĝ = (F̂, Â) ∈ GM and a smaller graph g = (F,A) ∈ Gm, the set of transport plan transporting a subgraph

of ĝ to g can be defined as

πM,m = {T ∈ [0, 1]M×m | T1m ≤ 1M ,TT
1M = 1m,1T

MT1m = m}

and the associated partial Fused Gromov Wasserstein distance is

partialFGW(ĝ, g) = min
T∈πM,m

M
∑

i=1

m
∑

j=1

Ti,jℓF (f̂i, fj) +

M
∑

i,k=1

m
∑

j,l=1

Ti,jTk,lℓA(Ai,k, Aj,l).

In the following, we show that partialFGW(ĝ, g) is equivalent to the padded Fused Gromov Wasserstein distance defined as

paddedFGW(ĝ, g) = min
T∈πM

M
∑

i=1

m
∑

j=1

Ti,jℓF (f̂i, fj) +
M
∑

i,k=1

m
∑

j,l=1

Ti,jTk,lℓA(Ai,k, Aj,l).

Lemma 4. Any transport plan T ∈ πM has the form T =
(

Tp T2

)

where Tp is a partial transport plan i.e. Tp ∈ πM,m.

Proof. Let us check that Tp is in πM .

• 1M = T1M = Tp1m +T21M−m ≥ Tp1m

• 1M = TT
1M =

(

TT
p 1M

TT
2 1M

)

. And thus TT
p 1M = 1m

• From the previous we immediately get that 1T
MTp1m = m

Lemma 5. For any partial transport plan Tp ∈ πM,m there exist T2 ∈ R
M×(M−m) such that T =

(

Tp T2

)

∈ πM .
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Proof. Let us define p = 1M − Tp1m. This is the mass of the larger graph that is not matched by Tp. Note that since

Tp ∈ πM,m we have that p ≥ 0. Thus we can set T2 = 1
M−m

p1T
M−m i.e. we spread the remaining mass uniformly across

the padding nodes. Let us check that T =
(

Tp T2

)

∈ πM is indeed a valid transport plan.

• T1M = Tp1m +T21M−m = Tp1m + p = 1m

• TT
1M =

(

TT
p 1M

TT
2 1M

)

=

(

1m
1

M−m
(pT1M )1M−m

)

=

(

1m
1

M−m
(1T

M1M − 1
T
mTT

p 1M )1M−m

)

=

(

1m

1M−m

)

= 1M

Proposition 7. paddedFGW and partialFGW are equal and any optimal plan T∗ of paddedFGW has the form T∗ =
(T ∗

p , T2) where T ∗
p is optimal for partialFGW.

Proof. Follows directly from the two previous lemmas.

Remark 6. The proposed PMFGW is equivalent to paddedFGW (and thus to partialFGW) if and only if ℓh is set to a

constant.

Remark 7. The algorithm proposed to compute PMFGW can be applied to paddedFGW and thus to partialFGW. Hence,

we have indirectly introduced an alternative to the algorithm of [18]. Further comparisons are left for future work.

D. Training Any2Graph

D.1. Learning dynamics

The PMFGW loss is composed of three terms, two of them are linear and account for the prediction of the nodes and their

features, one is quadratic and accounts for the prediction of edges. The last term is arguably the harder to minimize for the

model, as a consequence, we observe that the training performs best when the two first terms are minimized first which

then guides the minimization of the structure term. In other words, the model must first learn to predict the nodes before

addressing their relationship. Fortunately, this behavior naturally arises in Any2Graph as long as αA, the hyperparameter

controlling the importance of the quadratic term, is not too large. This is illustrated in figure 6.
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Figure 6: First epochs of training for Coloring. The test values of the 3 components of the loss are reported. On the left

(resp. right) α is set to [1, 1, 1] (resp. [1,1,10]). In the first scenario, the first two terms of the loss are learned very fast and

the structure is optimized next. In the second scenario, setting αA = 10 prevents this desirable learning dynamic.

D.2. Feature Diffusion

For the datasets where many nodes in the graphs share the same features (QM9 and GDB13) the good prediction of the nodes

and their features is not enough to guide the prediction of the edges and the desirable dynamic introduced above does not

occur. This motivates us to perform Feature Diffusion (FD) that is replacing the node feature vector F by the concatenation

[F,AF]
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Table 3: Performances of the Relationformer and Any2Graph with (+FD) and without feature diffusion.

DATASET MODEL
GRAPH LEVEL EDGE LEVEL NODE LEVEL ACC.

EDIT DIST. ↓ GI ACC. ↑ PMFGW ↓ PREC. ↑ REC. ↑ NODE ↑ SIZE ↑

QM9

RELATIONFORMER 9.15 0.05 0.48 21.42 4.77 99.28 91.80
RELATIONFORMER + FD 3.80 9.95 0.22 86.07 73.31 99.34 96.0
ANY2GRAPH 3.44 7.50 0.21 86.21 77.27 99.26 93.65
ANY2GRAPH + FD 2.13 29.85 0.14 90.19 88.08 99.77 95.45

GDB13

RELATIONFORMER 11.40 0.00 0.43 81.96 31.49 97.77 97.45
RELATIONFORMER + FD 8.83 0.01 0.29 84.14 55.89 97.57 98.65
ANY2GRAPH 7.45 0.05 0.22 87.20 60.41 99.41 96.15
ANY2GRAPH + FD 3.63 16.25 0.11 90.83 84.86 99.80 98.15
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Figure 7: First epochs of training for GDB13. The test values of the 3 components of the loss are reported. On the left, we

perform FD before training, on the right, we leave node features unchanged. We observe that the feature loss decreases

slightly slower with FD (the features are more complex) but the minimization of the structure term is largely accelerated.

before training. The diffused node features carry a portion of the structural information. This makes the node feature term

slightly harder to minimize but in turn, the subsequent prediction of the structure is much easier and we recover the previous

dynamic. This is illustrated in figure 7. We observe that both Any2Graph and Relationformer benefits from such procedure,

as reported in table 3

D.3. Optimal Transport Relaxation

We adopted the OT point of view when designing Any2Graph. In practice, this means that we do not project the OT plan

back to the set of permutations with a Hungarian matcher before plugging it in the loss as in [26]. Testing the effect of

adding this extra step we observed a 5% to 10% increase of the edit distance across datasets (table 4) along with a more

unstable training curve (figure 8). This confirms that a continuous transport plan provides a slightly more stable gradient

than a discrete permutation, which aligns with the findings of [27] on the similar topic of object detection.

Dataset Coloring Toulouse USCities QM9 GDB13

ED without Hungarian 0.20 0.13 1.86 2.13 3.63

ED with Hungarian 0.23 0.15 2.03 2.08 3.86

Table 4: Effect of adding Hungarian Matching on the performances evaluated with the test edit distance. We observe, that

Hungarian Matching slightly decreases the performances on all datasets but QM9.
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Figure 8: First epochs of training for GDB13 with and without projection of the optimal transport plan to the set of

permutations with Hungarian matching. Hungarian matching slightly decreases the performances and induces more

oscillations of the loss, which could be explained by a less stable gradient.

E. Experimental setting

E.1. Datasets

In this paper, we consider five datasets for which we provide a variety of statistics in Table 5. Coloring is a new synthetic

dataset which we describe in detail in Appendix F. Toulouse (resp. USCities) is a Sat2Graph dataset [2] where the inputs

are images of size 64 × 64 (resp. 128 × 128). QM9 [28] and GDB13 [29] are datasets of small molecules which we

use to address the Fingerprint2Graph task. Here, we compute a fingerprint representation of the molecule and attempt to

reconstruct the original molecule from this loss representation. Following [30] we use the Morgan Radius-2 fingerprint

[31] which represents a molecule by a bit vector of size 2048, where each bit represents the presence/absence of a given

substructure. Finally, we feed our model with the list of non-zeros bits, i.e. the list of substructures (tokens) present in the

molecule. The list of substructures has a min/average/max length of 2/21/27 for QM9 and 7/29/36 for GDB13.

Table 5: Table summarizing the properties of the datasets considered.

DATASET
SIZE NODES EDGES

INPUT MODALITY NODE FEATURES
(TRAIN/TEST/VALID) (MIN/MEAN/MAX) (MIN/MEAN/MAX)

Coloring 100K/10K/10K 4/7.0/10 3/10.9/22 RGB IMAGES 4 CLASSES (COLORS)
Toulouse 80K/10K/10K 3/6.1/9 2/5.0/14 GREY IMAGES 2D POSITIONS

USCities 130K/10K/10K 2/7.5/17 1/5.8/20 GREY IMAGES 2D POSITIONS

QM9 120K/10K/10K 1/8.8/9 0/9.4/13 LIST OF TOKENS 4 CLASSES (ATOMS)
GDB13 1300K/70K/70K 5/12.7/13 5/15.15/18 LIST OF TOKENS 5 CLASSES (ATOMS)

E.2. Competitors

We compare Any2Graph, to our direct end-to-end competitor Relationformer [7] that has shown to be the state-of-the-art

method for Image2Graph. For a fair comparison, we use the same architecture (presented in Figure 2) for both approaches

so that the only difference is the loss. We apply feature diffusion both to Any2Graph and Relationformer. Moreover, we also

compare with a surrogate regression approach (FGW-Bary-ILE) based on FGW barycenters [6] whose prediction function

writes as:

f(x) = argmin
y∈Ŷm

K
∑

k=1

αk(x;W )FGW2
2(y, ȳk), (10)

where each ȳk denotes the kth template graph and αk the kth weight function. The templates are the training samples and

weight function αk are learned by sketched kernel ridge regression [32], [33] with gaussian kernel. For fair comparison, we

also integrated feature diffusion to FGW-Bary-ILE.
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E.3. Metrics

In the following, we provide a detailed description of the metrics reported in table 1.

Graph Level First we report the PMFGW loss between continuous prediction ŷ and padded target P(g). For this

computation, we set α to the values displayed in table 6.

PMFGW(ŷ,P(g))

Then we report the graph edit distance [15] between predicted graph P−1T ŷ and target g which we compute using Pygmtools

[34]. All edit costs (nodes and edges) are set to 1. Note that for Toulouse and USCities, node labels are 2D positions and we

consider two nodes features to be equal (edit cost of 0) whenever the L2 distance is smaller than 5% than the image width.

EDIT(P−1T ŷ, g)

Finally, we report the Graph Isomorphism Accuracy GI ACC that is

GI ACC(ŷ, g) = 1[EDIT(P−1T ŷ, g) = 0]

Node level Recall that for a prediction ŷ = (ĥ, F̂, Â) the size of the predicted graph is m̂ = ||ĥ > 0.5||1. Denoting m the

size of the target graph we report the size accuracy:

SIZE ACC(ŷ, g) = 1[m̂ = m].

The remaining node and edge-level metrics need the graphs to have the same number of nodes. To this end, we select the m
nodes with the highest probability ĥi, resulting in a graph ĝ = (F̃, Ã) with ground truth size. This is equivalent to assuming

that the size of the graph is well predicted. Then we use Pygmtools to compute a one-to-one matching σ between the nodes

of ĝ and g that can be used to align graphs (we use the matching that minimizes the edit distance). In the following, we

assume that g and ĝ have been aligned. We can now define the node accuracy NODE ACC as

NODE ACC(ĝ, g) =
1

m

m
∑

i=1

1[F̃i = Fi],

which is the average number of node features that are well predicted.

Edge level Since the target adjacency matrices are typically sparse, the edge prediction accuracy is a poorly informative

metric. To mitigate this issue we report both Edge Precision and Edge Recall :

EDGE PREC.(ĝ, g) =

∑m

i,j=1 1[Ãi,j = 1, Ai,j = 1]
∑m

i,j=1 1[Ãi,j = 1]

EDGE PREC.(ĝ, g) =

∑m

i,j=1 1[Ãi,j = 1, Ai,j = 1]
∑m

i,j=1 1[Ai,j = 1]

All those metrics are then averaged other the test set.

E.4. Training And Architecture Hyperparameters

Encoder We follow the guidelines established in B.2 for the choice of the encoder. In particular, all encoders for Coloring,

Toulouse and USCities are CNNs. The encoder for Coloring is a variation of Resnet18 [35], where we remove the first

max-pooling layer and the last two blocks to accommodate for the low resolution of our input image. We proceed similarly
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for Toulouse except that we only remove the last block. For USCities we keep the full Resnet18. For the Fingerprint2Graph

datasets, we use a transformer encoder. In practice, this transformer encoder and that of the encoder-decoder module are

merged to avoid redundancy. All encoders end with a linear layer projecting the feature vectors to the hidden dimension de.

Transformer We use the Pre-LN variant [36] of the transformer encoder-decoder model as described in [37]. To reduce

the number of hyperparameters, encoder and decoder modules both consist of stacks of Nτ layers, with Nh heads and the

hidden dimensions of all MLP is set to 4× de.

Decoder All MLPs in the decoder module have one hidden layer.

Optimizer We train all neural networks with the Adam optimizer [38], learning rate η, 8000 warm-up steps and all other

hyperparameters set to default values. We also use gradient clipping with a max norm set to 0.1.

All hyperparameters are given in Table 6.

Table 6: Hyperparameters used to train our models. We also report the total training time on a NVIDIA V100.

DATASET
PMFGW ARCHITECTURE OPTIMIZATION

αH αF αA de Nτ Nh M η BATCHSIZE STEPS TIME

Coloring 1 1 1 256 3 8 12 3E-4 128 75K 4H

Toulouse 1 5 1 256 4 8 12 1E-4 128 100K 8H

USCities 2 5 0.5 256 4 8 20 1E-4 128 150K 14H

QM9 1 1 1 128 3 4 12 3E-4 128 150K 6H

GDB13 1 1 1 512 5 8 15 3E-4 256 150K 24H

F. Coloring: a new synthetic dataset for benchmarking SGP

We introduce Coloring, a new synthetic dataset well suited for benchmarking SGP methods. The main advantages of

Coloring are:

• The output graph is uniquely defined from the input image.

• The complexity of the task can be finely controlled by picking the distribution of the graph sizes, the number of node

labels (colors) and the resolution of the input image.

• One can generate as many pairs (inputs, output) as needed to explore different regimes, from abundant to scarce data.

To generate a new instance of Coloring, we apply the following steps:

Figure 9: Illustration of the five steps to follow to generate a new instance of Coloring.

• 0) Sample the number of nodes (graph size) m. In this paper, we sample uniformly on some interval [Mmin,Mmax].

• 1) Sample m centroids on [0, 1]× [0, 1]. In this paper, we sample the centroids as uniform i.i.d. variables.

• 2) Partition [0, 1]× [0, 1] (the image) in a Voronoi diagram fashion [39]. In this paper, we use the L1 distance. and an

image of resolution H ×H .
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• 3) Create the associated graph i.e. each node is a region of the image and two nodes are linked by an edge whenever

the two associated regions are adjacent.

• 4) Color the graph with K > 4 colors. In this paper, we use K = 4. A coloring is said to be valid whenever no adjacent

nodes have the same color. Note that graph coloring is known to be NP-complete [40].

• 5) Color the original image accordingly.

As highlighted above, Coloring is a flexible dataset. Beyond the default dataset simply referred as Coloring we also explore

2 variations in our experiments. ColoringBig is a more challenging dataset that features larger graphs. ColoringVect is a

variation of Coloring where the input image is flattened and treated as a vector allowing us to explore a synthetic Vect2Graph

task. The properties of these datasets, along with the performances of Any2Graph are reported in table 7. We hope that

Coloring will be used to benchmark future SGP methods.

Table 7: Summary of the properties of the 3 variations of Coloring considered in this paper. We also report the test edit

distance achieved by the different models. For FGWBary we report the best performing variant that is ILE for ColoringVect

and NN forColoring. None scales to ColoringBig.

DATASET MMIN MMAX H NUMBER OF SAMPLES ANY2GRAPH RELATIONFORMER FGWBARY-NN

ColoringVect 4 6 16 100K 0.46 1.40 2.09

Coloring 6 10 32 100K 0.20 5.47 6.73

ColoringBig 10 15 64 200K 1.01 8.91 N.A.

G. Additional Qualitative Results

G.1. Out of distribution performances

We tested if, once trained on Toulouse dataset, the predictive model is able to cope with out-of-distribution data. Figure 10

shows that this is the case on these toy images, that are not related to satellite images or road maps. We leave for future work

the investigation of this property.

Figure 10: Any2Graph trained on Toulouse performing on out-of-distribution inputs. Input images are displayed on top row

and prediction in the bottom row.
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G.2. Qualitative results on COLORING

Input Target Any2Graph Relationformer FGWBary-ILE FGWBary-NN

Figure 11: Graph prediction on the Coloring dataset.
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G.3. Qualitative results on QM9
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Figure 12: Graph prediction on the QM9 dataset.

21



A framework for differentiable Supervised Graph Prediction

G.4. Qualitative results on GDB13
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Figure 13: Graph prediction on the GDB13 dataset.
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G.5. Qualitative results on TOULOUSE

Input Target Any2Graph Relationformer FGWBary-NN FGWBary-ILE

Figure 14: Graph prediction on the Toulouse dataset.
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G.6. Qualitative results on USCities

Input Target Any2Graph Relationformer

Figure 15: Graph prediction on the USCities dataset.
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