
End-to-end Differentiable Clustering with Associative Memories

Bishwajit Saha 1 Dmitry Krotov 2 Mohammed J. Zaki 1 Parikshit Ram 2 3

Abstract

Clustering is a widely used unsupervised learn-

ing technique involving an intensive discrete opti-

mization problem. Associative Memory models

or AMs are differentiable neural networks defin-

ing a recursive dynamical system, which have

been integrated with various deep learning archi-

tectures. We uncover a novel connection between

the AM dynamics and the inherent discrete assign-

ment necessary in clustering to propose a novel

unconstrained continuous relaxation of the dis-

crete clustering problem, enabling end-to-end dif-

ferentiable clustering with AM, dubbed ClAM.

Leveraging the pattern completion ability of AMs,

we further develop a novel self-supervised clus-

tering loss. Our evaluations on varied datasets

demonstrate that ClAM benefits from the self-

supervision, and significantly improves upon both

the traditional Lloyd’s k-means algorithm, and

more recent continuous clustering relaxations (by

upto 60% in terms of the Silhouette Coefficient).

1. Introduction

Clustering is a fundamental unsupervised technique used to

analyze and organize large amounts of data based on their

similarities. Various formulations and algorithms have been

studied to identify an efficient clustering of the data. Among

them k-means (MacQueen, 1967), Spectral Clustering (Do-

nath & Hoffman, 1973), Hierarchical Clustering (Johnson,

1967), Density-based Clustering (Ester et al., 1996), and

Expectation Maximization (Dempster et al., 1977) have

been widely used. However, these formulations are compu-

tationally expensive involving an intensive combinatorial

task due to their discrete nature and lack of differentiability:

for example, exact k-means is NP-hard (Dasgupta, 2008),

though approximations can be efficient. To address this

limitation, recent approaches have focused on deep cluster-
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ing, which combines representation learning and clustering

while utilizing continuous relaxation of the discrete assign-

ment problem (Ren et al., 2022; Zhou et al., 2022). However,

This relaxation replaces the discrete assignment with partial

cluster assignments, which violates a fundamental premise

of clustering – each point belongs to only one cluster. Addi-

tionally, to the best of our knowledge, there is currently no

differentiable clustering scheme that can seamlessly lever-

age the stochastic gradient descent or SGD (Nemirovski

et al., 2009) based optimization frameworks (Duchi et al.,

2011; Kingma & Ba, 2014) for unconstrained optimization

while preserving the discrete nature of clustering. We be-

lieve that the problem of clustering can benefit from utilizing

SGD based solutions and to that end, we look for ideas in a

very distant field of associative memories.

Recently, traditional associative memory or AM mod-

els (Hopfield, 1982; 1984) have been reformulated to signifi-

cantly increase their memory storage capacity and integrated

with modern deep learning techniques (Krotov & Hopfield,

2016; Ramsauer et al., 2020; Krotov & Hopfield, 2021;

Krotov, 2021; 2023). These novel models, called Dense

Associative Memories, are fully differentiable systems capa-

ble of storing a large number of multi-dimensional vectors,

called patterns or “memories”, in their synaptic weights. We

believe that this ability to learn synaptic weights of the AM

in an end-to-end differentiable manner together with the dis-

crete assignment (association) of each data point to exactly

one memory makes AM uniquely suited for the task of dif-

ferentiable clustering. Specifically, we make the following

contributions:

▶ We develop a flexible mathematical framework for

clustering with AM or ClAM, which is a novel contin-

uous unconstrained relaxation of the discrete optimiza-

tion problem of clustering that allows for clustering in an

end-to-end differentiable manner while maintaining

the discrete cluster assignment throughout the training,

with linear time cluster assignment.

▶ We leverage the pattern completion capabilities of AMs

to develop a differentiable self-supervised loss that

improves the clustering quality.

▶ We empirically demonstrate that ClAM is able to consis-

tently improve upon k-means by upto 60%, while being

competitive to spectral and agglomerative clustering, and

producing insightful interpretations.
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2. Associative Memories for Clustering

In this section, we present (i) the mathematical framework

for ClAM, (ii) motivate its suitability for clustering, and

(iii) present a way of learning the memories for clustering.

2.1. Associative memories: Mathematical Framework

In a d-dimensional Euclidean space, consider M memories

ρµ ∈ R
d, µ ∈ [M ] ≜ {1, . . . ,M} (we will discuss later

how the memories are learned). The critical aspects of this

mathematical framework are the energy function and the

attractor dynamics (Krotov & Hopfield, 2021; Millidge

et al., 2022). A suitable energy for clustering should be

a continuous function of a point (or a particle) v ∈ R
d.

Additionally, the energy should have M local minima, cor-

responding to each memory. Finally, as a particle progres-

sively approaches a memory, its energy should be primarily

determined by that single memory, while the contribution of

the remaining M − 1 memories should be small. An energy

function satisfying these requirements is given by

E(v) = −
1

β
log

(∑
µ∈[M ]

exp(−β∥ρµ − v∥2)

)
(1)

with a scalar β > 0 interpreted as an inverse “temperature”.

As β grows, the exp(·) in equation 1 ensures that only the

leading term remains significant, while the remaining M−1
terms are suppressed. The energy function, in this limit, is

represented by a parabola centered on the nearest memory,

dividing the space into M basins of attraction. The attrac-

tor dynamics control how v moves in the space over time,

via dv/dt, while ensuring that energy decreases. That is

dE(v)/dt < 0, which ensures that a particle convergences

to a local minimum. The particle dynamics is described by

gradient descent on the energy landscape:

τ
dv

dt
= −

1

2
∇vE =

∑

µ∈[M ]

(ρµ−v) σ(−β∥ρµ−v∥
2) (2)

where τ > 0 is a characteristic time constant, describing

how quickly the particle moves on the energy landscape,

and σ(·) is the softmax function over the scaled distances

to the memories. This is guaranteed to reduce the energy

dE(v)

dt

(a)
= ∇vE(v) ·

dv

dt

(b)
= −2τ

∥∥∥dv
dt

∥∥∥
2 (c)

≤ 0 (3)

where (a) is the chain rule, (b) follows from equation 2, and

the equality in (c) implying local stationarity. A valid update

δt+1 for the point v from state vt to vt+1 = vt + δt+1 at a

discrete time-step t+ 1 is via finite differences:

δt+1 =
dt

τ

∑
µ∈[M ]

(ρµ − vt) σ(−β∥ρµ − vt∥2) (4)

Given a dataset of points S, for each point v ∈ S one can

corrupt it with some noise to produce a distorted point ṽ.

This serves as an initial state of the AM network v0 ← ṽ.

The AM dynamics is defined by the learnable weights

ρµ, µ = 1, . . . ,M , which also correspond to the fixed

points of the dynamics (memories). The network evolves

in time for T recursions according to equation 4, where T
is chosen to ensure sufficient convergence to a fixed point.

The final state vT is compared with the uncorrupted v to

define the loss function

L =
∑

v∈S
∥v − vT ∥2, where v0 ← ṽ (5)

which is minimized with backpropagation through time with

respect to the AM parameters ρµ.

2.2. AM as a differentiable discrete argmin solver

Consider the original k-means objective with a dataset S ⊂
R

d, where we learn k prototypes R ≜ {ρµ, µ ∈ [k]} with

[k] ≜ {1, . . . , k} by solving the following problem:

min
R

∑

x∈S

∥x− ρµ⋆
x
∥2, s.t. µ⋆

x
= argmin

µ∈[k]

∥x− ρµ∥
2 (6)

The discrete selection of µ⋆
x

(for each x) makes equation 6

a combinatorial optimization problem that cannot directly

be solved via (stochastic) gradient descent. A common

continuous relaxation of this problem is as follows:

min
R

∑
x∈S

∑
µ∈[k]

wµ(x) ∥x− ρµ∥
2 (7)

where (usually) wµ(x) ∈ [0, 1] and
∑

µ∈[k] wµ(x) =

1 ∀x ∈ S. Hence, these weights {wµ(x), µ ∈ [k]} define a

probability over the k prototypes, and are designed to put

the most weight on the closest prototype ρµ⋆
x

, and as small

a weight as possible on the remaining prototypes. Other

weighting functions have been developed with similar prop-

erties (Xie et al., 2016), and essentially utilize a weighted

sum of distances to the learned prototypes, resulting in some-

thing different in essence to the discrete assignment µ⋆
x

in

the original problem (equation 6). Another subtle point is

that this soft weighted assignment of any x ∈ S across

all prototypes at training time does not match the hard

cluster assignment to the nearest prototype at inference,

introducing an incongruity between training and inference.

We propose a novel alternative continuous relaxation to

the discrete k-means problem leveraging the AM dynamics

(§2.1) that preserves the discrete assignment in the k-means

objective. Given the prototypes (memories) R = {ρµ, µ ∈
[k]}, the dynamics (equation 2) and the updates (equation 4)

ensure that any example (particle) x ∈ R
d will converge to

exactly one of the prototypes ρµ̂x
corresponding to a single

basin of attraction. Furthermore, for appropriate β, µ̂x

matches the discrete assignment µ⋆
x

in the k-means objective

(equation 6). This implies that, for appropriately set β and T ,

xT ≈ ρµ⋆
x

, allowing us to replace the desired per-example

2
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R = {ρ1,ρ2,ρ3}

ρ1

ρ2

ρ3

x0 ←m⊙ x

x1

R

xT

R

x2

R

xt

R

x

m

Self-supervised

lossL

∇RL

Updated

prototypes R

AM recursion

Figure 1: ClAM Algorithm. For x ∈ S, we first apply

a mask (in purple) m to x to get the initial iterate x0 for

the AM recursion. With T recursions, we have a completed

version xT
R

. The prototypes R are updated with the gradient

∇RL on the self-supervised loss L (equation 9).

loss ∥x− ρµ⋆
x
∥2 in the k-means objective (equation 6) with

∥x− xT ∥2, allowing us to rewrite k-means (equation 6) as

the following continuous optimization problem:

min
R

∑
x∈S

∥∥x− xT
R

∥∥2 , where x0 ← x (8)

where xT
R

is obtained by applying update in equation 4 to

any x ∈ S through T recursion steps.

This is a significantly different relaxation of the k-means

objective compared to the existing “weighted-sum” ap-

proaches. The tightness of this relaxation relies on the

choices of β (inverse temperature) and T (the recursion

depth) – we treat them as hyperparameters and select them

in a data-dependent manner. See Appendix B.1 to under-

stand the partitions induced by AMs.

2.3. ClAM: Clustering with AMs and self-supervision

The AM framework allows for a novel end-to-end differ-

entiable unconstrained continuous relaxation (equation 8)

of the discrete k-means problem leveraging the strong pat-

tern completion abilities of AMs. We use standard masking

from self-supervised learning – we apply a (random) mask

m ∈ {0, 1}d to a point x ∈ S ⊂ R
d and utilize the AM

recursion to complete the partial pattern x0 = m⊙ x and

utilize the distortion between the ground-truth masked value

and completed pattern as our loss as follows. Given a mask

distributionM and denoting m̄ as the complement of m:

L =
∑

x∈S
Em∼M∥m̄⊙(x−x

T
R
)∥2, x0 ←m⊙x, (9)

where xT
R

evolves from x0 with T recursions of equation 4.

Prototypes R are learned by minimizing the self-supervised

pattern completion loss (equation 9) via SGD.

3. Empirical evaluation

We evaluate ClAM on 10 datasets of varying sizes – 7-

16000 features, 101-60000 points. The number of clus-

ters for each dataset are selected based on its number of

underlying classes (the class information is not involved

in clustering or hyperparameter selection). See details in

Appendix A.1. First, we compare ClAM with established

schemes, k-means (Lloyd, 1982), spectral & agglomerative

clustering, and to DEC (Xie et al., 2016) and DCEC (Guo

et al., 2017) (for 3 image sets since DCEC uses CAE). Then

we ablate the effect of self-supervision in ClAM. Qualita-

tively, we visualize memory evolution through the learning.

For implementation, we use Tensorflow (Abadi et al., 2016)

for ClAM and scikit-learn (Pedregosa et al., 2011) for

the clustering baselines and quality metrics. DCEC/DEC

seed the optimization with the prototypes from the Lloyd’s

solution; we also consider a randomly seeded DECr. Fur-

ther details are in Appendix A.3. We perform an elab-

orate hyperparameter search for all methods and utilize

the configuration for each method corresponding to the

best Silhouette Coefficient (SC) (Rousseeuw, 1987) on

each dataset. The code is available at https://github.

com/bsaha205/clam.

Q1: How does ClAM compare against baselines? We

present the best SC obtained by all schemes in Table 1.

ClAM consistently improves over k-means across all 10

datasets (up to 60%), and outperforms both versions of

DEC, highlighting the advantage of the novel relaxation.

Furthermore, Lloyd’s seeding is critical in DEC – DECr

does worse than base k-means (via Lloyd (1982)) in all

cases – while ClAM performs well with random seeding.

ClAM even improves upon DCEC, which uses rich image

representations from a CAE. Overall, ClAM performs best

on 5/10 datasets, showing significant improvements over

even spectral and agglomerative clustering (these are not

prototype-based, and hence can be more expressive). On the

remaining datasets, both spectral and agglomerative clus-

tering show improvements over ClAM. To understand this

better, we also compare the clusters generated by the differ-

ent methods to the ground-truth class structure in each of

the datasets.The Normalized Mutual Information (NMI) &

Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) scores

(Vinh et al., 2009) are shown in Table 3 from Appendix.

The results indicate that the datasets on which spectral and

agglomerative clustering have a significantly higher SC than

k-means and ClAM (GCM, USPS, CTG, Segment), their

corresponding NMI & ARI scores are significantly lower

(see underlined entries in Table 3 from Appendix), indicat-

ing clusters that are misaligned with the ground-truth labels.

Upon further investigation, we see that both spectral and

agglomerative clustering end up with a single large cluster,

and many really small (even singleton) ones, indicating that

the clustering is overly influenced by geometric outliers.

Q2: How beneficial is self-supervision in ClAM? In ClAM,

we use the pattern completion ability of AMs, and optimize
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Table 1: Silhoutte Coefficient (SC) obtained by ClAM, its variants and baselines (higher is better). ▲(▼) show the

performance gain (drop) by ClAM, given by (a−b)/b× 100% where a is the SC for ClAM, and b is the SC for the baseline;

positive (negative) values indicate performance gain (drop). The best performance for a dataset is in boldface. W/L denote

Wins/Losses. Note ablations ClAM w/ (8) is ClAM without self-supervision.

Dataset k-means Spectral Agglo DCEC DEC DECr
ClAM w/ (8)

Zoo 0.374▲10% 0.398▲3% 0.398▲3% — 0.374▲10% 0.367▲12% 0.412 0.382

Ecoli 0.262▲26% 0.381▼13% 0.404▼18% — 0.262▲26% 0.255▲30% 0.331 0.301

MovLib 0.252▲3% 0.247▲5% 0.247▲5% — 0.258▲1% 0.184▲41% 0.260 0.248

Yale 0.117▲10% 0.120▲8% 0.114▲13% 0.089▲45% 0.123▲5% 0.088▲47% 0.129 0.121

USPS 0.135▲1% 0.228▼40% 0.231▼41% 0.119▲14% 0.135▲1% 0.108▲26% 0.136 0.127

Segment 0.357▲35% 0.702▼31% 0.697▼31% — 0.357▲35% 0.287▲68% 0.483 0.357

FMNIST 0.126▲10% 0.075▲84% 0.096▲44% 0.121▲14% 0.129▲7% 0.070▲97% 0.138 0.131

GCM 0.118▲62% 0.205▼7% 0.288▼34% — 0.115▲66% 0.054▲254% 0.191 0.142

MicePE 0.128▲56% 0.156▲28% 0.193▲4% — 0.137▲46% 0.115▲74% 0.201 0.126

CTG 0.161▲53% 0.449▼45% 0.387▼36% — 0.164▲50% 0.130▲89% 0.246 0.147

ClAM W/L 10/0 5/5 5/5 3/0 10/0 10/0 — 10/0

(a) n0 (b) n5 (c) n10 (d) n20 (e) n50 (f) n100

Figure 2: Evolution of ClAM prototypes. We visu-

alize the prototypes at the nth training epoch for n =
0, 5, 10, 20, 50, 100 (with T = 10). The images pixels are

colored as red for positive, white for zero and blue for nega-

tive values, with their intensity denoting magnitude.

for the self-supervised loss (equation 9). Here, we ablate the

effect of this choice – we utilize a version of ClAM that does

not use any masking and learns memories by minimizing

the loss in equation 8. Table 1 (ClAM and ClAM w/ (8)

columns) show their SC, highlighting the positive effect of

self-supervision, with around 10% gain in all cases.

Q3: How to interpret ClAM? An interesting aspect of AMs

is the prototype-based representation of memories (Krotov

& Hopfield, 2016). We study this for ClAMwith the Fashion-

MNIST images. We use ClAM to partition the 60k images

of fashion items into 10 clusters, and visualize the evolution

of the 10 memories in figure 2. Each sub-figure in figure 2

corresponds to a particular epoch during the training, and

shows all 10 memories stacked vertically. We can see that at

epoch 0 (figure 2a) the memories are initialized with random

values, but gradually reveal discernible patterns by epoch 10

(Figure 2c) and further sharpen by epoch 50 (figure 2e). By

epoch 100 (figure 2f), the shapes have stabilized although

some learning might still be happening. Some memories

evolve into individual forms (such as rows 3–pants, 4–shoes,

8–bags, 9–long-sleeve shirts and 10–boots), while others

evolve into mixtures of 2 forms (such as rows 1–pants and

shoes, 6–pants and short-sleeve shirts, 7–shoes and long-

sleeve shirts). The remaining evolve into less distinguish-

able forms though we can still visualize some shapes (like

in rows 2–long-sleeve shirts and 5–shoes).

4. Limitations and Future Work

In this paper, we present a novel continuous relaxation of

the discrete prototype-based clustering problem leveraging

the AM dynamical system that allows us to solve the clus-

tering problem with SGD based schemes. We show that this

relaxation better matches the essence of the discrete cluster-

ing problem, and empirical results show that our ClAM ap-

proach significantly improves over standard prototype-based

clustering schemes, and existing continuous relaxations. We

note that ClAM is still a prototype-based clustering scheme,

hence inherits the limitations of prototype-based clustering.

Given the end-to-end differentiable nature of ClAM, we will

extend it to clustering with kernel similarity functions and

Mahanalobis distances, and to deep clustering where we also

learn a latent space. We plan to explore new energy func-

tions and update dynamics that enable spectral clustering.

Finally, given ClAM’s flexibility, we want to automatically

estimate the number of clusters on a per-dataset basis, much

like Pelleg & Moore (2000) and Hamerly & Elkan (2003).
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A. Experimental Details

A.1. Dataset details

To evaluate ClAM, we conducted our experiments on ten standard benchmark data sets. The datasets are taken from

various sources such as Yale from ASU feature selection repository1 (Li et al., 2017), USPS from Kaggle2 (Hull, 1994),

Fashion-MNIST from Zalando3 (Xiao et al., 2017), GCM from Chakraborty et al. (2021) and the rest of the datasets from

the UCI machine learning repository4. The statistics of datasets used in our experiment are given in Table 2.

Table 2: Descriptions of various benchmark datasets, used in our experiments.

Dataset Short name # Points # Features # Classes

Zoo Zoo 101 16 7

Yale Yale 165 1024 15

GCM GCM 190 16063 14

Ecoli Ecoli 336 7 8

Movement Libras MovLib 360 90 15

Mice Protien Expression MicePE 1080 77 8

USPS USPS 2007 256 10

CTG CTG 2126 21 10

Segment Segment 2310 19 7

Fashion MNIST FMNIST 60000 784 10

A.2. Metrics used

To evaluate the performance of ClAM, we use Silhouette Coefficient (SC) (Rousseeuw, 1987) as the unsupervised metric that

is used to measure the quality of clustering. The score is between −1 and 1; a value of 1 indicates perfect clustering while a

value of −1 indicates entirely incorrect clustering labels. A value of near 0 indicates that there exist overlapping clusters in

the partition. To observe which existing clustering scheme is ClAM most similar to, we use Normalized Mutual Information

(NMI) (Vinh et al., 2009) & Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) between the obtained partition by ClAM

and obtained partition by baselines. For NMI, a value of 1 indicates perfect clustering while a value of 0 indicates completely

wrong class labels. ARI scores range between −1 and 1 and the interpretation is same as SC. We also use the NMI & ARI

scores between the ground truth and the obtained partition from ClAM and the baselines to measure how they are aligned to

true clustering labels.

A.3. Implementation Details

We use Tensorflow (Abadi et al., 2016) numerical machine learning library to implement and evaluate our model. We train

ClAM on a single node with 1 NVIDIA Geforce RTX 3090 (24GB RAM), and 8-core 3.5GHz Intel Core-i9 CPUs (32GB

RAM). We train on the original data with masking where we utilize the distortion between the ground-truth masked value

and completed pattern from ClAM as the loss function to find the best model. In the forward pass, in each step, the feature

vector is updated in such a way so that gradually it moves toward one of the stored memories. In the backward path, the

memories are learned to minimize the loss. Hyperparameters are tuned for each dataset to find the best result. For the

baseline schemes of k-means, spectral, and agglomerative, we use the implementation from scikit-learn (Pedregosa

et al., 2011) library and tune different hyperparameters to get the best results for each dataset. For DCEC (Guo et al.,

2017), as it is based on convolutional autoencoders (CAE) and works with only image dataset, we evaluate on three image

datasets to compare with ClAM (we leverage their Tensorflow implementation5). For the soft-clustering part of DEC (Xie

et al., 2016) (where they utilize KL divergence loss between predicted and target probability distribution), besides their

k-means-initialized cluster centers, we also employ random-initialized cluster centers (DECr) to study how randomization

works in DEC soft clustering network.

1http://featureselection.asu.edu/
2https://www.kaggle.com/datasets/bistaumanga/usps-dataset
3https://github.com/zalandoresearch/fashion-mnist
4https://archive.ics.uci.edu/ml/index.php
5https://github.com/XifengGuo/DCEC
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Table 3: NMI and ARI score comparison among ClAM and the baseline clustering schemes in terms of ground

truth (higher is better). The best performance for each dataset is in boldface. The underlined entries for Spectral and

Agglomerative mark low NMI but high SC in Table 1.

Dataset Metric k-means Spectral Agglomerative DCEC DEC DECr
ClAM

Zoo

NMI 0.8330 0.8891 0.8429 N/A 0.8330 0.7992 0.9429

ARI 0.7373 0.8664 0.9109 N/A 0.7373 0.6755 0.9642

Yale

NMI 0.6034 0.5744 0.6723 0.5428 0.5499 0.5068 0.6418

ARI 0.3644 0.3226 0.4567 0.2817 0.2920 0.2398 0.4230

GCM

NMI 0.4385 0.1715 0.1882 N/A 0.4228 0.3923 0.4476

ARI 0.1308 -0.0119 -0.0071 N/A 0.1188 0.0880 0.2492

Ecoli

NMI 0.6332 0.6606 0.7111 N/A 0.6332 0.5707 0.6633

ARI 0.4997 0.6505 0.7261 N/A 0.4997 0.3893 0.7027

Movement Libras

NMI 0.6044 0.6118 0.6086 N/A 0.5959 0.3147 0.6142

ARI 0.3260 0.3236 0.3144 N/A 0.3147 0.2223 0.3351

Mice Protien Exp

NMI 0.2373 0.0056 0.2596 N/A 0.2873 0.2951 0.3108

ARI 0.1260 0.0019 0.1558 N/A 0.1756 0.1796 0.1652

USPS

NMI 0.5368 0.0777 0.0180 0.6961 0.5376 0.4538 0.5566

ARI 0.4304 -0.0033 0.0002 0.5907 0.4306 0.3226 0.4537

CTG

NMI 0.3581 0.0391 0.0419 N/A 0.3507 0.3587 0.3154

ARI 0.1780 0.0060 0.0078 N/A 0.1766 0.1818 0.1736

Segment

NMI 0.5846 0.0102 0.0085 N/A 0.5853 0.6102 0.5489

ARI 0.4607 0.0005 0.0003 N/A 0.4612 0.5038 0.4331

FMNIST

NMI 0.5036 0.6429 0.0051 0.5948 0.5008 0.3339 0.5183

ARI 0.3461 0.4307 0.0005 0.4113 0.3369 0.2279 0.3665

(a) β=0.001 (b) β = 0.1 (c) β = 1 (d) β = 10 (e) β = 15

(f) β = 20 (g) β = 25 (h) β = 30 (i) β = 50 (j) β = 100

Figure 3: Basins of attraction vs Voronoi partition for five clusters. Partitions induced by AM basins of attraction with

given memories (black dots) for different β are shown by the colored regions (T=10). Dashed lines show the Voronoi

partition.

B. Additional Experimental Results

B.1. Understanding the partitions induced by AMs

An interpretation of the discrete assignment µ⋆
x

for each x ∈ S in the k-means objective (equation 6) is that the prototypes

R induce a Voronoi partition (Aurenhammer, 1991) of the whole input domain, and the examples x ∈ S are assigned to the

prototype whose partition they lie in. Voronoi partitions have piecewise linear boundaries, with all points in a partition having

the same closest prototype. Given prototypes R, the AM dynamics induces a partition of the domain into non-overlapping
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basins of attraction. For an appropriately set β and T , the basins of attraction approximately match the Voronoi partition

induced by the prototypes. However, when β is not “large enough”, the cluster assignment happens in a more “collective”

manner, involving all prototypes, leading to non-Voronoi partitions. We visualize the basins of attraction for different β in

figure 3, contrasting them to the Voronoi partition. For a small β (figure 3a), the basins do not match the Voronoi partition.

As β increases, the basins of attraction evolve to match the Voronoi partition (figure 3j). Furthermore, while the Voronoi

partition boundaries are piecewise linear, the AM basins of attraction can have nonlinear boundaries (see boundaries in

figure 3e). As mentioned earlier, we treat β and T as hyperparameters, and select them in a data-dependent fashion, so that

the AM partition sufficiently matches the Voronoi one.
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