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Abstract

We develop techniques for synthesizing neu-

rosymbolic programs. Such programs mix dis-

crete symbolic processing with continuous neu-

ral computation. We relax this mixed dis-

crete/continuous problem and jointly learn all

modules with gradient descent, and also incor-

porate amortized inference, overparameterization,

and a differentiable strategy for penalizing lengthy

programs. Collectedly this toolbox improves the

stability of gradient-guided program search, and

suggests ways of learning both how to parse con-

tinuous input into discrete abstractions, and how

to process those abstractions via symbolic code.

1. Introduction

We seek steps toward AI systems that learn to symboli-

cally process perceptual input. Consider, for example, a

system which learns to control a moving object that nav-

igates around obstacles: starting from sensory data (lidar,

RGBD), it must first parse the world (into objects, prox-

imities, freespace), and then compute trajectories using

high-level computations (PID controllers, etc.). Similar

perceptual-symbolic problems arise when learning struc-

tured world models from pixels, inferring instructions from

natural language, or constructing visual analogies. We pro-

pose framing such tasks as neurosymbolic program syn-

thesis: learning neural components that extract symbols

from perception, and synthesizing programs to further pro-

cess those symbols with more complex computations.

Our ultimate goal is to develop general methods that could,

we hope, apply to challenging neurosymbolic tasks like

those previously mentioned. We take the stance that sym-

bols should be grounded in perception, and that symbol

processing should be implemented by learnable program-

like representations. However, We also propose that rather

than hand-code a preordained set of primitive symbols, AI
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systems should learn to carve the perceptual world into

their own discretization. What constitutes a ‘symbol’ may

vary across domain and across datasets, and can be hard

for human engineers to anticipate. By jointly learning the

symbols, as well as synthesizing the programs that operate

on them, we hope to side-step the pitfalls associated with

hand-engineered representations.

Delivering on the above promises requires synthesizing neu-

rosymbolic programs, which poses unique technical chal-

lenges. Unlike conventional programs, which are discrete,

a neurosymbolic program has both continuous weights and

discrete program structure, both of which must be synthe-

sized. In addition to solving a mixed discrete/continuous

problem, synthesizing a neurosymbolic program is severely

underconstrained. Because neural nets are universal func-

tion approximators, they can in theory satisfy any program

learning problem, at least on the training data.

Our main technical contribution is a suite of methods for

circumventing the above two challenges. We assume a

multitask setup where the learner is exposed to a variety

of neurosymbolic programming tasks. Having multiple

tasks introduces extra constraints, and also allows learning

across tasks how to search for programs. Hence multitask-

ing can address both the ill-posed nature of the problem,

and also the intractable search aspect due to the mixed dis-

crete/continuous nature of the problem.

Concretely, our method trains a neural search policy to

synthesize neurosymbolic programs. It uses a differentiable

interpreter to backprop gradients from the desired program

output all the way back to the parameters of the search

policy. We overparametrize the program search space to

ease continuous optimization, but this overparametrization

leads to bloated programs with too much code, hence we

regularize the length of the programs to produce concise,

interpretable code. We therefore call our method ROAP

(Regularize, Overparametrize, Amortize, for Programs).

We apply ROAP to two different domains (Fig. 1). Our

CIFAR-MATH domain is a harder version of a classic prov-

ing ground for neural logic programming (Manhaeve et al.,

2018), modified to include program synthesis. On it, we

show that ROAP can synthesize arithmetic equations while

at the same time learning to parse images into symbolic dig-

its. Our 3D-Reconstruction domain involves synthesizing
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Figure 1. Top, CIFAR-MATH domain. System synthesizes symbolic equations, but instead of learning the equations from concrete

numbers, it inputs CIFAR-10 images, where each image category (dog, cat, frog, ...) has been mapped to a digit from 0–9. Note: we show

MNIST above for ease of understanding. Bottom, graphics domain. Given a partial observation of a 3D shape, system learns to infer a

3D graphics program completing the shape. Note: For CIFAR-MATH we show one task. For 3D we show several tasks.

graphics programs that algebraically transform and combine

neural geometric primitives, and can be used to decompose

3D shapes and infer missing geometry.

2. Problem statement & Definition

A neurosymbolic program has both a symbolic program

architecture α ∈ A, and also continuous parameters

θ ∈ R
d , where A is a set of possible architectures. We

write αθ for the program with architecture α and parameters

θ. We assume a denotation operator J·K, which takes

a program αθ and outputs what the program executes to.

Generally, JαθK is a function. An example of synthesizing a

neurosymbolic program is optimizing for the architecture

α ∈ A and parameters θ ∈ R
d minimizing a loss function

over training data D:

α, θ = argmin
θ∈R

d

α∈A

∑

(x ,y)∈D

Loss
(

y , JαθK (x )
)

(1)

3. Method

We assume a training corpus of neurosymbolic program-

ming tasks, T . Each such task t ∈ T is specified by a

dataset Dt of input-output pairs, (x , y).

Amortization & Parameter Sharing. We start with an

objective function for amortized inference (Appendix B)

that optimizes the parameters of a policy, ϕ, to increase the

probability of generating a program architecture that has

low loss. We also optimize the parameters θ of the neural

networks invoked by these symbolic program architectures,

ultimately minimizing L(θ, ϕ) shown below:

L(θ, ϕ) = E
t∼T

α∼πφ(·|t)





∑

(x ,y)∈Dt

Loss(y , JαθK(x ))



 (2)

Already, this framing helps address one issue with synthe-

sizing neurosymbolic programs: Each program can invoke

learned neural networks, but only ones using shared pa-

rameters θ. Thus having multiple tasks introduces extra

constraints on θ, preventing the system from solving every-

thing with monolithic neural networks.

Gradient estimation via Relaxation. Learning to search

for programs requires optimizing the search policy param-

eters ϕ. We implement our policies as neural networks, so

we are interested in taking gradients of L with respect to ϕ

(and also θ). ROAP relaxes the symbolic program space;

assumes that sampling a program architecture is equivalent

to sampling an array of one-hot vectors from categorical dis-

tributions for all discrete choices within a program; and then

finally uses Gumbel-Softmax to backprop through these

categorical draws (Appendix C.1).

(Over)parameterizing the program space. We model each

program architecture as straightline code (Appendix C.2).

To compute the denotation of α, given its vectorized encod-

ing, we use a simple dynamic program that memoizes the

computation of the value computed by each line of code.

We now overparametrize the problem by expanding the

maximum possible lines of code far beyond what the system

needs to solve its programming problems. This dramatically

increases the dimensionality of α, and empirically we found

that this significantly improved the convergence properties

of gradient descent when optimizing Eq. 5 (Appendix C.3).
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Table 1. Experimental Results on CIFAR-MATH

Program-Acc Symbolic-Acc Test-Symbolic-Acc Loss Test-Loss OOD-Loss

ROAP (ours) 99.8% 100% 69.4% 2.4e-4 0.11 0.05

w./o. program 0.0% 4.2% 4.7% 1.3e-5 0.11 0.52

w./o. amortized inference 28.4% 49.5% 27.9% 0.022 0.16 0.15

w./o. gumbel-softmax 21.0% 1.8% 0.9% 0.007 0.14 2.07

w./ max lines=10 11.6% 9.9% 6.9% 0.027 0.14 2.12

REINFORCE 0.2% 0.0% 0.0% 0.59 0.65 0.64

Terpret 0.9% 4.0% 3.4% 6.4e19 5.9e19 N/A

NEAR 0.8% 8.3% 6.9% 0.059 0.18 0.93

dPads 2.0% 9.6% 9.2% 0.36 0.36 0.96

HOUDINI 17.4% 13.1% 9.4% 0.015 0.09 0.60

Regularizing program length. Unsurprisingly, over-

parametrizing by increasing the max program size generates

excessively long programs that tend to be more overfit and

also harder for humans to understand and interpret.To com-

bat the code explosion caused by overparametrization, we

incorporate an additional term in our loss which penalizes

the average program length (Appendix C.4).

Min-sampling. The policy acts as a search heuristic that

stochastically proposes programs. Running the policy mul-

tiple times per task and taking the sampled program with

the minimum loss allows trading more compute for lower

loss, a trick we call ‘Min-sampling’. This is conceptually

related to importance reweighting of samples from neural

recognition models (Burda et al., 2015).

4. Experiments

4.1. CIFAR-MATH

The classic warmup problem for neurosymbolic systems is

to train an MNIST classifier by supervising only on the re-

sult of running an algorithm on that classifier’s outputs, e.g.,

+ →11 (Manhaeve et al., 2018; Huang et al., 2021).

CIFAR-MATH makes this warmup domain harder along

several dimensions (Appendix D.1). Following Fig. 1, each

task has a different hidden equation (Fig. 1 illustrates x+yz ).

The inputs to the equation are presented as CIFAR-10 im-

ages. Each of the ten CIFAR-10 categories (dog, boat, frog,

...) is mapped to a different digit from 0–9, but this mapping

is never given to the system. Architectures α are built from

a Domain Specific Language containing addition, multipli-

cation, and subtraction. The shared continuous parameters

θ are the weights of a CNN that maps a CIFAR-10 image to

a scalar.

We are interested in a variety of research questions, and

compute evaluation metrics to help us answer each of them:

• Can we synthesize the correct program?

• Do we successfully learn a neural perception module,

equivalently did the CNN learn a CIFAR-10 classifier as

a side effect of the overall training procedure?

• To understand if the learned programs generalize out of

sample, we designate one task to be trained only on small

numbers (0–5), and then check if the synthesized neu-

rosymbolic program extrapolates to larger numbers (6–9;

multitasking makes it see these numbers on other tasks).

Tbl. 1 shows the metrics relating to the above questions

for our system as well as ablations and baselines (Ap-

pendix D.1). Overall, we find that the full model can jointly

learn to ground its visual input into discrete symbols (num-

bers 0–9), and then transform those discrete symbols using

symbolic equations that the system itself infers. None of the

baseline neurosymbolic synthesis methods meet that criteria.

We also find that a symbolic program aids out-of-sample

generalization, as can be seen by comparing with the ‘w/o

program’ baseline, which replaces the program architec-

ture with a small neural network. This suggests ROAP has

learned an appropriate division of labor between its CNN

and its symbolic programs, with the CNN handling percep-

tion (but not reasoning) while the symbolic programs handle

reasoning, thus enabling it to extrapolate out-of-distribution.

4.2. Graphics Program Synthesis

We use ROAP to synthesize neurosymbolic graphics pro-

grams. We consider the problem of reconstruction, which

means inferring the shape of an object given a par-

tial/occluded observation. The graphics programs start with

basic parts, like boxes and balls, which are transformed

and combined to generate 3D geometry. What makes these

graphics programs neurosymbolic is that, instead of hard-

coding these basic parts, we allow the system to learn its

own part library. Each learned part is a simple shape that
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can be viewed as the output of a (tiny and unusual) neural

network, whose parameters comprise θ. Fig. 2 illustrates

example learned parts: Rather than preprogram boxes, cylin-

ders, etc., the system learns from the data which primitives

are most suitable. It learned, for example, a boxy cuboid

with rounded corners for modeling chair/sofa seats (yel-

low), and an elongated cuboid with a subtly curved top for

modeling backs and headrests (red).

We first test on reconstructing 2D silhouettes of furniture

(Fig. 9), which a series of recent graphics program synthesis

works evaluate on (Appendix E.2). Tbl. 3 shows that ROAP

achieves higher reconstruction accuracy (i.e., lower Chamfer

distance) compared to these comparable recent works.

Next we evaluate on 3D models. Because ROAP does not

supervise on ground-truth programs, we can apply it to

datasets not designed for program synthesizers, and so we

choose the canonical ShapeNet dataset (Chang et al., 2015).

Each reconstruction task is specified by a partial observa-

tion of a voxel field, and the synthesized program describes

how to generate the underlying complete 3D shape. We

consider corrupting the input voxel field by cropping out a

random half-plane (Fig. 3, Fig. 10, Appendix F.3). Fig. 1

diagrams how ROAP represents shapes as programs that al-

gebraically combine basic parts. This data-driven discovery

of basic symbolic abstractions was done without supervising

on programs or part decompositions.

Last, we again quantify reconstruction quality via Cham-

fer distance, and compare against ablations of our system

(Tbl. 2). The most important ablation of our system is ‘w/o

program’. This replaces the program with a neural network,

essentially modeling an occupancy network (Mescheder

et al., 2019), which is a foundational deep learning architec-

ture for 3D reconstruction. Given a complete observation

of the shape, a pure neural network is superior at recon-

struction (‘Full’ in Tbl. 2). But given a partial observation,

the neurosymbolic program comes out ahead (‘Crop-Plane’

in Tbl. 2). This is because the symbolic program structure

has an inductive bias primed to recognize symmetries and

repeated parts. Hence this high-level symbolic prior helps

impute missing observations.

Table 2. Experimental Results on 3D

Full Crop-Plane

ROAP (ours) 1.7 1.8

w./o. program 1.2 2.0

w./o. amortized inference N/A N/A

w./o. gumbel-softmax 9.5 8.4

w./ depth=10 8.7 2.7

w./ depth=3 2.7 13.1

Table 3. 2D results. (NEAR’s pathological behavior on these prob-

lems is to loop forever because it can fit a shape arbitrarily well

with increasingly long partially completed programs, thus it never

terminates with a completed program. HOUDINI’s enumeration is

inapplicable due to continuous parameters in affine transforms.)

No-refinement Test-time-refinement

CSG-Net 1.14 0.41

CSG-NETSTACK 1.02 0.34

PLAD 0.811 -

UCSGNet 0.32 -

REINFORCE inf -

NEAR N/A Pathological behavior

HOUDINI N/A N/A

Terpret N/A 4.76±2.22

ROAP (ours) 0.21 -

Figure 2. Neural part learning for 3D

Figure 3. Results on 3D where the system inputs a voxel field

with a random subset cropped out (left models), from which it

synthesizes a program (right models) that approximates the ground-

truth shape (middle point cloud).
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A. Related Work

Neurosymbolic programming is a growing area that seeks to engineer learning and inference methods for hybrid pro-

gram/neural architectures (Chaudhuri et al., 2021), and our work is a special case of this broad framework. Specifically, we

tackle inductive program synthesis (Gulwani et al., 2017)–synthesizing programs from input-output examples–but where

the inputs are continuous and must be preprocessed by neural networks into symbolic form. Prior works in this setting

assume a hand-engineered inventory of basic symbols (Ellis et al., 2018), while others backpropagate through differentiable

programs to jointly train network weights and program structure (Gaunt et al., 2017). Multitasking is a known strategy for

this setting (Valkov et al., 2018). Training a neural network to help guide search for discrete programs (amortized inference)

is standard (Shi et al., 2021; Chen et al., 2018), and we extend that idea to continuous relaxations of program spaces.

The difficulties of gradient descent over relaxed program spaces is well known, to the extent that it has been dubbed the

so-called ‘terpret problem’ (Gaunt et al., 2016). Unfortunately, such an approach is the most straightforward way of training

neurosymbolic programs. From a technical perspective, our work hopes to make progress on the ‘terpret problem’, thereby

unlocking scalable and reliable training of this class of neurosymbolic programs.

Some of our core tricks have debuted in prior neurosymbolic program synthesizers: Terpret noticed overparametrization

helps (Gaunt et al., 2016), Memoized Wake-Sleep deployed amortized inference (Hewitt & Tenenbaum, 2019), and

HOUDINI shares neural network parameters across tasks (Valkov et al., 2018). Our technical contribution is providing the

mathematical and algorithmic framework which allows these tricks, and more, to be combined into the same end-to-end

learnable system. For example, we showed that the reparametrization trick (Jang et al., 2016) made amortization compatible

with relaxation and gradient-guided search.

More fundamentally, our efforts connect to the body of work on the ‘symbol grounding problem’ (Harnad, 1990): How does

a system learn to ‘ground’ abstract symbols (e.g., numbers, parts) in terms of their high-dimensional perceptual counterparts

(e.g., images of digits)? This problem is especially difficult absent strong supervision on the meaning of each abstract

symbol (Chang et al., 2020), and ROAP considers a distantly supervised setting. Prior works consider a variety of orthogonal

techniques to address symbol grounding (Topan et al., 2021), including scaffolding with natural language (Andreas et al.,

2016; Mao et al., 2021).

B. Problem Statement & Technical Background

Definitions: Architecture, parameters, denotation. A neurosymbolic program has both a symbolic program architecture

α, and also continuous parameters θ. Each architecture comes from a set A of possible architectures. We can instantiate a

fixed architecture with different continuous parameters, and we write αθ for the program with architecture α and parameters

θ. We assume a denotation operator J·K, which takes a program αθ and outputs what the program executes to. Generally,

JαθK is a function.

An example of synthesizing a neurosymbolic program is optimizing for the architecture α ∈ A and parameters θ ∈ R
d

minimizing a loss function over training data D:

α, θ = argmin
θ∈R

d

α∈A

∑

(x ,y)∈D

Loss
(

y , JαθK (x )
)

(3)

This is challenging because it involves optimizing over discrete α (from combinatorially large A) and continuous θ (which

is potentially high dimensional). The trick of relaxation is to convert this mixed discrete-continuous problem into a purely

continuous one, and then optimize with continuous methods. Intuitively, relaxations index the space of architectures using

continuous weights that interpolate between discrete structures:

Definition: Relaxation. Architectures A and denotation J·K admit a k -dimensional relaxation when the architectures are

represented as k -dimensional vectors (A ⊂ R
k ) and we can take the denotation of any such k-dimensional vector, even ones

not in A, which means Rk ⊆ domain(J·K).

There are many relaxation approaches differing on what exactly the denotation means as an embedding ‘interpolates’

between architectures. Some relaxations define an approximate probabilistic semantics and interpret the k -dimensional

vector as a vector of probabilities (Si et al., 2019; Gaunt et al., 2016; Chaudhuri & Solar-Lezama, 2010). Others use schemes

reminiscent of fuzzy logic (Evans & Grefenstette, 2018), or form linear combinations of discrete subprograms (Sahoo

et al., 2018). Either way, solving the relaxation typically proceeds by finding a continuous vector using gradient-based
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optimization, and then discretizing that vector to the closest symbolic architecture.

Amortized inference: Learning to search. The idea behind amortized inference (Gershman & Goodman, 2014) is to

learn to search for programs (“infer” programs). Instead of directly optimizing over the space of programs, amortized

inference in this context means optimizing a policy that probabilistically generates programs, conditioned on a particular

programming task to solve. Typically the policy is trained across many tasks so that it learns to generate programs that solve

each task (Devlin et al., 2017).

C. Method Details

C.1. Gradient estimation via Relaxation

At a high level, ROAP relaxes the symbolic program space; assumes that sampling a program architecture is equivalent to

sampling an array of one-hot vectors from categorical distributions; and then finally uses Gumbel-Softmax to backprop

through these categorical draws. In low-level detail, we assume the relaxed program semantics allow backpropagating

through the denotation operator. However, we still have to pass gradients backward through the random sampling from

the policy (expectation over α ∼ πφ(· | t) in Eq. 2). To do this, we assume each symbolic architecture α is encoded as C

one-hot vectors, notated {αc}
C

c=1, and the policy πφ samples an architecture α by drawing from C categorical distributions

with parameters {pc
φ(t)}

C
c=1:

πφ(α | t) =
∏

1≤c≤C

Cat
(

αc ; p
c
φ(t)

)

(4)

This licenses rewriting the objective in Eq. 2 as

E
t∼T

E
αc∼Cat(·; pc

φ(t))
∀ 1≤c≤C





∑

(x ,y)∈Dt

Loss(y , JαθK(x ))



 (5)

At this point we can deploy the well-known Gumbel-Softmax trick (Jang et al., 2016), which offers a low-variance

approximation to the above expectation. Gumbel-Softmax perturbs the raw probabilities {pc
φ(t)}

C
c=1 with Gumbel-

distributed noise, then takes a softmax with a temperature that aneals toward 0. At 0 temperature, Gumbel-Softmax

exactly implements Eq. 5. When the temperature is positive, Gumbel-Softmax produces program architectures α whose

constituent “one-hot” vectors actually contain multiple positive components. This causes the relaxed denotation operator to

interpolate the behavior of nearby program architectures, yielding stable gradient estimation.

C.2. Program Architecture

We now specify what program architectures look like, and how we parameterize them in terms of one-hot vectors. We model

each program architecture as straightline code: A sequence of L lines of code, each of which introduces a new variable

in scope by applying a function to variables introduced by preceding lines of code (Fig. 4). Each function comes from

a Domain Specific Language, which contains components customized to the kinds of programs we expect to synthesize.

Toggling which vector component of α is a 1 corresponds to toggling which function each line of code uses, and which

preceding lines are passed as arguments to that function.

To compute the denotation of α, given its vectorized encoding, we use a simple dynamic program that memoizes the

computation of the value computed by each line of code. This runs in time quadratic w.r.t. the total lines of code.

Although this parametrization works reasonably well, there are many alternatives. We also tried encoding a syntax tree

instead of a list of lines of code, but this worked worse. In general, the classic program synthesis literature is filled with

different techniques for ‘sketching’ a large set of possible programs, and then indexing that set with boolean decision

variables (Solar Lezama, 2008; Jha et al., 2010).

C.3. Overparameterization and its theoretical analysis

Without overparametrization, the system is prone to falling into poor local minima. We speculate that overparametrization

helps for our problem for similar reasons as to why it helps for deep networks: (1) that it is harder to get trapped in higher
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Expression: (x + x )× y

Domain Specific Language:

f+(a, b) = a + b f×(a, b) = a × b

Straight Line Code:

ℓ1 ← x

ℓ2 ← y

ℓ3 ← f+(ℓ1, ℓ1)
ℓ4 ← f×(ℓ3, ℓ2)

Architecture parametrization:

function left arg right arg

f+ f× ℓ1 ℓ2 ℓ3 ℓ1 ℓ2 ℓ3
Line 3 (1, 0) (1, 0) (1, 0)

Line 4 (0, 1) (0, 0, 1) (0, 1, 0)

Figure 4. Symbolic expressions are built from operators in a Domain Specific Language and represented as straightline code. Each line of

code is parametrized by three one-hot binary vectors specifying a function from the Domain Specific Language, and left/right arguments

from earlier lines. (The first lines of code simply load variables into scope.) The bottommost box shows the 6 one-hot vectors encoding

the example expression (α in the paper).

dimensional spaces, because there is likely at least one direction which leads to lower loss, and (2) with more parameters

there is a higher chance of a randomly initialized subnetwork falling within the basin of a good optimum, known as the

lottery ticket hypothesis (Frankle & Carbin, 2018).

Speculatively, if lottery-ticket type behavior accounts for the success of overparametrization in our setting, then we might

expect that increasing the maximum lines beyond the needed sizes actually increases the probability that randomly initialized

weights encode the correct program. We built a simplified theoretical model of randomly initialized program architectures.

Using this model we calculated the probability of a random network containing the correct program (Fig. 5). Across a range

of different ground-truth program lengths, this probability saturates around a few tens of lines of code. In agreement with

this analysis, we empirically found L = 30 max lines of code worked well on both of our domains.

Figure 5. Simulation results showing probability of randomly initializing to a correct program, while varying max program length and

target program length

Theoretical Setting We demonstrate the advantages of using over-parameterization in a simplified setting. Specifically,

we consider a program synthesis algorithm that utilizes random search, and we assume that all programs are distinct and that

operators take only one argument. Our goal is to find a program in the form of p = oL(oL−1(· · · (o1(x )))), where L ≥ 1
is the length of the program, ol ∈ O denotes operators, and x is the input. There is no other program p′ ∈ P such that

∀ x , p(x ) == p′(x ).

We represent the program sketch as a straight-line code with length L′, as shown in Figure 4. Each line randomly selects one

operator from the operator space O′ and its argument from previous lines. We allow the program sketch to use the identity

operator, resulting in O′ = O
⋃

{identity}.

Due to the formulation of straight-line codes and the usage of the identity operator, there are multiple possible assignments of

program parameters for the correct program. We calculate the exact probability of finding the correct program by randomly
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initializing the program assignment of the program sketch using dynamic programming. We set |O| = 3 as the other

experiments and show the probabilities of randomly initializing to a correct program for different correct program lengths L

and program sketch lengths L′ in Figure 5.

C.4. Regularizing Program Length

Calculating program length from our parametrization of α is straightforward to do in linear time using dynamic programming,

and is also a smooth, differentiable function of α’s components. Hence we can simply add the length-penalizing term to our

loss.

In practice we train ROAP without regularization for the first half of its training process–to encourage exploration–and then

turn on this regularizer halfway through to compress and optimize the programs (Fig. 6).

Figure 6. Regularizing program length halfway through training refactors the programs to be shorter (orange) without sacrificing accuracy

(blue). Top: CIFAR-MATH. Bottom: 3D graphics.

D. CIFAR-MATH Experimental Details

D.1. Experimental Setup

CIFAR-MATH task. The classic warmup problem for neurosymbolic systems is to train an MNIST classifier by

supervising only on the result of running an algorithm on that classifier’s outputs. For example, DeepProbLog (Manhaeve

et al., 2018) and Scallop (Huang et al., 2021) both train a digit classifier given examples of handwritten digits being added

together: Given examples like + →11, together with the logic of addition, these systems reason backward through the

addition operator to train a neural network MNIST classifier.

CIFAR-MATH makes this warmup domain harder along several dimensions. First, we introduce program synthesis by not

telling the system what arithmetic expression is executing on the input images: this system must infer and synthesize the

correct symbolic equation. Second, we consider more complex equations with several arithmetic operators. Last, we switch

from MNIST to CIFAR-10, and do not tell the system that there are only 10 digits. Thus the system has a harder reasoning

challenge, because it has to reason backward through more complex expressions; a new induction challenge, because the

expressions are hidden; and a nontrivial perception challenge, because CIFAR-10 is more visually complex than MNIST.

Following Fig. 1, each task has a different hidden equation (Fig. 1 illustrates x + yz ). The inputs to the equation are

presented as CIFAR-10 images. Each of the ten CIFAR-10 categories (dog, boat, frog, ...) is mapped to a different digit

from 0–9, but this mapping is never given to the system. Architectures α are built from a Domain Specific Language

containing addition, multiplication, and subtraction. The shared continuous parameters θ are the weights of a CNN that

maps a CIFAR-10 image to a scalar.

Metrics. To evaluate program-acc, because CIFAR-MATH comes with ground truth hidden programs, we check if the

synthesized programs generate the same outputs on random inputs. To evaluate the (test-)symbolic-acc, we snap the CNN

outputs to the nearest integer and report how often this yields the correct integer. For example, if frogs correspond to the

number 3, then correctly classifying a frog means predicting a number in the range [2.5, 3.5).

Baselines. We use a REINFORCE baseline, which uses the score function estimator instead of Gumbel-Softmax;

NEAR (Shah et al., 2020), which uses A∗ to search the space of neurosymbolic programs, and does not perform multitasking
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or amortized inference; dPads (Cui & Zhu, 2021), which improves upon NEAR; Terpret (Gaunt et al., 2016), which directly

optimizes the parameters of α, and does not perform multitasking or amortized inference ; and HOUDINI (Valkov et al.,

2018), which solves tasks sequentially via enumeration while sharing neural network parameters across tasks.

We also tried Scallop (Huang et al., 2021), a leading neural logic programming system, but its differentiable-top-k-proofs

inference method did not terminate on CIFAR-MATH problems. We suspect this is because it has to build a massive proof

tree when the arithmetic equation is unknown.

Neural network. We use an 18-layer ResNet backbone (He et al., 2016) as the image encoder with an MLP decoder,

whose parameters collectively comprise θ.

Program denotation. Fig. 7 specifies how we execute program architectures α in this domain using a simple dynamic

program.

Dataset. We generate 500 arithmetic tasks with 3 input variables, containing up to 3 operators. For each arithmetic task

we have 1e6 I/O pairs for each task for training and 1000 I/O pairs for each task for testing.

Training. We train models using the Adam (Kingma & Ba, 2014) optimizer with a learning rate equal to 3e-4 and ϵ =1e-5

for 20 epochs. The program length regularizer is not applied until halfway through training with a coefficient of λ =1e-4,

which is multiplied into the program length before it is added to the rest of the loss. The temperature for gumbel softmax is

set to 1 in the beginning and changed to 3 from epoch 15 to minimize the error gap from the continuous approximations of

programs near the end of training.

JαKθ(x ) = Execθ(α, x ,L+ V ) execute program and extract output on line L+ V

Execθ(α, x , l) = CNNθ(xl), whenever l ≤ V load variables as first lines of code. We have V variables

Execθ(α, x , l) =
∑

o

αO
lo × Fo



x ,
∑

1≤a<l

αL
la × Execθ(α, x , a),

∑

1≤b<l

αR
lb × Execθ(α, x , b)



 , whenever l > V

where α is a tuple of (αO , αL, αR)

F1(x ,A,B) = A+ B add

F2(x ,A,B) = A− B subtraction

F3(x ,A,B) = A× B multiplication

F4(x ,A,B) = A no-op/skip connection

Figure 7. Differentiable execution model for a program sketch containing L lines of code. α parametrizes the program via a triple of

2-dimensional arrays (αO
, α

L
, α

R) containing values from 0-1. If αO
lo = 1, then line l of the program computes its value by executing

operator o. If αL
la = 1, then line l of the program gets its left argument for the operator from line a . If αR

lb = 1, then line l of the program

gets its rights argument for the operator from line b. The first V lines of the program evaluate to input variables, and we assume that there

are V such variables and L lines of code that follow.

D.2. Experiment Results and Analysis

D.2.1. EFFECTS OF CONTINUOUS IMAGE AND MIN-SAMPLING

We additionally verified that ROAP does not need the image to be split into three separate images showing each digit.

When the input is presented as a single contiguous image, our model’s performance is essentially unchanged (Tbl. 1,

‘contiguous-image’).
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Table 4. More Experimental Results on CIFAR-MATH. min-sampling: 3 samples/gradient step

Program-Acc Symbolic-Acc Test-Symbolic-Acc Loss Test-Loss OOD-Loss

ROAP (ours) 91.8% 82.6% 48.7% 0.005 0.11 0.07

ROAP + min-sampling (ours) 99.8% 100% 69.4% 2.4e-4 0.11 0.05

+ min-sampling; contiguous-image 99.2% 100% 72.2% 7.3e-4 0.12 0.04

w./ Syntax-Tree parametrization 69.0% 43.0% 28.1% 0.013 0.14 0.22

w./ max lines=10 11.6% 9.9% 6.9% 0.027 0.14 2.12

D.2.2. WHY DOES THE MODEL LEARN THE ‘RIGHT’ LATENT SYMBOLS?

A single CIFAR-MATH problem is ill-posed: it is not clear what latent symbols the neural network should output, because

they are reprocessed by a (latent) program. Our experiments establish however that the system readily converges on the

‘right’ symbol grounding by mapping each CIFAR-10 image category to its corresponding digit. Intuitively, this happens

because multitasking introduces extra constraints on the function learned by the neural component, which has to serve a

variety of downstream symbolic computations.
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Figure 8. Effects of constraints on symbol grounding. Both having more tasks, and having more input-outputs per task, introduced added

constraints. Heatmap shows max Symbolic-Acc over 5 runs, and should be approximately interpreted as whether or not it has a good

chance of converging correctly in 5 runs.

If this story is true, then the ability of the system to converge on a good symbol grounding hinges on having a sufficiently

constrained optimization problem. Extra tasks impose extra constraints, but so does having more input-output examples for

each task. We therefore study whether either of those constraints suffice for recovering the correct symbol grounding. Fig. 8

shows success in recovering the correct symbolic basis as a function of the constraints imposed on the optimization problem,

both by multitasking and input-outputs per task. We see a phase-transition like structure where, once the total number

of constraints passes a tipping point, the system ‘snaps’ into the expected symbolic basis. This shows the importance of

constraints, and also that there is a tradeoff between the number of tasks, and the number of examples per task.

E. 2D Reconstruction Experimental Details

E.1. Methods

E.1.1. CSG, FLIP-UNION, AND FOR-LOOP OPERATIONS

We now specify the denotation of graphics programs. Recall that every graphics program is a function that takes a point

in space (R3) to 0/1 depending on if that point is outside or inside the object. In the relaxed semantics, we think of the

denotation as producing a number in the range [0, 1]. We refer to such numbers in [0, 1] as ‘occupancy values’.
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In general, the denotations of the graphics operations follows straightforwardly from their mathematical definitions. For

example, the union operator is represented as the maximum of its argument’s denotations, i.e., o = max(oleft, oright).
Specifically, the occupancy function of any shape that is a union of two parts is defined as J

⋃

(zleft, zright)K(p⃗) =
max(JzleftK(p⃗), JzrightK(p⃗)). The intersection operator is represented as the minimum of the occupancy values, i.e.,

o = min(oleft, oright), and the difference operator is represented as o = max(oleft − oright, 0).

The flip-union and for-loop operations are implemented as unions of multiple sub-components. The occupancy values of the

sub-components are determined by applying transformations to the coordinates that align with their semantics. Specifically,

the flip-union operation is defined as:

Jflip-unionθf (z )K(p⃗) = max(Jz K(p⃗), Jz K(flipθf
(p⃗))),

where θf ∈ R
3 defines a line by θTf [p⃗; 1] = 0 in the 2D case. Flipping a point against this line, i.e., flipθf (p⃗) can be

implemented using a simple affine transformation. Let θf = [a, b, c], then

flip(p⃗) =
1

a2 + b2

[

b2 − a2 −2ab 2ac
−2ab a2 − b2 2bc

]

p⃗.

The for-loop operation is defined as

Jfor-loopθd ,C (z )K(p⃗) = max({Jz K(p⃗ − c × θd) : c ∈ {0, 1, · · · ,C − 1}}),

which repeats the part Jz K for C times by moving it in θd ∈ R
2 direction for c times.

E.1.2. PROGRAM SKETCH

The generation program is a union of three components: a simple component, a symmetry component, and a repeated

component. The simple component, denoted as JzsimK, comprises of various CSG operations. The symmetry component,

Jflip-unionθf (zsym)K, is implemented using the flip-union operator. The repeated component, Jfor-loopθd ,C (zrepeat)K, is

implemented using the for-loop operator. All sub-components JzsimK, JzsymK, and JzrepeatK, involve multiple CSG operations

on simple primitive shapes such as squares and circles, using the straight-line-coding formulation. In addition, we incorporate

gate parameters θαsym
and θαrepeat

to control which components are included as

Jshape-programK(p⃗) = max(JzsimK(p⃗), αsym × Jflip-unionθf (zsym)K(p⃗), αrepeat × Jfor-loopθd ,C (zrepeat)K)

αsym = 1(θαsym
>= 0)

αrepeat = 1(θαrepeat
>= 0).

E.1.3. BALANCED TRAINING LOSS

To prevent models from becoming stuck in sub-optimal local optimums that fit only a portion of the training data, we employ

a balanced training loss that adjusts the weights of samples based on the model’s performance on them. Specifically, the loss

is designed to as

L(θ, ϕ) = Et∼T



weight(t ; θ, ϕ)
∑

(x ,y)∈Dt

Loss(x , y ; θ, ϕ)



 .

We use the chamfer distance to measure the performances of models, cd(t ; θ, ϕ), and adjusts the weights of samples

accordingly: weight(t ; θ, ϕ) = 1 − max
(

1− cd(t; θ,φ)
threshold

, 0
)

. In practice, we set the threshold to be 0.95 based on our

preliminary experimental results.

E.2. Experimental Setup

We utilize the same CNN encoder and MLP decoder as UCSGNet (Kania et al., 2020). The program sketch includes one

simple component, two symmetry components, and one repeated component. Each of their sub-components has 20 lines of

codes in addition to the 32 transformed primitive shapes, including 16 circles and 16 squares. The maximum count of the

for-loop operator is 3. We use the same dataset as UCSGNet (Kania et al., 2020) which consists of 8000 CAD shapes in

three categories, chair, desk, and lamps (Sharma et al., 2018).
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Baselines. We compare with (Jones et al., 2022; Sharma et al., 2022; Kania et al., 2020; Sharma et al., 2018).

Metrics. We assess reconstruction accuracy via Chamfer distance between the ground truth shape and the output of the

synthesized program.

E.3. More Experimental Results

Table 5. More 2D results. (NEAR’s pathological behavior on these problems is to loop forever because it can fit a shape arbitrarily well

with increasingly long partially completed programs, thus it never terminates with a completed program. HOUDINI’s enumeration is

inapplicable due to continuous parameters in affine transforms)

Method Chamfer Distance

Name Train-mode Test-beam-size No-refinement Test-time-refinement

CSG-Net Supervised+RL 10 1.14 0.41

CSG-NETSTACK Supervised+RL 10 1.02 0.34

PLAD LEST+ST+WS 10 0.811 -

UCSGNet Unsupervised 1 0.32 -

REINFORCE RL 1 inf -

NEAR Unsupervised 1000 N/A Pathological behavior

HOUDINI Unsupervised - N/A N/A

Terpret Unsupervised 1 N/A 4.76±2.22

ROAP (ours) Unsupervised 1 0.21 -

Figure 9. Qualitative results of 2D furniture silhouettes. Top, input silhouette. Middle, reconstruction. Bottom, parts used.

More reconstruction results are visualized in Figure 11.

F. 3D Reconstruction

F.1. Task Statement

Our Domain Specific Language for graphics programs includes the ability to intersect and union shapes; reflect shapes

over principal axes; a for loop that repeatedly translates its loop body; and affine transformations upon basic parts. Each

graphics program is a function from a point in space (R3) to a boolean indicating whether that point is inside or outside of

the object.

F.2. Method

F.2.1. QUADRATIC PRIMITIVE SHAPES

Our program’s expressive capacity is enhanced by the integration of curved primitive shapes, defined using a combination of

two quadratic functions. The first function dictates the surface geometry, while the second performs a warp transformation.

The signed distance function that defines the surface geometry is presented as follows:

Dθg (p⃗) = max(θTg [p2
x , p

2
y , p

2
z , |px |, |py |, |pz |]− 1, 2|px | − 1, 2|py | − 1, 2|pz | − 1).

This formulation ensures that the primitive shapes do not exceed the dimensions of a 1× 1× 1 box by utilizing the last

three linear surfaces. Additionally, the use of absolute value functions guarantees symmetry across the x, y, and z planes.
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This formulation not only allows for the representation of basic shapes such as boxes and spheres, but also enables the

representation of more complex, curved primitive shapes with greater representation power.

Similar to affine transformations, quadratic warp transformations fθw can be represented using a coordinate mapping function,

as demonstrated below:

fθw (p⃗)x =
px − tx

sx
fθw (p⃗)y = py

fθw (p⃗)z = pz ,

where

θw = [θs ; θt ; θα]

αx = 1(θα >= 0)

sx = αx · (θ
T
s [py , pz , p

2
y , p

2
z , pypz ]) + 1

tx = αx · (θ
T
t [py , pz , p

2
y , p

2
z , pypz ]).

The warp transformation allows for the representation of irregular shapes, such as the mattock shape depicted in Figure 1, by

applying quadratic transformations to the coordinate x based on the coordinates y and z . The parameter αx serves as a gate

function that controls the degree of transformation. Note that, due to the symmetry properties of quadratic surfaces, the

transformation of x is equivalent to transforming y and z .

F.2.2. SHAPE LIBRARY

To enhance the efficiency of primitive learning and grounding, we incorporate a shape library that is shared across tasks.

The library comprises 128 warp transformations and 128 quadratic surface formulations, resulting in a total of 16,384

primitive shapes. The shape library retrieval mechanism is designed similarly to vector quantization. In particular, the shape

library include parameters Θw ∈ R
128×|θw | for warp transformations and Θg ∈ R

128×|θg | for quadratic surfaces. For each

query q⃗ ∈ R
|θg |+|θw |, it will return a primitive shape with the warp transformation parameter Θw [argmaxΘw q⃗ [: |θw |]]

and the quadratic surface parameter Θg [argmaxΘg q⃗ [−|θg | :]]. To enable training via gradient descent, we implement a

probabilistic relaxation of the retrieval mechanism:

αw = (gumbel-)softmax(Θw q⃗ [: |θw |])

θw = αT
wΘw

αg = (gumbel-)softmax(Θp q⃗ [−|θg | :])

θg = αT
g Θg .

The implicit function of the softly retrieved primitive shape is then Dθg (f
−1
θw

(p⃗)).

F.2.3. CSG AND FLIP-UNION OPERATIONS

The CSG operations are defined in the same way as in the 2D case as outlined in Appendix E.1.1. The flip-union operation

is an extension of its 2D counterpart, with the added dimension of flipping points against a plane defined by θf [p⃗; 1] = 0.

In practice, we set θf [−1] = 0 to ensure that the plane passes through the origin.

F.2.4. PROGRAM SKETCH

The shape generation program is a symmetry of a sub-component that involves multiple CSG operations on learned primitives

retrieved from a shared shape library. The CSG operations are formulated as straight-line coding.

F.3. Experimental Setup

We utilize the same 3D-CNN encoder and MLP decoder as UCSGNet (Kania et al., 2020). The program sketch is a symmetry

of a sub-component that has 20 lines of code in addition to the 128 learned primitive shapes, retrieved from the shared shape
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library. We use the preprocessed dataset ShapeNet provided by (Chen et al., 2020). It includes 643 volumes of voxelized

shapes and samples 16384 points as a ground truth with a higher probability of sampling near the surface for training. In the

7/8 voxelized input setting, we randomly crop one-octant of the voxels by setting their values to zero. In the 1/2 voxelized

input setting, we randomly sample planes as a, b, c ∼ uniform(0, 1) and setting half of the voxels to zero, i.e., those voxels

with coordinates p⃗ such that apx + bpy + cpz > 0.

F.4. More Experimental Results

Note that our goal is to study the qualitative behavior of our system and contrast with other general-purpose program

synthesizers, not to set a new state-of-the-art for ShapeNet. ShapeNet has received over 7 years of attention from the deep

learning and computer vision communities, who have built sophisticated yet specialized 3D reconstruction networks and

training regimes (Genova et al. (2020) is representative in its sophistication).

Figure 10. Results on 3D where the system inputs a voxel field with a random subset cropped out (left models), from which it synthesizes

a program (right models) that approximates the ground-truth shape (middle point cloud). Our model can be trained to complete partial

geometry with a variety of different subsets taken out. Cropping out more of the input voxels makes the problem harder. Tbl. 2 reports

quantitative results contrasting the easiest regime (full voxel inputs) vs the hardest regime (an entire random half plane cropped).

More reconstruction results are visualized in Figure 12, Figure 13, Figure 14.

G. More Comments

Our goal is to make progress on basic neurosymbolic problems: starting from perception, and absent symbol-level

supervision, how can we discover basic symbolic abstractions together with the symbolic programs which manipulate them?

Although our experiments confirm that ROAP might be on the right track for solving these problems, our method has

important limitations. ROAP cannot operate without a reasonably-sized training corpus of programming tasks, although

the fact that it does not need to supervise on source code helps address this limitation. Fundamentally, ROAP assumes

end-to-end gradient descent is the right approach, which means that program execution must be relaxed and differentiated. It

is not clear that differentiable program induction can handle sophisticated programming constructs, such as data structures

and recursion (Feser et al., 2017), at least in its current form. Thus we especially hope ROAP helps spur more fundamental
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progress on differentiable program relaxation techniques.
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Figure 11. 2D Results
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Figure 12. Full Voxelize Inputs
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Figure 13. 7/8 Voxelize Inputs
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Figure 14. 1/2 Voxelize Inputs
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