
Efficient Surrogate Gradients for Training Spiking Neural Networks

Hao Lin 1 * Shikuang Deng 1 2 * Shi Gu 1 2

Abstract

To guide the shape optimization in applying sur-

rogate gradients for training SNN, we propose

an indicator k, which represents the proportion

of membrane potential with non-zero gradients

in backpropagation. Further we present a novel

k-based training pipeline that adaptively makes

trade-offs between the surrogate gradients’ shapes

and its effective domain, followed by a series

of ablation experiments for verification. Our al-

gorithm achieves 68.93% accuracy on the Ima-

geNet dataset using SEW-ResNet34. Moreover,

our method only requires extremely low external

cost and can be simply integrated into the existing

training procedure.

1. Introduction

Spiking Neural Networks (SNN) have gained increasing

attention in recent years due to their biological rationale

and potential energy efficiency as compared to the com-

mon real-value based Artificial Neural Networks (ANN).

SNN communicates across layers by spiking signals. On

the one hand, this spiking mechanism turns multiplicative

operations to additive operations, increasing the inference

procedure’s efficiency. On the other hand, it introduces an in-

trinsic issue of differentiability, which makes training SNNs

more challenging. At present, the method for obtaining

practical SNNs can be roughly divided into three categories:

converting a pretrained ANN to SNN (Sengupta et al., 2019;

Deng & Gu, 2020; Li et al., 2021a; Bu et al., 2021), train-

ing with biological heuristics methods (Hao et al., 2020;

Shrestha et al., 2017; Lee et al., 2018), and training with

BP-like methods (Wu et al., 2018; Zheng et al., 2020; Li

et al., 2021b; Yang et al., 2021).

The purpose of this work is to optimize the SNN train-

ing pipeline by adaptively altering the shape of surrogate

*Equal contribution 1University of Electronic Science and Tech-
nology of China 2 Shenzhen Institute for Advanced Study, UESTC.
Correspondence to: Shi Gu <gus@uestc.edu.cn>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

gradient in order to control the effective domain for the

surrogate gradients. We introduce an index k to denote the

proportion of membrane potential with non-zero gradients

in backpropagation and present a technique to control the

proportion of non-zero gradients (CPNG) in the network.

The CPNG technique modifies the shape of surrogate gra-

dients during network training, progressively approaching

the δ-function while maintaining the index k steady within

an effective range to ensure training stability. Finally, each

layer succeeds in finding a surrogate gradient shape that

makes a better balance between the approximation error to

the δ-function with the size of effective domain than the

fixed-shape surrogate gradients. It’s worth mentioning that

our strategy only incurs minor additional costs during the

training phase and has no effect on the inference phase. We

verify the compatibility of CPNG to the existing mainstream

SNN infrastructures such as VGG (Simonyan & Zisserman,

2014), ResNet (He et al., 2016), and Sew-ResNet (Fang

et al., 2021). In all reported comparative experiments, train-

ing with CPNG gives more accurate models than training

with vanilla surrogate gradients. Our main contributions can

be summarized as follows:

• We identify and investigate the impact of the shape

of surrogate gradients on SNN training. Our finding

characterizes a special representative power for SNN

that can be utilized to improve its performance.

• We propose a statistical indicator k for the domain

efficiency of surrogate gradients and a k-based train-

ing method CPNG that adjusts the shape of surrogate

gradients through the training process, driving the sur-

rogate gradients close to the theoretical δ-function with

ensured trainability on sufficiently large domains.

• Our CPNG method improves classification accuracy

on both static image datasets including CIFAR10, CI-

FAR100 and ImageNet, as well as event-based image

datasets such as CIFAR10-DVS. We achieve an accu-

racy of 68.93% in the experiment that trains ImageNet

on Sew-ResNet34.

2. Preliminary

Through out the paper, we use bold letters to denote ma-

trices and vectors, superscripts to identify specific layers,

1

Efficient Surrogate Gradients for Training Spiking Neural Networks

subscripts to denote specific neurons, and indexes to identify

specific moments.

2.1. Leaky Integrate-and-Fire Model

We use the Leaky Integrate-and-Fire (LIF) module for spik-

ing neurons. Formally, given the pre-synaptic input (denoted

by c
(l)
i [t+ 1]) of the ith neuron in the lth layer at time step

t+ 1, we can model the iterative process in LIF as

c
(l)
i [t+ 1] =

N(l−1)
∑

j

w
(l)
ij s

(l−1)
j [t+ 1], (1)

u
(l)
i [t+ 1] = τu

(l)
i [t](1− s

(l)
i [t]) + c

(l)
i [t+ 1], (2)

s
(l)
i [t+ 1] = H(u

(l)
i [t+ 1]− Vth). (3)

Here, N (l−1) is the number of neurons in the (l−1)th layer,

s
(l−1)
j [t + 1] is the output spike of the jth neuron in the

(l − 1)th layer at time t+ 1, w
(l)
ij is the weight between jth

neuron in (l − 1)th layer and ith neuron in lth layer, u
(l)
i [t]

is the membrane potential of the ith neuron in the lth layer

at time t, τ is the membrane potential attenuation factor,

H(·) is the step function, and Vth is the activation thresh-

old. When the membrane potential of a neuron exceeds the

activation threshold, a spike is released and the membrane

potential of the current neuron is set to zero.

2.2. Surrogate Gradient Function

There are various surrogate gradient shapes adopted by pre-

vious work (Wu et al., 2018; Neftci et al., 2019). In this

work, we used triangle-like function, rectangular-like func-

tion and arctan-like function to verify the effectiveness of

CPNG. These functions are described below:

φtriangle(x) =

{

β(1− β|x|) if |x| < 1/β
0 otherwise

, (4)

φrectangular(x) =

{

β if |x| < 1/(2β)
0 otherwise

, (5)

φarctan(x) =
β

1 + (πβx)2
, (6)

where β represents the maximum gradient value of current

surrogate gradient function. Notably, the surrogate gradient

satisfy
∫ +∞

−∞
f(x) = 1, which is also the property of the

δ-function.

3. Method

3.1. Shape Parameters and Effective Domain Indicator

Shape Parameters. Intuitively, increasing the shape pa-

rameter β of surrogate gradients would drive it closer to

the δ-function. One might expect to adopt a very high β

0 50 100 150 200 250 300
Epochs

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

=0.25
=0.5
=1.0
=1.5
=2.0

Figure 1. Test accuracy of different β when threshold is 1.0.

Figure 2. Membrane distribution of each layer in experiment train-

ing ResNet19 on CIFAR10.

-3 -2 -1 0 1 2 3

0.00

0.08

0.16

0.24

0.32

0.40

β
1

β
1

Figure 3. The proportion of neurons with non-zero gradient under

a surrogate gradient with a certain β.

to obtain SNN for a good performance. We first exam-

ine whether this intuitive approach is possible. We trained

VGG16-structured SNN (replace ReLU with LIF, and use

average pooling) on CIFAR100 using triangle-like surrogate

gradient with β set from 0.25 to 2 respectively. As shown

in Fig. 1, the test accuracy increases when β varies from

0.25 to 1.0 but remains at 1.0% when β is set to 1.5 and

2.0, indicating that properly increasing β may benefit the

training but arbitrarily increasing β will drive the training

collapse.

In fact, these results unveil that efficient training of SNNs

requires not only the approximation to the δ-function but

also the insurance for the surrogate gradients to work. Thus

2

Efficient Surrogate Gradients for Training Spiking Neural Networks

it is necessary to employ a dynamic shape-changing strategy

rather than using a fixed-shape surrogate gradient. This

issue is also covered by (Li et al., 2021b) as well and was

owed to the lack of adaption to the dataset variation.

Effective Domain Indicator.

To quantitatively guide the choice of β, we propose a sta-

tistical indicator to denote the percentage of membrane po-

tentials that fall into the domain of surrogate gradients. As

illustrated in Fig. 2, the distribution of membrane poten-

tials on each layer takes the normal shape. Thus, for the

simplicity of calculation, we regard the membrane poten-

tial distribution of all neurons within the same layer as a

Gaussian one. By calculating the mean µ and the standard

deviation σ of the membrane potential before this layer re-

leases spikes, we can obtain the proportion of the neuron

with a non-zero gradient during a certain iteration (the area

between the red lines in Fig. 3). For a given β, the effec-

tive gradient domain of triangle-like surrogate gradient is

[Vth − 1/β, Vth + 1/β], we can obtain the definite integral

of the current normal distribution in this effective gradient

domain, which is the Effective Domain Indicator k:

k =

∫ Vth+1/β

Vth−1/β

1√
2πσ

e−
(x−µ)2

2σ2 dx. (7)

For each layer, we record the membrane potential of all neu-

rons in every time step (a tensor shaped like batchsize-by-

timestep-by-channels-by-H-by-W) and calculate the mean

and variance. Based on this indicator k, we can then ef-

fectively determine to what extent we can tune the β while

ensuring that there are enough membrane potentials located

within the effective range of surrogate gradients to make the

training progress.

3.2. CPNG Method

In this section, we will cover how to combiningly optimize

β and k to maximize the effectiveness of surrogate gradients.

To train the network successfully, there must be sufficient

membrane potential values in the effective domain of the

surrogate gradient, i.e., k must be large enough. The most

extreme case is β → 0, which gives k → 1. Obviously,

this is not an optimal solution as it introduces substantial

error for the gradients. If we reasonably restrict the effective

interval of the surrogate gradients, it is possible to drive the

SNN to select those more essential membrane potentials for

backpropagation.

We also need to ensure that the new k does not make the

network difficult to train, for this, CPNG sets the target k of

each layer to the smallest k that has occurred in the current

layer during the training iteration, rather than an artificial

goal. If the network can be trained when the smallest k
appears, then the network should still be trained after we

adjust the k and maintain the smallest k. When using CPNG,

Algorithm 1 Control the Proportion of Non-Zero Gradient

Input: SNN model with L layer, current iterator epoch e,

klimit, and vector krecorder: store each layer’s smallest k
Output: Each layer’s surrogate gradient parameter β
if e == 0 then

for l = 1, 2, · · ·L do

calculate current k by Eqn.7 for layer-l and store at

krecorder[l]
end for

else

for l = 1, 2, · · ·L do

calculate current kcur by Eqn.7 for layer-l
if krecorder[l] <klimit then

krecorder[l] = klimit

else if kcur <krecorder[l] then

krecorder[l] = kcur

end if

kmin = krecorder[l]
if kmin ̸= kcur then

use kmin to update β using binary search method.

end if

end for

end if

return β for each layer

we expect the network parameters to have been reasonably

updated, that is, the network has traversed the whole dataset

and has minimal training loss at the current moment. This

can reduce the misleading of data randomness to CPNG.

For example, if we use CPNG once per batch, the network

parameters are mostly affected by the first few batches in the

early stages of network training, and the statistical indicator

k obtained by using such network parameters will have a

lot of randomnesses.

CPNG computes the smallest k of each layer during the

iteration process as kmin and records it. If the k value of a

certain layer rises after an epoch, CPNG adjusts the k value

of the current layer to kmin by increasing the β, otherwise,

keep the current β fixed and update kmin. Since the kmin of

each layer of neurons may be different, different layers may

have different surrogate gradient shapes. In addition, we

set a safe lower bound klimit. When k falls below the lower

bound, CPNG will pause adjusting the current neuron until

the k of the current neuron exceeds the lower bound. The

CPNG algorithm is detailed in Algo.1.

3.3. The Cost of CPNG Method

The extra cost of CPNG occurs in two steps: (1) collecting

the mean and variance of the membrane potential before

releasing the spikes of each layer; (2) altering the β using

the indicator k. In our experiment, we only use the mean

and variance of one batch to calculate the indicator k, which

3

Efficient Surrogate Gradients for Training Spiking Neural Networks

makes the cost of the first step in the same order of mag-

nitude as the batch normalization (Ioffe & Szegedy, 2015)

operation. For the latter step, we provide a binary search

method that solves the problem very fast, and further opti-

mization algorithms can further improve the solution speed.

Quantitatively, in the VGG16+CIFAR100 experiment, it

takes an average of 1.7GFLOPs to obtain the output corre-

sponding to an input without CPNG, and the first step of

CPNG will only add 5.59× 10−3 additional GFLOPs. Us-

ing CPNG once per epoch takes an average of 3.3 seconds

of overhead (1.57% of total training time).

4. Experiment

To verify the effectiveness of the CPNG method, we provide

groups of comparative experiments (Sec. 4.2) and compare

CPNG with existing works in Sec. 4.3. More experimental

results are presented in the appendix.

4.1. Implementation Details

All the SNN architectures include the tdBN layer (Zheng

et al., 2020) with the average-pooling layer, and compared

to their ANN versions, we replace the activation function

ReLU with LIF. Our experiment settings, such as optimizer,

learning rate, are detailed in Appendix. A. Except for ap-

plying the CPNG method at the end of each epoch, all other

conditions, such as learning rate, batch size, etc., are consis-

tent. We used TIT (Deng et al., 2022) when training CIFAR,

which reduces the training time by initializing the SNN with

a smaller simulation length.

Table 1. klimit Experiments on ResNet19+CIFAR100.
klimit — 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Accuracy 74.05% 74.66% 74.66% 74.66% 73.96% 74.24% 74.02% 73.89%

4.2. Performance improvement with CPNG

First we explored the effect of different klimit on CPNG, Tab.

1 shows that we may don’t need to focus too much on klimit.

When klimit is 0.1-0.3, it can bring about a 0.61% improve-

ment. In our experiments, we set klimit to 0.2 uniformly.

Additionally, we tested the applicability of CPNG to various

surrogate gradient functions. For surrogate gradients with

non-zero gradient everywhere, such as arctan, we directly

use [Vth − 1/β, Vth + 1/β] as the integration interval to

calculate the indicator k, then use Algo. 1 to solve new β.

Finally, we verify the compatibility of CPNG with existing

direct training methods TET (Deng et al., 2022)(Tab. 2). In

all experiments, CPNG can achieve better results. It is worth

mentioning that the improvement brought by CPNG is not

due to bad counterpart. For example, in the experiment

of using TET to train CIFAR100, we can achieve 75.36%

accuracy without using CPNG in our experimental setting.

Table 2. Examine CPNG under various conditions.
Dataset Method Architecture Time Step Accuracy

CIFAR100

Triangular ResNet19 2 73.71±0.005%

Triangular+CPNG ResNet19 2 74.38±0.005%

Rectangular ResNet19 2 72.35±0.002%

Rectangular+CPNG ResNet19 2 73.63±0.026%

ArcTan ResNet19 2 71.46±0.080%

ArcTan+CPNG ResNet19 2 72.43±0.035%

Triangular+TET ResNet19 2 75.36±0.049%

Triangular+TET+CPNG ResNet19 2 75.90±0.001%

Table 3. Result of training spiking neural network.
Dataset Method Architecture Time Step Accuracy

CIFAR10

STBP-tdBN (Zheng et al., 2020) ResNet19 6 93.16%

ANN-to-SNN (Li et al., 2021a) ResNet20 32 64 128 94.78% 95.30% 95.42%

ANN-to-SNN (Bu et al., 2021) ResNet20 8 16 32 89.55% 91.62% 92.24%

Dspike (Li et al., 2021b) ResNet18 2 4 6 93.13% 93.66% 94.25%

TET (Deng et al., 2022) ResNet19 2 4 6 94.16% 94.44% 94.50%

CPNG ResNet19 2 93.79±0.002%

CPNG ResNet19 4 94.14±0.009%

CPNG ResNet19 6 94.10±0.005%

CIFAR100

Diet-SNN (Rathi & Roy, 2020) VGG16 5 69.67%

ANN-to-SNN (Li et al., 2021a) VGG16 32 64 128 73.55% 76.64% 77.40%

ANN-to-SNN (Bu et al., 2021) VGG16 8 16 32 73.96% 76.24% 77.01%

Dspike (Li et al., 2021b) ResNet18 2 4 6 71.68% 73.35% 74.24%

TET (Deng et al., 2022) ResNet19 2 4 6 72.87% 74.47% 74.72%

CPNG VGG16 5 71.32±0.20%

CPNG ResNet19 2 74.40±0.005%

CPNG ResNet19 4 75.29±0.001%

CPNG ResNet19 6 75.37±0.056%

CIFAR10-DVS

Dspike (Li et al., 2021b) ResNet18 10 75.40%

TET(Deng et al., 2022) VGGSNN 10 83.17%

CPNG ResNet18 10 76.5±0.007%

CPNG + TET VGGSNN 10 83.27±0.162%

ImageNet

ANN-to-SNN (Li et al., 2021a) ResNet34 32 64 128 64.54% 71.12% 73.45%

ANN-to-SNN (Bu et al., 2021) ResNet34 16 32 64 59.35% 69.37% 72.35%

Sew-ResNet (Fang et al., 2021) Sew-ResNet34 4 67.04%

TET (Deng et al., 2022) Spiking-ResNet34 6 64.79%

TET (Deng et al., 2022) Sew-ResNet34 4 68.00%

CPNG Sew-ResNet34 4 68.93%

4.3. Comparison to Existing Works

In this section, the experimental results we report all use

triangle-like surrogate gradient. On some datasets, the cur-

rent SOTA conversion method performs better than direct

training, but they need lengthy simulation time steps, espe-

cially on the ImageNet dataset. Our main purpose is not to

chase SOTA, but to demonstrate the effectiveness of CPNG

itself and the compatibility of CPNG with other methods.

The results of the experiment are shown in Tab. 3.

5. Conclusion

This work proposes a new perspective for directing the shape

change of the surrogate gradient, we propose a statistical

indicator k that guides the shape change of the surrogate

gradient, and propose the CPNG method for modifying

the shape of the surrogate gradient during training while

guaranteeing the proportion of membrane potential with

non-zero gradients. It’s possible that the failure to produce

satisfactory results when pulling surrogate gradient directly

to δ-function is due to a failure to meet the premise that

the network can be trained normally. In other words, there

may exists a trade-off between the approximation to the

δ-function and the effective domain of gradients under the

given dataset, and CPNG helps us approach the equilibrium

point.

4

Efficient Surrogate Gradients for Training Spiking Neural Networks

References

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T.

Optimal ann-snn conversion for high-accuracy and ultra-

low-latency spiking neural networks. In International

Conference on Learning Representations, 2021.

Deng, S. and Gu, S. Optimal conversion of conventional

artificial neural networks to spiking neural networks. In

International Conference on Learning Representations,

2020.

Deng, S., Li, Y., Zhang, S., and Gu, S. Temporal effi-

cient training of spiking neural network via gradient re-

weighting. arXiv preprint arXiv:2202.11946, 2022.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and

Tian, Y. Deep residual learning in spiking neural net-

works. arXiv preprint arXiv:2102.04159, 2021.

Hao, Y., Huang, X., Dong, M., and Xu, B. A biologically

plausible supervised learning method for spiking neural

networks using the symmetric stdp rule. Neural Networks,

121:387–395, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings

in deep residual networks. In European conference on

computer vision, pp. 630–645. Springer, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In International conference on machine learning, pp. 448–

456. PMLR, 2015.

Lee, C., Panda, P., Srinivasan, G., and Roy, K. Training

deep spiking convolutional neural networks with stdp-

based unsupervised pre-training followed by supervised

fine-tuning. Frontiers in neuroscience, 12:435, 2018.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free lunch

from ann: Towards efficient, accurate spiking neural

networks calibration. arXiv preprint arXiv:2106.06984,

2021a.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S.

Differentiable spike: Rethinking gradient-descent for

training spiking neural networks. Advances in Neural

Information Processing Systems, 34, 2021b.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient

learning in spiking neural networks: Bringing the power

of gradient-based optimization to spiking neural networks.

IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Rathi, N. and Roy, K. Diet-snn: Direct input encoding with

leakage and threshold optimization in deep spiking neural

networks. arXiv preprint arXiv:2008.03658, 2020.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. Going

deeper in spiking neural networks: Vgg and residual

architectures. Frontiers in neuroscience, 13:95, 2019.

Shrestha, A., Ahmed, K., Wang, Y., and Qiu, Q. Stable

spike-timing dependent plasticity rule for multilayer un-

supervised and supervised learning. In 2017 international

joint conference on neural networks (IJCNN), pp. 1999–

2006. IEEE, 2017.

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-

temporal backpropagation for training high-performance

spiking neural networks. Frontiers in neuroscience, 12:

331, 2018.

Yang, Y., Zhang, W., and Li, P. Backpropagated neighbor-

hood aggregation for accurate training of spiking neural

networks. In International Conference on Machine Learn-

ing, pp. 11852–11862. PMLR, 2021.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. Going

deeper with directly-trained larger spiking neural net-

works. arXiv preprint arXiv:2011.05280, 2020.

5

Efficient Surrogate Gradients for Training Spiking Neural Networks

A. More Experiment Details

In this section, we provide more experimental details. We use cosine decay to gradually reduce the learning rate to 0 and

the initial β for all experiments is 1.0. In the last batch (a fixed batch randomly selected at the beginning), the mean and

variance of the membrane potential are additionally stored in the forward process, then the stored mean and variance are

used to obtain a new β according to Algo. 1. Hyperparameters are shown in the table 4.

Table 4. Experiment Setting

Experiment CIFAR100 CIFAR10 CIFAR-DVS (ResNet18) CIFAR-DVS (VGG11) ImageNet

learning rate 0.1 0.1 0.01 0.001 0.03

weight decay 1e-4 1e-4 4e-5 4e-5 4e-5

momentum 0.9 0.9 0.9 —- 0.9

optimizer sgd sgd sgd adam sgd

warm-up False False False False False

batch size 256 256 72 72 256

B. Results of Comparative Experiment

Only the results of CPNG on the CIFAR100 dataset are shown in Sec. 4.2, while the results on more datasets are presented

in Tab. 5. For all comparative experiments, using CPNG can yield better results than not using CPNG.

C. Surrogate Gradient Shapes of Different Layers

Fig. 4 describes the change of k during the training process. CPNG does control the rise of k during the training process and

makes it stabilize at the end. Fig. 4 also shows that we don’t need to pay too much attention to klimit. klimit only provides a

guarantee in extreme cases, but extreme cases do not necessarily appear during the network training process.

Figure 4. In the experiment of ResNet19+CIFAR100, the proportion of non-zero gradient membrane potentials of neurons in different

layers without CPNG (a) and with CPNG (b).

We show the final β of some experiments in Fig. 5. Various layers’ β are different, which demonstrates that various layers

match distinct surrogate gradient shapes as a result of their varying membrane potential distributions. CPNG eventually

increases the β of most layers. Compare to CPNG, randomly increasing the β can make the network difficult to train (Fig.

1). Even with β set to 1.5, which most of the neuron layers shown in Fig. 5a can approach or reach, the network is still

difficult to train. This demonstrates that it is safe to increase β using CPNG, while it is unsafe to increase β arbitrarily.

6

Efficient Surrogate Gradients for Training Spiking Neural Networks

Table 5. Examine CPNG on various surrogate gradients.

Dataset Method Architecture Time Step Accuracy

CIFAR10

Triangular ResNet19 2 93.73±0.015%

Triangular+CPNG ResNet19 2 93.77±0.003%

Triangular ResNet19 4 94.07±0.002%

Triangular+CPNG ResNet19 4 94.14±0.009%

Triangular ResNet19 6 93.99±0.002%

Triangular+CPNG ResNet19 6 94.10±0.005%

Rectangular ResNet19 2 92.51±0.038%

Rectangular+CPNG ResNet19 2 92.92±0.014%

ArcTan ResNet19 2 92.12±0.016%

ArcTan+CPNG ResNet19 2 92.84±0.024%

Triangular+TET ResNet19 2 93.76±0.006%

Triangular+TET+CPNG ResNet19 2 93.81±0.006%

CIFAR100

Triangular ResNet19 2 73.71±0.005%

Triangular+CPNG ResNet19 2 74.38±0.005%

Triangular ResNet19 4 75.06±0.005%

Triangular+CPNG ResNet19 4 75.37±0.010%

Triangular ResNet19 6 75.00±0.016%

Triangular+CPNG ResNet19 6 75.40±0.056%

Rectangular ResNet19 2 72.35±0.002%

Rectangular+CPNG ResNet19 2 73.63±0.026%

ArcTan ResNet19 2 71.46±0.080%

ArcTan+CPNG ResNet19 2 72.43±0.035%

Triangular+TET ResNet19 2 75.36±0.049%

Triangular+TET+CPNG ResNet19 2 75.90±0.001%

Triangular VGG16 2 69.13±0.110%

Triangular+CPNG VGG16 2 71.14±0.098%

CIFAR10-DVS

Triangular+TET VGG11 10 82.93±0.116%

Triangular+TET+CPNG VGG11 10 83.27±0.162%

Triangular ResNet18 10 75.8±1.787%

Triangular+CPNG ResNet18 10 76.5±0.007 %

Rectangular ResNet18 10 74.3±0.053%

Rectangular+CPNG ResNet18 10 75.0±0.772 %

ArcTan ResNet18 10 70.8±0.345%

ArcTan+CPNG ResNet18 10 70.87±0.002 %

Triangular+TET ResNet18 10 80.37±0.616%

Triangular+TET+CPNG ResNet18 10 80.43±0.309‘ %

Figure 5. a: Final β of each layer in VGG16 experiment, the initial β is 1.0. b: Final β of each layer in Sew-ResNet34 experiment, the

initial β is 1.0

7

