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Abstract

Survival analysis is a crucial semi-supervised task

in machine learning with significant real-world

applications, especially in healthcare. It is known

that survival analysis can be reduced to a ranking

task and be learnt with ordering supervision. Dif-

ferentiable sorting methods have been shown to

be effective in this area but are unable to handle

censored orderings. To address this, we propose

Diffsurv, which predicts matrices of possible per-

mutations that accommodate the ranking uncer-

tainty caused by censored samples. Our experi-

ments reveal that Diffsurv matches or outperforms

established baselines in various semi-simulated

and real-world risk prediction scenarios.

1. Introduction

Survival analysis plays a pivotal role in a many realworld

machine learning applications, spanning fields such as relia-

bility engineering, marketing, and insurance, with a particu-

larly significant impact in healthcare. The goal of survival

analysis is to predict the time until the occurrence of an

event of interest, such as death, based on a set of covariates.

In clinical studies, these include demographic variables such

as sex and age, but may also encompass more complex data

modalities such as medical images.

The concept of censoring is a distinguishing characteristic

that sets survival analysis apart from conventional machine

learning approaches. Censoring refers to situations where

an event time remains unobserved because a patient might

not have undergone the event by the time of data collection.

This can be due to a variety of reasons such as the study

period ending before all events of interest have occurred or

subjects leaving the study.

Overlooking censoring can skew predictions towards the

censoring event, rather than the event of interest. This bias
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becomes particularly noticeable when the study’s endpoint

can be inferred from the observed covariates, such as age.

In such cases, the predicted event times are likely to biased

towards the censoring event time, thereby neglecting the

actual event of interest (Kvamme & Borgan, 2023).

The Cox Proportional Hazards model is widely used for

handling censored data in survival analysis (Cox, 1972). The

model optimizes a partial likelihood function over ranked

data, considering only the order of events, not their exact

time of occurrence. As such, Cox’s partial likelihood serves

as a ranking loss, learning from the order of patients based

on their hazard of experiencing an event, not their exact

survival time.

Raykar et al. (2007) showed that Cox’s partial likelihood

(CPL) and ranking losses can be directly equated, with

both providing lower bounds to the concordance index,

the primary evaluation metric used in survival analysis.

Both losses are foundational to many survival deep learning

methodologies like DeepSurv Katzman et al. (2018) and

DeepHit Lee et al. (2018).

However, this relation operates under the assumption of

pairwise independence. This simplification, while practi-

cal, can de-emphasize the transitive properties inherent in

survival data. As shown by Goldstein & Langholz (1992),

larger risk set sizes can lead to more efficient estimators,

suggesting potential benefits in considering listwise ranking

losses (Cao et al., 2007). These losses optimize over lists of

values rather than individual pairs, thereby better capturing

the transitive dynamics of the data. Despite the similarities,

listwise losses have remained largely unexplored within the

field of survival analysis. This could be partly due to an

uncertainty around how to handle censoring.

We propose a new approach that takes advantage of recent

developments in continuous relaxations of sorting opera-

tions, allowing end-to-end training of neural networks with

ordering supervision (Grover et al., 2019; Blondel et al.,

2020; Petersen et al., 2021). This method incorporates a

sorting algorithm into the network architecture, where the

order of the samples is known, but their exact values are un-

supervised. With this, we introduce Diffsurv, an extension

of differentiable sorting methods that enables end-to-end

training of survival models with censored data. Briefly, our

contributions are summarised:
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Figure 1. Differentiable Sorting for Censored Time-to-Event Data. Inputs, in this case, SVHN images, are transformed into scalar values

through a neural network. A differentiable permutation matrix, P , is computed using sorting networks. The model can be optimized for

downstream tasks, such as risk stratification and top-k highest risk prediction, by using the matrix Qp of possible permutations based on

the observed events and censoring.

• Our primary contribution is the extension differentiable

sorting methods to account for censoring by introduc-

ing the concept of possible permutation matrices. (Sec-

tion 2.3)

• We demonstrate that differentiable sorting of censored

data enables the development of new methods with

practical applications, using the example of end-to-end

learning for top-k risk stratification. (Section 2.3)

• We investigate the role of transitivity in survival analy-

sis and show, through experiments with semi-simulated

data, that differentiable sorting networks can benefit

from this inherent property of the data. (Section 3)

• We empirically demonstrate that our new differen-

tiable sorting method matches or improves risk ranking

performance across multiple semi-simulated and real-

world censored datasets. (Section 3)

2. Methods

2.1. Censored data

A dataset with censored event times is summarized as D =
{ti,xi, δi}

N
i=1, where N is the total number of patients. For

a patient i, the time-to-event ti is the minimum of the true

survival time t∗i and the censoring time c∗i , with δi indicating

whether an event (t∗i ≤ c∗i , δi = 1) or censoring (t∗i > c∗i ,

δi = 0) was observed. Covariates are xi ∈ R
d representing

a 1-dimensional vector of size d but the methods discussed

here also generalise to higher dimensional tensors such as

image data.

2.2. Differentiable Sorting

In order to train models based on ordering information using

differentiable sorting algorithms (Petersen, 2022), we can

minimize the cross-entropy between the ground truth orders

represented by true permutation matrix Q and a doubly-

stochastic predicted permutation matrix P . This makes

it possible to interpret each element Pij of the predicted

permutation matrix as the predicted probability of permuting

from a randomly assigned rank i to a true rank j.

There are multiple methods of relaxing sorting algorithms

to produce P , we will follow Petersen et al. (2021) by

using differentiable sorting networks. Sorting networks

are a family of sorting algorithms that consist of two basic

components: wires and conditional swaps. Wires carry

values to be compared at conditional swaps, if one value is

bigger than the other, the values carried forward are swapped

around. For a random sample of patients to be ordered,

each layer of the sorting network can be considered an

independent permutation matrix Pl with elements given by

Pl,ii = Pl,jj = σ(zj−zi) and Pl,ij = Pl,ji = 1−σ(zj−zi).
(1)

These elements represent conditional swaps between two

patient risk values (zi, zj) and use a differentiable relaxation

of the step function such as the logistic-sigmoid, where

σ : x → 1
1+e−βx . The inverse temperature parameter β > 0

is introduced so when β → ∞ the functions tend to the

exact min and max functions. The indices being compared

are determined by the sorting network and the final predicted

probability matrix is the product of each layer of sorting

operations, P = (
∏n

l=1 P
⊺

l )
⊺
. For the base case, n = 2,

Diffsurv is equivalent to the pairwise ranking loss and Cox

partial likelihood. Further details on the relations between

Diffsurv and baselines is in Appendix A.2.

2.3. Diffsurv: Handling Censoring with Possible

Permutation Matrices

For risk sets of size 2, given proper case-control sampling,

it will always be possible to define a single ground truth

permutation matrix Q. However, when venturing to higher

risk set sizes, differentiable sorting methods can no longer

handle censoring since there is not a single ground truth per-

mutation matrix Q. We cannot determine the exact rank of
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Figure 2. For an example case (a) with two events ( , e1 and e5)

and multiple censored samples ( , c1, c3, c4, c6, c7) the uncertainty

in the possible permuted rankings (b) due to censoring is taken

into account to derive the possible permutation matrix Qp (c).

patients who are censored before another who experienced

an event. It is only possible to know the range of possible

ranks for which a patient should belong. In Figure 2, we

provide an illustration demonstrating the possible ranks for

number of censored and uncensored events.

Though we no longer have access to a single permutation

matrix, we may instead consider the set of all possible per-

mutation matrices, Q = {Q1,Q1, . . . ,Qκ}. In the best

case, all values are uncensored and |Q| = 1 and in the

worse case, when all patients are censored |Q| = n!. Our

primary contribution is to extended differentiable sorting

methods to censored ranks by discriminating between possi-

ble and impossible permutations.

We introduce a more computationally tractable representa-

tion of Q by defining the possible permutation matrix, Qp,

which is the element-wise maximum of every permutation

in Q,

Qqij = max{Q1ij ,Q2ij , . . . ,Qκij}. (2)

For survival analysis, it is possible to determine Qp in linear

time given a sorted list of event times ti and event indicators

δi. We will consider higher ranks to correspond with a

smaller time-to-event. Let us consider two scenarios:

1. For right-censored values, the only certainty is that

their rank must be lower than the ranks of preceding

uncensored events.

2. For uncensored values, we know that their rank must

be lower than all preceding uncensored events, and

higher than the ranks of all subsequent events.

With these observations, it’s straightforward to construct

Qp. If it’s feasible for patient i to permute to rank j, then

Qpij = 1, otherwise Qpij = 0. See Figure 2 (c) for a visual

representation of Qp.

Given the possible permutation matrix Qp and the predicted

permutation matrix P, the vector of probabilities p of a

value being ranked within the set of possible ranks can be

computed. Although the ground truth probabilities are un-

known, the range of possible ranks is known, and the model

can be optimized to maximize the sum of the predicted prob-

abilities of all possible ranks for each sample. Noted here

as the column-sum of the element-wise product ◦, between

Qp and P.

p =
n
∑

j=1

(Qp ◦P)i,j . (3)

The binary cross-entropy loss can then be easily applied

L =

n
∑

i=1

−yi log(pi)− (1− yi) log(1− pi) (4)

where yi indicates whether set of predicted ranks is possible

or impossible.

The introduction of the possible permutation matrix can be

used in conjunction with any differentiable sorting method

that outputs a doubly-stochastic permutation matrix. This

includes methods such as SinkhornSort from Cuturi et al.

(2019). Though, in this paper, we will restrict our focus the

discussed differentiable sorting networks.

Finally, we demonstrate how the algorithmic supervision of

sorting algorithms enables the development of novel meth-

ods in survival analysis, using the example of top-k risk

prediction. In practical settings, it is often not necessary to

rank all samples correctly. Rather, it is essential to identify

the samples with the highest risk, such as by a healthcare

provider, to prioritize care and interventions. With Diff-

surv, top-k risk prediction is straightforward to implement

by optimizing possible permutations within the top-k ranks,

whereby Qp is adjusted such that only the top-k patient’s

possible permutations are set to 1. Further details in Ap-

pendix B.

3. Experiments

In our experiments, we aim to assess the performance of

Diffsurv and compare it against the conventional Cox Par-

tial Likelihood (CPL) methods. Initially, we focus on con-

firming the importance of taking a listwise approach and

evaluating the ability of differentiable sorting networks to
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Table 1. Results for training on survSVHN with increasing risk set

size. Mean (standard deviation) c-index over 5 trails with different

seeds. † When n = 2 both methods are equivalent to the ranking

loss to up continuous relaxation of swap operation.

Risk set size 2† 4 8 16 32

Diffsurv .918 (.003) .934 (.002) .940 (.001) .943 (.002) .941 (.002)
Cox Partial Likelihood .913 (.002) .925 (.002) .931 (.002) .933 (.002) .930 (.003)

Table 2. Results for training on survSVHN while increasing tran-

sitivity. Metric is c-index. Mean performance over 3 trails with

different seeds. Restricted to a fixed batch size and risk set size of

32.
Number of Quantiles 2 4 8 16 32 64 128 ∞

Transitivity Ratio .0 .374 .657 .819 .908 .954 .975 .991

Diffsurv: Bitonic .643 .803 .882 .922 .933 .939 .939 .939
Diffsurv: Odd Even .646 .802 .883 .923 .935 .939 .940 .941

CPL: Ranked List .651 .803 .880 .909 .916 .920 .921 .920
CPL: Efron .647 .801 .871 .898 .904 .905 .909 .908
CPL: Breslow .648 .801 .871 .898 .904 .909 .907 .910

better capture the inherent transitivity in semi-simulated

data. Subsequently, we extend our analysis to compare

Diffsurv and its top-k extension across multiple publicly

available real-world datasets. Full details on experimental

setup including: datasets, baselines, network architectures,

training, evaluation and compute requirements can be found

in the Appendix D. In results tables, bold indicates signifi-

cant improvement (t-test, p ≤ 0.01).

Semi-synthetic survSVHN: Based on the Street View

House Numbers (SVHN) dataset (Netzer et al., 2011), we

simulate survival times akin to survMNIST (Pölsterl, 2019).

The increased complexity of SVHN over MNIST offers

a testbed which is better able to discern the performance

differences between methods. Each house number parame-

terizes time function from which survival times are sampled.

See Appendix E.1 and Figure 3.

We can examine the implications of inherent transitivity

within the data. Instead of parameterizing a time function

based on unique hazards derived from house numbers, we

group λi into distinct hazard quantiles. Each quantile en-

compasses a set of house numbers associated with a similar

hazard level. We then calculate the transitivity ratio, defined

as # of transitive triplets
# of triplets

, where a sampled triplet is considered

transitive if (λi > λj > λk).

This methodology provides us with a means to control the

degree of transitivity in our data. At one extreme, we might

categorize data into only two groups, representing the lower

and upper halves of house numbers, which results in a tran-

sitivity ratio of 0. At the other extreme, each house number

could constitute its own unique category (indicated by ∞),

leading to high transitivity.

Our results, summarized in Table 1, align with the expec-

tations laid out in Appendix A.2: both Diffsurv and CPL

Table 3. Results for real-world datasets. Mean (standard deviation).

Survival metric is c-index, Top 10% metric is top-k-score.

FLCHAIN NWTCO SUPPORT METABRIC MIMIC CXR

Size 6,524 4,028 8,873 1,904 377,110
Censored Proportion 69.9% 85.8% 32.0% 42.1% 60.9%

Survival

Cox Regression .750 (.083) .692 (.021) .598 (.010) .628 (.013) -
Random Survival Forest .789 (.011) .691 (.024) .614 (.009) .641 (.012) -
Cox Partial Likelihood .794 (.013) .709 (.015) .642 (.006) .698 (.011) .760 (.002)
Diffsurv .793 (.009) .703 (.026) .645 (.002) .684 (.011) .763 (.001)

Top 10% prediction

Cox Partial Likelihood .460 (.013) .390 (.068) .280 (.023) .249 (.065) .390 (.010)
CPL-TopK (Variant I) .469 (.007) .413 (.061) .479 (.016) .527 (.083) .408 (.008)
CPL-TopK (Variant II) .460 (.009) .413 (.054) .479 (.035) .487 (.058) .406 (.006)
Diffsurv .452 (.011) .395 (.082) .296 (.015) .331 (.102) .412 (.002)
Diffsurv-TopK .482 (.019) .421 (.065) .508 (.027) .533 (.092) .412 (.009)

methods perform similarly when the risk set size is at its

minimum (n = 2). However, with the expansion of the risk

set size, the performance of the two methods diverges, with

Diffsurv consistently outperforming CPL. Table 2 sheds

light on a potential reason for this divergence. As the num-

ber of quantiles is increased, thereby enhancing the degree

of transitivity within the data, Diffsurv-based methods start

to surpass CPL methods. This finding underscores the role

of transitivity in survival data and validates Diffsurv’s effec-

tiveness in encapsulating this inherent property.

Real-world datasets: We assess our methods on several

public datasets: Four small, popular real-world survival

datasets (FLCHAIN, NWTCO, SUPPORT, METABRIC)

(Kvamme et al., 2019) and the MIMIC IV Chest X-Ray

dataset (CXR) with death as the event (Johnson et al., 2019).

Further details in Appendix E.1.

The results presented in Table 3 demonstrates that Diff-

surv achieves equal to or better performance on all datasets

analyzed. Additionally, when Diffsurv is optimized for pre-

dicting the top 10% of highest risk individuals, it matches

or outperforms Cox’s partial likelihood on the real-world

datasets.

4. Conclusion

Diffsurv represents a new direction for survival analysis.

Extending differentiable sorting methods to censored data

notably improves survival predictions, matching or outper-

forming established CPL methods across various datasets.

Our experiments highlight the role of transitivity in rank-

ing and survival data, with sorting networks promoting a

transitive inductive bias. Beyond survival analysis, the in-

troduction of the possible permutations carries potential for

other tasks that involve ranking based on limited order in-

formation. Future work could explore its applicability to

non-proportional hazards and the impact of ties, as well as

the efficiency in recovering survival functions using meth-

ods like Breslow’s estimator.

4



Differentiable sorting for censored time-to-event data.

References

Antolini, L., Boracchi, P., and Biganzoli, E. A

time-dependent discrimination index for survival

data. Statistics in Medicine, 24(24):3927–3944,

2005. ISSN 1097-0258. doi: 10.1002/sim.2427.

URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/sim.2427. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.2427.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. Fast

differentiable sorting and ranking. In International Con-

ference on Machine Learning, pp. 950–959. PMLR, 2020.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. Learn-

ing to rank: from pairwise approach to listwise ap-

proach. In Proceedings of the 24th international confer-

ence on Machine learning, pp. 129–136, Corvalis Oregon

USA, June 2007. ACM. ISBN 978-1-59593-793-3. doi:

10.1145/1273496.1273513. URL https://dl.acm.

org/doi/10.1145/1273496.1273513.

Cox, D. R. Regression Models and Life-Tables. Journal of

the Royal Statistical Society. Series B (Methodological),

34(2):187–220, 1972. ISSN 0035-9246. URL https:

//www.jstor.org/stable/2985181. Publisher:

[Royal Statistical Society, Wiley].

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable Rank-

ing and Sorting using Optimal Transport. In Advances in

Neural Information Processing Systems, volume 32. Cur-

ran Associates, Inc., 2019. URL https://papers.

nips.cc/paper_files/paper/2019/hash/

d8c24ca8f23c562a5600876ca2a550ce-Abstract.

html.

Davidson-Pilon, C. lifelines: survival analysis in

Python. Journal of Open Source Software, 4(40):

1317, August 2019. ISSN 2475-9066. doi: 10.21105/

joss.01317. URL https://joss.theoj.org/

papers/10.21105/joss.01317.

Goldstein, L. and Langholz, B. Asymptotic Theory for

Nested Case-Control Sampling in the Cox Regression

Model. The Annals of Statistics, 20(4):1903–1928,

December 1992. ISSN 0090-5364, 2168-8966. doi:

10.1214/aos/1176348895. Publisher: Institute of Mathe-

matical Statistics.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic

optimization of sorting networks via continuous relax-

ations. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net, 2019. URL https:

//openreview.net/forum?id=H1eSS3CcKX.

Harrell, Jr, F. E., Califf, R. M., Pryor, D. B., Lee, K. L.,

and Rosati, R. A. Evaluating the Yield of Medical

Tests. JAMA, 247(18):2543–2546, May 1982. ISSN

0098-7484. doi: 10.1001/jama.1982.03320430047030.

URL https://doi.org/10.1001/jama.1982.

03320430047030.

Johnson, A. E. W., Pollard, T. J., Berkowitz, S. J.,

Greenbaum, N. R., Lungren, M. P., Deng, C.-y.,

Mark, R. G., and Horng, S. MIMIC-CXR, a de-

identified publicly available database of chest radio-

graphs with free-text reports. Scientific Data, 6(1):

317, December 2019. ISSN 2052-4463. doi: 10.1038/

s41597-019-0322-0. URL https://www.nature.

com/articles/s41597-019-0322-0. Number:

1 Publisher: Nature Publishing Group.

Katzman, J. L., Shaham, U., Cloninger, A., Bates, J.,

Jiang, T., and Kluger, Y. DeepSurv: personalized treat-

ment recommender system using a Cox proportional

hazards deep neural network. BMC Medical Research

Methodology, 18(1):24, February 2018. ISSN 1471-

2288. doi: 10.1186/s12874-018-0482-1. URL https:

//doi.org/10.1186/s12874-018-0482-1.

Kvamme, H. and Borgan, O. The brier score under admin-

istrative censoring: Problems and a solution. Journal of

Machine Learning Research, 24:1–26, 2023. Submitted

12/19; Revised 11/22; Published 1/23.

Kvamme, H., Borgan, Ø., and Scheel, I. Time-to-event pre-

diction with neural networks and cox regression. Journal

of Machine Learning Research, 20:1–30, 2019.

Lee, C., Zame, W., Yoon, J., and Schaar, M. V. D. DeepHit:

A Deep Learning Approach to Survival Analysis with

Competing Risks. Proceedings of the AAAI Conference

on Artificial Intelligence, pp. 8, 2018.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,

B., and Ng, A. Y. Reading digits in natural

images with unsupervised feature learning. In

NIPS Workshop on Deep Learning and Unsuper-

vised Feature Learning 2011, 2011. URL http:

//ufldl.stanford.edu/housenumbers/

nips2011_housenumbers.pdf.

Petersen, F. Learning with Differentiable Algorithms. PhD

thesis, University of Konstanz, 2022.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen, O.

Differentiable sorting networks for scalable sorting and

ranking supervision. In Meila, M. and Zhang, T.

(eds.), Proceedings of the 38th International Confer-

ence on Machine Learning, ICML 2021, 18-24 July

2021, Virtual Event, volume 139 of Proceedings of Ma-

chine Learning Research, pp. 8546–8555. PMLR, 2021.

URL http://proceedings.mlr.press/v139/

petersen21a.html.

5

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2427
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2427
https://dl.acm.org/doi/10.1145/1273496.1273513
https://dl.acm.org/doi/10.1145/1273496.1273513
https://www.jstor.org/stable/2985181
https://www.jstor.org/stable/2985181
https://papers.nips.cc/paper_files/paper/2019/hash/d8c24ca8f23c562a5600876ca2a550ce-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/d8c24ca8f23c562a5600876ca2a550ce-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/d8c24ca8f23c562a5600876ca2a550ce-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/d8c24ca8f23c562a5600876ca2a550ce-Abstract.html
https://joss.theoj.org/papers/10.21105/joss.01317
https://joss.theoj.org/papers/10.21105/joss.01317
https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=H1eSS3CcKX
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1001/jama.1982.03320430047030
https://www.nature.com/articles/s41597-019-0322-0
https://www.nature.com/articles/s41597-019-0322-0
https://doi.org/10.1186/s12874-018-0482-1
https://doi.org/10.1186/s12874-018-0482-1
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://proceedings.mlr.press/v139/petersen21a.html
http://proceedings.mlr.press/v139/petersen21a.html


Differentiable sorting for censored time-to-event data.

Petersen, F., Borgelt, C., Kühne, H., and Deussen, O. Mono-

tonic differentiable sorting networks. In Proc 10th Inter-

national Conference on Learning Representations (ICLR

2022), 2022a.

Petersen, F., Kuehne, H., Borgelt, C., and Deussen, O. Dif-

ferentiable top-k classification learning. In International

Conference on Machine Learning, pp. 17656–17668.

PMLR, 2022b.

Pölsterl, S. scikit-survival: A library for time-to-event anal-

ysis built on top of scikit-learn. Journal of Machine

Learning Research, 21(212):1–6, 2020. URL http:

//jmlr.org/papers/v21/20-729.html.

Pölsterl, S. Survival Analysis for Deep Learning, July 2019.

URL https://k-d-w.org/blog/2019/07/

survival-analysis-for-deep-learning/.

Raykar, V. C., Steck, H., Krishnapuram, B., Dehing-

oberije, C., and Lambin, P. On Ranking in Survival

Analysis: Bounds on the Concordance Index. In

Advances in Neural Information Processing Systems,

volume 20. Curran Associates, Inc., 2007. URL https:

//papers.nips.cc/paper/2007/hash/

33e8075e9970de0cfea955afd4644bb2-Abstract.

html.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-

ing for convolutional neural networks. In International

conference on machine learning, pp. 6105–6114. PMLR,

2019.

Yang, X., Abraham, L., Kim, S., Smirnov, P., Ruan, F.,

Haibe-Kains, B., and Tibshirani, R. Fastcph: Efficient

survival analysis for neural networks. In NeurIPS 2022

Workshop on Learning from Time Series for Health, 2022.

6

http://jmlr.org/papers/v21/20-729.html
http://jmlr.org/papers/v21/20-729.html
https://k-d-w.org/blog/2019/07/survival-analysis-for-deep-learning/
https://k-d-w.org/blog/2019/07/survival-analysis-for-deep-learning/
https://papers.nips.cc/paper/2007/hash/33e8075e9970de0cfea955afd4644bb2-Abstract.html
https://papers.nips.cc/paper/2007/hash/33e8075e9970de0cfea955afd4644bb2-Abstract.html
https://papers.nips.cc/paper/2007/hash/33e8075e9970de0cfea955afd4644bb2-Abstract.html
https://papers.nips.cc/paper/2007/hash/33e8075e9970de0cfea955afd4644bb2-Abstract.html


Differentiable sorting for censored time-to-event data.

A. Survival Analysis and its Relation to Ranking

A dataset with censored event times is summarized as D = {ti,xi, δi}
N
i=1, where N is the total number of patients. For

a patient i, the time-to-event ti is the minimum of the true survival time t∗i and the censoring time c∗i , with δi indicating

whether an event (t∗i ≤ c∗i , δi = 1) or censoring (t∗i > c∗i , δi = 0) was observed. Covariates are xi ∈ R
d representing a

1-dimensional vector of size d but the methods discussed here also generalise to higher dimensional tensors such as image

data.

The widely-used method for addressing censoring in survival analysis is the Cox Partial Likelihood (CPL) model, introduced

by Cox (1972). The CPL is designed to maximize the following general form:

L(θ) :=
∏

i:δi=1

fθ(xi)
∑

j:tj>ti
fθ(xj)

, (5)

where fθ is the hazard function, a score prediction function estimating the probability of an event at a particular time, given

input features xi. The product only includes uncensored patients, whereas the denominator term also includes censored

patients with tj > ti.

Reflecting the structure of survival data, the Cox Partial Likelihood (CPL) model compares individuals still ”at risk” at each

time point, similar to a nested case-control study. This directly shapes the likelihood equation in CPL, with the numerator

representing the hazard function for the event-experiencing individual, and the denominator summing over all individuals

still at risk.

Extensions of the Cox model, like (Katzman et al., 2018) and (Kvamme et al., 2019), have modified fθ = exp(θ · xi) to

relax the linear covariate interaction and proportional hazards assumptions. Introducing neural networks hθ to handle the

non-linearity, adjusting fθ to be fθ = exp(hθ(xi)), and to manage non-proportional hazards, they set fθ = exp(hθ(xi, ti)).

A.1. Pairwise Independence

Both of these previous works note that the risk set R = {j : tj > ti} is intractable for deep learning applications as it

considers all comparable patients. To mitigate memory constraints, we can sample a fixed-size risk set, denoted as R̃, such

that |R̃| = n < N . Kvamme et al. (2019) go further, arguing it is reasonable to take a constant sample size of 1 and include

the individual i in the risk set (such that n=2). This leads to the simplified loss of the form

L(θ) =
∏

i:δi=1

fθ(xi)

fθ(xi) + fθ(xj)
, j ∈ R \ {i}. (6)

Further, take the mean log partial likelihood to be

loss =
1

ne

∑

i:δi=1

log(1 + exp[hθ(xj)− hθ(xi)]), j ∈ R \ {i}, (7)

where ne is the number of non-censored events. In this simplified form, it can be seen that the partial likelihood only

considers the pairwise relative ordering or ranking of survival times.

The concordance index or c-index Harrell et al. (1982) is a commonly used as an evaluation for survival analysis methods

and is a generalization of the Area Under the Receiver Operating Characteristic Curve (AUROC) that handles right-censored

data. It is defined as

c-index :=
1

n

∑

i:δi=1

1(f(xi) < f(xj)), j ∈ R \ {i}. (8)

Raykar et al. (2007) first showed that the Cox’s partial likelihood is approximately equivalent to maximizing the concordance

index or c-index and that closer bounds can be found by minimizing the general ranking loss, with acceptable pairs

A = {(i, j) : δi = 1 ∧ tj > ti} and

ranking-loss :=
1

|A|

∑

(i,j)∈A

φ(fθ(xi)− fθ(xj)), (9)
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where φ is a function that relaxes the non-differentiable 1 of the c-index. From Equation (7) it can be seen that φ : x →
− log(1 + exp(−x)) = log(σ(x)). Here, we have shown that the simplifications to the partial likelihood made by Kvamme

et al. (2019) are equivalent to using the log-sigmoid ranking loss.

The key difference between ranking and partial likelihood losses comes when considering the assumption that it is reasonable

to take a constant sample size of 2 (one pair in the risk set) in the partial likelihood. This effectively introduces the

assumption that each pair (i, j) is independent of any other pair. However, this assumption seems puzzling given the inherent

transitivity of ranking (if i > j and j > k then i > k).

A.2. Differentiable Sorting Networks Relation to Ranking and Partial Likelihood

It is possible to directly relate differentiable sorting networks with ranking losses and partial likelihood. Expanding out the

cross entropy loss out we find

L =

n
∑

c=1

(

1

n

n
∑

i=1

qic log(pic)

)

, (10)

where qic = 1 only when i is the true rank otherwise 0. Each pic is always a function of the difference in pairs of inputs xi

and xj . This is complicated by the products of intermediate values a introduced by the sorting network but denoted as

pic =

n
∏

(ai,aj)∈Pl:l=1

σ(ai − aj) (11)

where Pl to denotes the set of comparisons to be made at each layer of the sorting network. With n = 2 and β = 1, a sorting

network only requires a single relaxed conditional swap and the loss returns to the same recognisable log-sigmoid ranking

loss in Equation (9), and Cox negative log partial likelihood in Equation (7).

Other relaxation of the step function can also be considered, Petersen et al. (2022a) show that the Cauchy distribution

preserves monotonicity which is desirable for optimization. Given this, we use the Cauchy distribution as our relaxation for

all experiments, where σ : x → 1
π

arctan(βx) + 1
2 .

B. Top-K risk prediction

Finally, we demonstrate how the algorithmic supervision of sorting algorithms enables the development of novel methods

in survival analysis, using the example of top-k risk prediction. In practical settings, it is often not necessary to rank all

samples correctly. Rather, it is essential to identify the samples with the highest risk, such as by a healthcare provider, to

prioritize care and interventions.

With Diffsurv, top-k risk prediction is straightforward to implement by modifying the loss such that the negative log-

likelihood of predicted top-k ranks in P is maximised for individuals with a possible permutation to any top-k rank

according to Qp.

First, let’s denote Tk as the set of values with a possible permutation to a top-k rank, derived from the ground truth possible

permutation matrix Qp:

Tk = {i|

k
∑

j=1

Qpij > 0} (12)

Importantly, due to the uncertainty introduced by censoring, the set of individuals with a possible permutation to a top k

rank Tk can be arbitrarily large. For example, in case all individuals are censored, Tk is the set of all individuals. Then, the

top-k loss is described as:

Ltop-k = −
∑

i∈Tk

log





k
∑

j=1

Pij



 . (13)

This loss is minimized when the model correctly predicts a top-k rank for the indices in Tk. This represents the individuals

with possible permutations to the top-k highest risk ranks. Importantly, this loss function is optimized for the identification

of potential top-k high-risk individuals, without considering the specific order within these top-k ranks. To establish a

baseline for comparison with Diffsurv’s top-k risk prediction, we also introduce two variants of the Cox Partial Likelihood
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method. In the first variant, we adjust the likelihood term so that the product considers only the set of patients who have a

potential permutation to a top-k rank, according to the matrix of possible permutations Qp:

LCPL I =
∏

i:i∈Tk

fθ(xi)
∑

j:tj>ti
fθ(xj)

(14)

In the second variant, we further limit the set of patients to those who have both experienced an event and have a possible

permutation to a top-k rank:

LCPL II =
∏

i:δi=1∧i∈Tk

fθ(xi)
∑

j:Tj>Ti
fθ(xj)

. (15)

Note that the denominator term is unchanged in both variants and considers only comparable pairs and includes censored

patients Tj > Ti. Evaluation of top-k risk prediction is also complicated by the uncertainty due to censoring. For Diffsurv

and both variants of the Cox Partial Likelihood, we can first define the set of individuals predicted to be within the top-k

highest risk:

Pk = {i|rank(fθ(xi)) ≥ k} (16)

We can then define the fraction of how many of these individuals are in the set of possible top-k highest ranks Tk to evaluate

the top-k risk prediction performance:

top-k-score =
|Pk ∩ Tk|

|Pk|
(17)

In this work this only experiment with Odd Even and Bitonic sorting networks. Yet, it is worth highlighting recent

developments which utilize specialized sorting networks, such as splitter selection networks as in Petersen et al. (2022b).

C. Non-proportional Hazards

Our current implementation of Diffsurv operates under the proportional hazards assumption. While this may not fully

capture the intricacies of some survival analysis problems—particularly those involving non-proportional hazards—it does

not necessarily limit the model’s effectiveness in scenarios where the goal is to assess cumulative risk from a fixed index

date or from the date of an imaging study. This aligns with the necessity of time-dependent modifications to the C-index for

non-proportional models as indicated by Antolini et al. (2005).

If we are primarily interested in understanding the cumulative hazard of an event occurring rather than tracking changes

in the hazard over time, the assumption of proportional hazards becomes less pivotal. As such, Diffsurv and CPL remain

valuable tools for these cases.

Despite the current limitation of Diffsurv to proportional hazards, it is conceivable that an extension to accommodate

non-proportional hazards could be developed, similar to adaptations made for the CPL method.

For instance, as we briefly mentioned earlier, continuous-time extensions of partial likelihood can be used to enable non-

proportional hazards (Kvamme et al., 2019). Implemented by directly modeling temporal covariates as fθ = exp(hθ(xi, Ti)).

Another class of methods focuses on discretizing the time-to-event variable and modeling the probability mass function

(PMF) of event times. For instance, the DeepHit model Lee et al. (2018) employs a neural network architecture to learn the

relationships between input features and discretized time-to-event outcomes. Time discretization facilitates modeling of

non-proportional hazards but introduces two significant challenges: 1) sensitivity to the choice of time intervals, which can

affect the model’s accuracy and interpretability, and 2) increased computational complexity, as predictions must be made for

each time interval. These models can be computationally expensive, especially for deep learning-based models like DeepHit,

making them less suitable for high-dimensional and large-scale datasets, such as the imaging dataset used in this study.

Several future work proposals arise from these observations. First, differentiable sorting could explore the approach of

directly modeling temporal covariates, resulting in a time-parameterized predicted permutation matrix. Second, extending

Diffsurv to discrete time could be achieved by parameterizing a predicted permutation matrix for each time discretization.

D. Experiments

Baselines: We compare Diffsurv primarily against Cox’s Partial Likelihood, using the Ranked List implementation from

pycox (Kvamme et al., 2019). We include Efron and Breslow estimates of CPL from Yang et al. (2022) for survSVHN.
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Figure 3. Visual abstract of the survSVHN dataset.

For smaller datasets, we add non-deep learning baselines: Lifelines’ Cox Regression (Davidson-Pilon, 2019) and sksurv’s

Random Survival Forests (Pölsterl, 2020). We do not compare with DeepHit (Lee et al., 2018), since we do not model

non-proportional hazards. For an extended discussion see Appendix C.

Network Architectures: For both CPL and Diffsurv, we use a fixed neural network architecture depending on the dataset.

Small datasets utilize a single-layer neural network, survSVHN uses a ConvNet architecture as in Petersen et al. (2021), and

MIMIC IV CXR uses EfficientNet-B0 (Tan & Le, 2019).

Training and Evaluation: We employ AdamW for optimization. Validation approach varies: for smaller datasets, we apply

nested 5-fold cross-validation, while for imaging datasets we use train:val:test splits. We performed hyperparameter tuning

for learning rate, weight decay, batch size, and risk set size. In the case of imaging datasets, we maintained fixed values

for learning rate and weight decay. As in Petersen et al. (2021), we determine steepness as a function of the risk set size

n, β = 2n for odd-even and β = (log2 n)(1 + log2 n) for bitonic. The type of sorting network can either be bitonic or

odd-even and is determined during hyperparameter tuning. Further details on the experimental setup, including compute

time, are provided in Appendix E and at anon@git.com.

E. Training and evaluation

E.1. Datasets and Preprocessing

As in Goldstein & Langholz (1992) and Kvamme et al. (2019), we ensure that each risk set contains a valid risk set by

sampling controls for a given case. Each batch consists of a number of risk sets such that the input data has shape (batch

size, risk set size, covariate shape).

We provide an additional description of each small realworld dataset:

• FLCHAIN dataset: A dataset containing information on patients with monoclonal gammopathy of undetermined

significance (MGUS), focusing on serum free light chain (FLC) levels to study their prognostic significance in predicting

disease progression. Number of covariates: 8.

• NWTCO dataset: A dataset from a series of clinical trials on the treatment and outcomes of children with Wilms’

tumor, a type of kidney cancer, aiming to improve understanding of tumor biology and optimize treatment strategies.

Number of covariates: 9.

• SUPPORT dataset: A dataset from a multi-center study investigating the prognosis and treatment preferences of

seriously ill hospitalized adults, with the goal of improving end-of-life care and informing decision-making processes.

Number of covariates: 22.

• METABRIC dataset: A dataset comprising genomic and clinical data on breast cancer patients, focused on uncovering

novel molecular subtypes for more precise prognostication and personalized treatment strategies. Number of covariates:

9.

Covariate preprocessing follows (Kvamme et al., 2019), and includes standardising continuous variables and one-hot

encoding categorical variables.

MIMIC IV CXR: For the survival task, we extract death events from the MIMIC IV dataset. This is done by merging

the data on ”subject id”, ”study id”, and ”dicom id” with the patient table from MIMIC IV, and on ”subject id” with the
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admission table. For patients without a recorded date of death, censoring dates are be determined as 1 year after the last

recorded discharge date for each patient. It is important to note that the time-shift anonymization protocol employed in the

MIMIC-IV dataset, which, while preserving patient confidentiality, maintains the internal consistency of time intervals for

each patient’s data.

We exclude 29,345 images without any matches in the MIMIC IV patient table, 19,337 images taken after the latest found

discharge date and 55 images taken after a recorded date of death. Time to event is calculated as the number of days from

the image study date to either date of death or the censoring date. For MIMIC IV CXR, images undergo several standard

transformations: a random horizontal flip and a 15-degree rotation, resizing to 230 x 230 pixels, a 224 x 224 pixel center

crop, and conversion to grayscale with three output channels. The data is then transformed into tensors and normalized

using ImageNet’s mean and standard deviation values. Finally, the train:val:test split of 8:1:1 is done at the patient level

ensuring no images from a patient in the test set was found in the training data.

survSVHN: In this semi-synthetic dataset, each house number parameterizes a beta-exponential time function from which we

can sample survival times. The risk parameters or hazards λi are calculated as the logarithm of house numbers, standardized

and scaled for a mean survival time of 30. We introduce censoring by randomly selecting 30% of house numbers and

replacing true times with values sampled uniformly between (0, ti] (See Figure 3). A beta distribution used to sample from

the house number parameterized exponential time function uses a fixed value of 500 for both shape parameters. We follow

Petersen et al. (2021) by cropping the centered multi-digit numbers with a boundary of 30%, resizing it to a resolution of

64×64, and then selecting 54 × 54 pixels at a random location. For survSVHN the train:val:test split is provided by Netzer

et al. (2011) and is 230,755:5,000:13,068.

E.2. Model Architecture and Hyperparameters

For the smaller real-world datasets, the hazard function fθ is small fixed Multi-layer Perceptron network with 1 hidden layer

and 64 hidden nodes. We also apply a fixed dropout rate of 0.1. Learning rate, weight decay, batch set size and risk set size

were found using a grid search across the possible values in Table 4.

Table 4. Hyperparameter values for small real-world datasets.

Hyperparameter Values

Learning rate [0.1, 0.01, 0.001, 1e-4]

Weight decay [0.1, 0.01, 0.001, 1e-4, 1e-5, 0]

(Batch size, risk set size) [(32, 8), (16, 16), (8, 32), (4, 64), (1, 256)]

For imaging datasets, we fix learning rate and weight decay for both CPL and Diffsurv. For both survSVHN and MIMIC IV

CXR, we use a fixed learning rate of 10−4 and weight decay of 10−5. We also used early stopping with a patience of 20

epochs and a maximum of 100,000 training steps.

survSVHN: As per Petersen et al. (2021), the model consists of four convolutional layers (with a 5x5 kernel size and 32, 64,

128, 256 filters), each followed by ReLU and max-pooling (2x2 stride). The architecture concludes with a fully connected

layer of 64 units, another ReLU, and a one-unit output layer.

MIMIC IV CXR: Here, we use EfficientNet-B0 with an added linear layer for single output. We first train the linear

prediction layer alone for the initial 2,000 steps. After this, we continue training, this time including both the EfficientNet-B0

and the linear prediction layer.

For the results in Table 1, we keep a fixed batch size of 100. We also provide a comparison where the number of values is

fixed in each batch in Table 6.

Note that during evaluation, the sorting network is not used since we only need to evaluate the ranks of the trained risk scores.

Similarly, case-control sampling is not used. We measure the ranking performance of the models using the concordance

index.

Further implementation details and the best hyperparameters for each dataset are provided at anon@git.com.
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E.3. Compute Requirements

Experiments on smaller real-world datasets are compact enough to facilitate effective training on a CPU, with each

variant—including the CPH baselines—completing per experiment in less than 20 minutes. However, the larger imaging

datasets require more significant computational power. In the most demanding case, the MIMIC IV CXR experiments, run

on an 11GB NVIDIA GeForce GTX 1080 Ti, took roughly 18.5 hours per experiment. Both Diffsurv and CPH exhibited

comparable run times, with the Bitonic variant being the fastest by a margin of approximately 6 minutes. All neural network

baselines were implemented using PyTorch and PyTorch Lightning. Although measures were taken to reduce compute time

and complexity—such as using half-precision and distributed data parallel (DDP) training strategies—these training times

are far from optimized.

F. Sorting Networks

There are multiple different types of sorting networks each with varying complexity. The ability to implement networks

with the divide-and-conquer paradigm allows for sorting networks that scale more efficiently. Examples for Odd-Even and

Bitonic sorting networks with n = 8 are shown in Figure 4 and Figure 5. The latter allows construction of networks with

size complexity O(nlog2n) verses the O(n2) in Odd-Even networks.

It is worth emphasising these are not neural networks. They are called ”networks” because they are typically represented as

diagrams that show how the items are compared and swapped as they are being sorted. Differentiable sorting networks do

not introduce any additional parameters that need to be updated during optimization.

Figure 4. Example Odd-even sorting network of size 8.

Figure 5. Example Bitonic sorting network of size 8.

G. Additional Results

In Table 5 and Table 6, additional results for the MIMIC IV CXR and survSVHN imaging datasets are provided. Here, we

maintain a constant total number of samples in each batch, which means that an increase in risk set size is compensated by a

decrease in batch size. These results offer further understanding of the balance required between these two variables. We

observed, while larger risk set sizes generally improve performance for both Diffsurv and CPH, the benefits tend to taper off

as training can become more unstable and noisy with smaller batch sizes.
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Table 5. Additional Results for MIMIC IV CXR. Mean and standard deviation of the C-index for different methods and batch risk set

sizes. Bold indicates a significantly higher result with t-test and p ≤ 0.01.† Most significant across all Batch Size, Risk Set Sizes.

Method Batch Size, Risk Set Size

64, 2 4, 32 16, 8 1, 128

Diffsurv: Bitonic 0.761 (0.001) 0.761 (0.000) 0.763† (0.001) 0.761 (0.002)

Diffsurv: Odd-Even 0.761 (0.002) 0.756 (0.002) 0.761 (0.001) 0.749 (0.001)

CPL: Ranked List 0.760 (0.002) 0.755 (0.002) 0.758 (0.003) 0.755 (0.002)

Table 6. Additional results for survSVNH keeping the number of events per batch equal. Mean (and standard deviation) over 5 trials with

different seeds. Metric is C-index. Bold indicates a significantly higher result with t-test and p ≤ 0.01.

Method
Batch Size, Risk Set Size

512, 2 128, 8 32, 32 8, 128

Diffsurv: Odd-Even 0.934 (0.001) 0.940 (0.001) 0.941 (0.001) 0.933 (0.002)

Diffsurv: Bitonic 0.931 (0.001) 0.942 (0.001) 0.940 (0.00166) 0.928 (0.001)

CPL: Breslow 0.905 (0.001) 0.897 (0.001) 0.910 (0.002) 0.919 (0.001)

CPL Efron 0.904 (0.002) 0.898 (0.002) 0.909 (0.003) 0.918 (0.003)

CPL: Ranked List 0.921 (0.001) 0.922 (0.003) 0.921 (0.001) 0.917 (0.003)
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