
Distributions for Compositionally Differentiating Parametric Discontinuities

Jesse Michel 1 Kevin Mu 2 Xuanda Yang 3 Sai Praveen Bangaru 1 Elias Rojas Collins 1 Gilbert Bernstein 2

Jonathan Ragan-Kelley 1 Michael Carbin 1 Tzu-Mao Li 3

Abstract

Computations in computer graphics, robotics, and

probabilistic inference often require differentiat-

ing integrals with discontinuous integrands. Pop-

ular differentiable programming languages do not

support the differentiation of these integrals. To

address this problem, we extend distribution the-

ory to provide semantic definitions for a broad

class of programs in a programming language,

Potto. Potto can differentiate parametric discon-

tinuities under integration, and it also supports

first-order functions and compositional evalua-

tion. We formalize the meaning of programs us-

ing denotational semantics and the evaluation of

programs using operational semantics. We prove

correctness theorems and show that the opera-

tional semantics is compositional, enabling sep-

arate compilation and overcoming compile-time

bottlenecks. Using Potto, we prototype a differen-

tiable renderer with separately compiled shaders.

1. Introduction

The advent of deep learning frameworks supporting auto-

matic differentiation—the automated computation of deriva-

tives of a function given just the definition of the function

itself—within general-purpose programming languages has

opened up new avenues to build large-scale applications for

differentiable programming, including in deep learning, op-

timization, and uncertainty quantification. However, these

techniques have traditionally been limited to continuous

processes, excluding a variety of natural phenomena that

are typically modeled as discontinuous functions.

*Equal contribution 1CSAIL, MIT, 32 Vassar Street in Cam-
bridge, Massachusetts 02139, USA 2Computer Science and En-
gineering, University of Washington, University of Washington,
3800 E Stevens Way NE, Seattle, WA 98195, USA 3Computer Sci-
ence and Engineering, University of California San Diego, 9500
Gilman Drive, La Jolla, CA 92093, USA. Correspondence to: Jesse
Michel <jmmichel@csail.mit.edu>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

(a) Depth shader (b) Depth shader deriv.

(c) Thresh. Lambert shader (d) Thresh. Lambert deriv.

Figure 1. Potto can separately compile and swap between different

shaders, making the design process tractable. The sparsity pattern

of the derivative shaders are displayed—the derivative shader is

displayed red, say, if the derivative is nonzero in the red channel.

Such discontinuous functions arise in computer graphics

and vision (Li et al., 2018), robotics (Hu et al., 2020; Ban-

garu et al., 2021), and probabilistic inference (Lee et al.,

2018). In computer graphics, discontinuities arise from

object boundaries, occlusion, and sharp changes in color.

Robot controllers and computer simulations often model

contact, which introduces discontinuities. In probabilistic

inference, the models often have discontinuities, e.g., a prob-

abilistic simulation of a controller that regulates room tem-

perature is discontinuous due to switching a heater on/off.

Consider a program that models contact, such as a simula-

tion or animation of a robot walking (Stengel, 1994; Witkin

& Kass, 1988). Such a program might compute the inte-

gral
∫
1

0
[x < θ] dx, where the Iverson bracket [P ] is one if

P is true and zero otherwise. The parameter θ represents

the time the ball hits the wall and x < θ is a parametric

discontinuity. Although the derivative with respect to θ

is Dθ

∫
1

0
[x < θ] dx = [0 < t < 1], popular differentiable

programming languages return zero because they do not ac-

count for parametric discontinuities (Bradbury et al., 2018;

Paszke et al., 2019).

Teg (Bangaru et al., 2021) automatically differentiates para-

metric discontinuities, providing an unbiased estimation of

1



Distributions for Compositionally Differentiating Parametric Discontinuities

(a) Scene (b) Shaders change how light attenuates (c) The derivative w.r.t. light position

Figure 2. We implement a differentiable renderer in Potto and render a scene depicting a single line of light pointing diagonally downward

(a) with different light attenuations (b). Swapping between different shaders is an example of how designers modify a scene for an artistic

effect. In Potto, programs and their derivatives (c) can be separately compiled and composed to efficiently swap among shaders.

a program with integrals. However, their approach requires

global program transformations, leading to long compile

times. Our programming language, Potto, avoids these prob-

lems leading to an 81x and 441x speedup in compile time

in an application to image stylization.

Moreover, global program transformations prevent separate

compilation—the ability to compose compiled code snip-

pets. For a renderer, this means that when an artist tweaks

the scene, such as changing the color of an object (swap

between shaders), the whole scene must be recompiled.

Figure 1 shows the result of using a renderer implemented

in Potto to swap between two shaders applied to the same

triangle in 3D space. Both the triangle and shaders can be

separately compiled and composed in Potto, but not in Teg.

2. Related Work

Most automatic differentiation methods ignore discontinu-

ities, such as if-else branches, during differentiation (Paszke

et al., 2019; Bradbury et al., 2018). Normally, doing so

is correct almost everywhere (Lee et al., 2020). However,

when the problem specification involves integration, as in

computer graphics, robotics, and probabilistic inference,

ignoring the discontinuities produces incorrect gradients.

In practice, these incorrect gradients results in slower con-

vergence or even divergence during optimization (Bangaru

et al., 2021; Li et al., 2018; Lee et al., 2018).

Many works account for parametric discontinuities by hand-

deriving application-specific derivatives (Loper & Black,

2014; Li et al., 2018; Hu et al., 2020; Loubet et al., 2019;

Bangaru et al., 2020). Emerging research accounts for para-

metric discontinuities: Lee et al. (2018) proposes a solution

for affine discontinuities, while Yang et al. (2022); Liu et al.

(2019); Chen et al. (2019); Petersen et al. (2022) support a

wider class of discontinuities but introduces bias. In contrast,

Teg (Bangaru et al., 2021) directly samples discontinuous

surfaces that arise from differentiation, providing an unbi-

ased, low-variance integral estimation.

Subsequent work uses distributional semantics to build

an equational theory, but lacks an operational seman-

tics (Azevedo de Amorim & Lam, 2022).

3. Case Study

We motivate our language by implementing a differentiable

renderer (de La Gorce et al., 2011; Loper & Black, 2014; Li

et al., 2018; Zhao et al., 2020; Li et al., 2020). Applications,

ranging from autonomous driving and robotics to CGI, use

differentiable renderers to e.g. recognize the 3D shapes of

cars, signs, and pedestrians, reconstruct the 3D scene for the

robot to interact with, and motion capture actors’ faces.

A renderer is a program which takes in the geometry and

color of each object in the scene and outputs an image.

Renderers are built out of programs called shaders. A dif-

ferentiable renderer computes the change in the color of a

pixel with respect to the change of a parameter, such as the

location or color of an object.

Figure 2 depicts images generated by a differentiable ren-

derer implemented in Potto. The scene contains a single

object—a line of light shining diagonally downward. The

color of a single pixel is the average of light within the pixel

area:

f(c, s) =

∫
1

0

∫
1

0

s(x, y, c)[x+ y + c ≥ 0] dxdy (1)

We use the convention that the origin is in the top left corner

and the y-axis points down. The half plane [x+y+c ≥ 0] is

the visibility shader for the light. The function s : R3 → R

is the color shader for the light that depends on the point

(x, y) and parameter c.

The goal is to optimize the parameter c so that the renderer

generates a pixel with color a. We use gradient descent to

minimize the loss function L(c, s) = (f(c, s)− a)
2

with

derivative DcL(c, s) = 2(f(c, s)− a)Dcf(c, s), where Dc

represents the partial derivative with respect to c. A differ-

entiable renderer computes the derivative Dcf(c, s).

In order to easily iterate on designs, a user should be able to

efficiently replace the visibility shader and the color shader

to change the shape and color of the object, respectively.

Differentiating Parametric Discontinuities We give an

informal description of the differentiating parametric dis-

continuities and give a formal treatment in the following

2



Distributions for Compositionally Differentiating Parametric Discontinuities

section. In Figure 2, the image using the constant shader

s(x, y, c) = 1 shows a half plane and its derivative is a line

along the boundary of the half plane. Since the derivative

is the change resulting from perturbing the parameter c in

f(c, s). The half-plane shifts diagonally downward, making

the boundary the only region with a non-zero derivative.

The linear shader s(x, y, c) = (
√
2(x+ y + c) + 2)−1 and

the quadratic shader s(x, y, c) = (
√
2(x + y + c) + 2)−2

have the same boundary contribution to the derivative, but

also have a non-zero interior derivative.

The derivative of the renderer decomposes into the interior

and boundary contributions:

Dcf(c, s) =

∫

S

Dcs(x, y, c)[x+ y + c ≥ 0]
︸ ︷︷ ︸

interior

+ s(x, y, c)δ(x+ y + c)
︸ ︷︷ ︸

boundary

d(x, y).
(2)

The Dirac delta distribution δ in the integrand can be thought

of as zero everywhere and approaching infinity along the

line x+ y + c = 0. This shows up as the diagonal yellow

line in the derivative of all three shaders.

Automatic Differentiation of Parametric Discontinuities

A naı̈ve implementation would discretize the integral to a

sum and use automatic differentiation to compute the deriva-

tive of the discretization. The resulting program would

approximate the interior term of Equation 2, but ignore the

second due to the Dirac delta distribution, producing an

incorrect result.

Recent work accounts for both terms by introducing an in-

tegral primitive to a differentiable programming language,

Teg (Bangaru et al., 2021). Teg performs a series of code

transformations such as distributing multiplication over addi-

tion, performing a global change of variables, and applying

a global symbolic rule to eliminate Dirac delta terms.

This global rewriting approach fundamentally relies upon

having the syntax of the whole expression. These rules are

not compositional and do not allow for separate compilation.

As a result, they are a barrier to performance.

For example, separately compiling shaders is critical

in video games, animation, photo-editing software, and

computer-generated imagery, allowing users/designers to

see multiple variants of a scene or video without requiring

compiling the whole scene again. Likewise, users often run

a differentiable renderer with multiple shaders.

Our differentiable programming language, Potto, has an

integral primitive and can separately compile programs. We

implement the renderer specified in Equation 1 and demon-

strate separate compilation by writing the renderer (and

visibility shader) and color shaders in separate files.

The following code snippet shows a differentiable renderer:

1 # renderer.po

2 from half_plane import cond

3 def renderer(c, shader)

4 integral ([0,1],[0,1])

5 ((shader (x,y)) c)

6 *(((cond (x, y)) c)?1:0) d(x,y)

7 drenderer = deriv(renderer)

Derivatives, integrals, and discontinuities Line 2 im-

ports the invertible, differentiable function (diffeomorphism)

\(x,y).\c.(x+y+c,x-y+c) from the half_plane.

diffeo file, where the \(x, y) notation declares an

anonymous function with parameters x and y. For instance,

in Python, we write lambda x, y:... to declare an

anonymous function. It takes in variables of integration x, y

and variable c, and returns an affine combination of the three.

Line 4 declares the integral to be estimated (Equation 1).

The first argument specifies that x, y each range from zero to

one, the second argument is the integrand, and the d(x,y)

declares that x and y are variables of integration. In Line

5, the deriv operator specifies the dual number derivative

of drenderer. The derivative drenderer takes in pairs

of an input and an infinitesimal perturbation to that input

and produces a pair of the outputs for the evaluation of the

renderer and its derivative.

1 # color_shaders.po

2 dconst_shader = deriv(\(x,y).\c.1)

3 dlin_shader = deriv(\((x,y).\c.

4 1/(sqrt(2)*(x+y+c)+2))

5 dquad_shader = deriv(\(x,y).\c.

6 1/(sqrt(2)*(x+y+c)+2)ˆ2)

The three shaders are first-order functions that model how

quickly light attenuates. The const_shader corresponds

to no attenuation—intensity is invariant to the distance from

the light. While in lin_shader and quad_shader, the

attenuation is linear and quadratic, respectively.

1 # main.po

2 from color_shaders import dconst_shader,

dlin_shader, dquad_shader

3 from renderer import drenderer

4 for dshader in [dconst_shader,

dlin_shader, dquad_shader]:

5 print(drenderer(dc=(-2,1), dshader))

A differentiable renderer In main.po, we compose the

derivative of the renderer with the derivative of each of the

color shaders to compute the color of a single pixel. We

evaluate the resulting expression at a base point −2 with

infinitesimal 1, producing a number representing the deriva-

tive. We can use the differentiable renderer in a derivative-

based optimization procedure, such as gradient descent, to

find the value of c that results in a pixel that is most similar

to the pixel provided.

3



Distributions for Compositionally Differentiating Parametric Discontinuities

Figure 3. A bar chart, where smaller is better, comparing Potto to Teg on a rendering task for image stylization. Potto is so much faster in

compile time that the bars on not visible. Compile time was the bottleneck in Teg.

Separate compilation Potto separately compiles (calcu-

lates the derivative of) the renderer and color shaders. As a

result, it only compiles the renderer and each of the shaders

once. In contrast, Teg must compile the renderer three

times—once for each of the shaders.

4. Potto programming language

We introduce a differentiable programming language, Potto,

that is the first with an integration primitive, to have first-

order functions, and to support compositional evaluation. A

first-order function takes in values of base types and pro-

duces values of base types. For instance, in Potto, a user

can specify a function of type real to real, but not a function

that that takes in another function as an argument. Com-

positional evaluation means that a compiler can evaluate

programs independently, passing values between modules.

We present a first-order functional language for program-

ming with distributions. The language has constants c,

variables x, sums and products of arbitrary terms t1 + t2
and t1 · t2, conditionals if t1 then t2 else t3, diffeomor-

phic conditionals if ⌊Ψ⌋(x1, . . .) then t1 else t2, integrals

int t d(x1, . . . , xn), pairs (t1, t2), and applications of first-

order functions ⌊f⌋(t). The function Ψ is a differentiable,

invertible function, taking in variables of integration and

free parameters written as (x1, . . .) and f is a piecewise

differentiable function with piecewise invertible pieces. The

type system (not shown) prevents variables of integration

from occurring in the condition t1 of if t1 then t2 else t3.

Denotational semantics Building on our extension of

distribution theory, we present a novel denotational seman-

tics for programs and derivatives of programs. We prove

a soundness theorem that shows that the derivative of the

denotation is equivalent to the separately defined derivative

denotation under mild conditions.

Operational semantics We present a novel operational se-

mantics that we prove accords with the denotational seman-

tics, providing unbiased estimates of the denoted program.

The operational semantics is compositional and therefore

supports separate compilation.

Implementation and applications We implement a pro-

totype system, Potto, and use it to build a renderer with

multiple shaders. We show that the renderer supports sepa-

rate compilation, enabling interactive workflows that would

otherwise be computationally intractable.

5. Empirical Results

Figure 1 depicts a differentiable ray tracing renderer of

a triangle tilted in 3D space, colored using two different

shaders that can be separately compiled. These toon shaders

are 1) a z-depth shader that assigns color to objects based on

their distance from the camera, and 2) a thresholded Lambert

shader that models the reflectance of a matte surface under

a point light in front of the triangle (Lake et al., 2000).

We compare the performance of Potto to previous work,

Teg (Bangaru et al., 2021), on a rendering benchmark for

image stylization. The results in Figure 3 show that Potto

outperforms Teg in all areas: compile time, evaluation time,

total time, and AST size. Most striking is the 88x and 441x

compile time speed up of Potto relative to Teg.

6. Conclusion

In our work, we extend the scope of differentiable program-

ming languages to handle integrals and parametric discon-

tinuities. Potto supports compositional evaluation and as a

result, transformations that were once global can be made

local. This enables separate compilation. We envision that

our theoretical approach and programming language design

will lead to more expressive differentiable programming

languages that better serve application domains including

graphics, robotics, and probabilistic inference.

4



Distributions for Compositionally Differentiating Parametric Discontinuities

References

Azevedo de Amorim, P. H. and Lam, C. Distribution Theo-

retic Semantics for Non-Smooth Differentiable Program-

ming. arXiv e-prints, 2022.

Bangaru, S., Michel, J., Mu, K., Bernstein, G., Li, T.-M.,

and Ragan-Kelley, J. Systematically differentiating para-

metric discontinuities. In Special Interest Group on Com-

puter Graphics and Interactive Techniques, 2021.

Bangaru, S. P., Li, T.-M., and Durand, F. Unbiased warped-

area sampling for differentiable rendering. Special Inter-

est Group on Computer Graphics and Interactive Tech-

niques in Asia, 2020.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,

C., Maclaurin, D., and Wanderman-Milne, S. JAX: com-

posable transformations of Python+NumPy programs,

2018.

Chen, W., Gao, J., Ling, H., Smith, E., Lehtinen, J., Jacob-

son, A., and Fidler, S. Learning to predict 3d objects

with an interpolation-based differentiable renderer. In Ad-

vances In Neural Information Processing Systems, 2019.

de La Gorce, M., Fleet, D. J., and Paragios, N. Model-based

3D hand pose estimation from monocular video. IEEE

Trans. Pattern Anal. Mach. Intell., 2011.

Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-

Kelley, J., and Durand, F. DiffTaichi: Differentiable

programming for physical simulation. International Con-

ference on Learning Representations, 2020.

Lake, A., Marshall, C., Harris, M., and Blackstein, M. Styl-

ized rendering techniques for scalable real-time 3d anima-

tion. In International Symposium on Non-Photorealistic

Animation and Rendering, pp. 13–20, 2000.

Lee, W., Yu, H., and Yang, H. Reparameterization gradient

for non-differentiable models. In Neural Information

Processing Systems, 2018.

Lee, W., Yu, H., Rival, X., and Yang, H. On correctness of

automatic differentiation for non-differentiable functions.

In Neural Information Processing Systems, 2020.

Li, T.-M., Aittala, M., Durand, F., and Lehtinen, J. Differ-

entiable Monte Carlo ray tracing through edge sampling.

Special Interest Group on Computer Graphics and Inter-

active Techniques in Asia, 2018.

Li, T.-M., Lukáč, M., Michaël, G., and Ragan-Kelley, J. Dif-

ferentiable vector graphics rasterization for editing and

learning. Special Interest Group on Computer Graphics

and Interactive Techniques in Asia, 2020.

Liu, S., Li, T., Chen, W., and Li, H. Soft rasterizer: A differ-

entiable renderer for image-based 3d reasoning. The IEEE

International Conference on Computer Vision (ICCV),

Oct 2019.

Loper, M. M. and Black, M. J. OpenDR: An approximate

differentiable renderer. In European Conference on Com-

puter Vision, 2014.

Loubet, G., Holzschuch, N., and Jakob, W. Reparameteriz-

ing discontinuous integrands for differentiable rendering.

Special Interest Group on Computer Graphics and Inter-

active Techniques in Asia, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-

son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

L., Bai, J., and Chintala, S. PyTorch: An imperative

style, high-performance deep learning library. In Neural

Information Processing Systems. 2019.

Petersen, F., Goldluecke, B., Borgelt, C., and Deussen,

O. GenDR: A Generalized Differentiable Renderer. In

IEEE/CVF International Conference on Computer Vision

and Pattern Recognition (CVPR), 2022.

Stengel, R. F. Optimal control and estimation. Courier

Corporation, 1994.

Witkin, A. and Kass, M. Spacetime constraints. Special

Interest Group on Computer Graphics and Interactive

Techniques, 1988.

Yang, Y., Barnes, C., Adams, A., and Finkelstein, A. Aδ:

Autodiff for discontinuous programs - applied to shaders.

In Special Interest Group on Computer Graphics and

Interactive Techniques, 2022.

Zhao, S., Jakob, W., and Li, T.-M. Physics-based differ-

entiable rendering: From theory to implementation. In

SIGGRAPH Courses, 2020.

5


