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Abstract

Simulation-based inference (SBI) methods tackle

complex scientific models with challenging in-

verse problems. However, SBI models often face

a significant hurdle due to their non-differentiable

nature, which hampers the use of gradient-based

optimization techniques. Bayesian Optimal Ex-

perimental Design (BOED) is a powerful ap-

proach that aims to make the most efficient use of

experimental resources for improved inferences.

While stochastic gradient BOED methods have

shown promising results in high-dimensional de-

sign problems, they have mostly neglected the

integration of BOED with SBI due to the difficult

non-differentiable property of many SBI simula-

tors. In this work, we establish a crucial connec-

tion between ratio-based SBI inference algorithms

and stochastic gradient-based variational infer-

ence by leveraging mutual information bounds.

This connection allows us to extend BOED to SBI

applications, enabling the simultaneous optimiza-

tion of experimental designs and amortized infer-

ence functions. We demonstrate our approach on

a simple linear model and offer implementation

details for practitioners.

1. Introduction

Many scientific models are defined by a simulator that de-

fines an output y determined by the inputs, or designs, to a

system, ξ, and parameters that define how the model trans-

forms the inputs to outputs, θ. Inferring a distribution of

parameters given data p(θ|y, ξ) is of central importance in

Bayesian statistics and can be seen as a form of solving

the inverse problem for a given simulator(Lindley, 1972).

In SBI, a simulator forms an implicit probability distribu-
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tion known as the likelihood p(y|θ, ξ) that is used with the

prior of the model parameters p(θ) to estimate the poste-

rior probability of the model parameters given the observed

data, p(θ|y, ξ) (Cranmer et al., 2020). Recent SBI methods

have use deep learning-based models to infer either the in-

tractable likelihood or posterior using density estimators for

both, or classifiers to estimate the likelihood-to-evidence

ratio,
p(θ|y,ξ)
p(θ|ξ) = p(y|θ,ξ)

p(y|ξ) = p(y,θ|ξ)
p(θ)p(y|ξ) .

However, inferring the likelihood, posterior, or ratio is

a computationally expensive process that depends on ob-

served data yo, to compute. Recent work questioned the

validity of this expensive computational process used in SBI

if using the wrong simulator for the true data generating pro-

cess (Cannon et al.). Naı̈ve conclusions can be made if using

the wrong model of the underlying scientific phenomenon,

or the model is not close enough to the real data generating

process, which motivates the use of optimal experimental

designs in SBI methods.

Bayesian optimal experimental design (BOED) has shown

promise as a way to optimize experiments given a model, the

simulator, and priors of the parameters of interest. BOED

works by determining the information gain of a proposed

experimental design, ξ, on the parameters of the model of

interest

IG(y, ξ) = H[p(θ)]−H[p(θ|y, ξ)]. (1)

The information gain can only be evaluated after an experi-

ment but another quantity, the Expected Information Gain

(EIG), I(ξ), can be used as a proxy for the information

gained in an experiment

I(ξ) ≜ Ep(y|ξ) [H[p(θ)]−H[p(θ|y, ξ)]] , (2)

The intuition behind this process is we must ask ourselves,

which experimental design and outcome would be most

surprising given what we assume, or know, about the system

when conducting the experiment. This can be rewritten into

the form of calculating the mutual information between the

observed data and unknown parameters

I(ξ) = MIξ(θ; y) = Ep(θ)p(y|θ,ξ)

[

log
p(y|θ, ξ)

p(y|ξ)

]

. (3)

Early BOED work focused on estimating the mutual infor-

mation then using that estimate as the surrogate function in
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an outer optimizer, such as Bayesian optimization (Foster

et al., 2019b; Kleinegesse & Gutmann, 2019). This double

loop of optimization was inefficient and lead to development

of methods to simultaneously optimize the design and mu-

tual information in a single optimization process. However,

this unified optimization depended on an unnormalized like-

lihood and posterior approximation (Foster et al., 2019a) or

an implicit likelihood with a simulator that has a differen-

tiable functional form (Kleinegesse & Gutmann, 2021).

We present a method to simultaneously optimize designs

and the mutual information for the remaining set of mod-

els, implicit likelihoods without a differentiable simulator,

which are typically used in the SBI literature. We addition-

ally make a link to how we can use a generative model in

Contrastive Precitive Coding. We show:

• A differentiable objective for simultaneously optimiz-

ing the mutual information and likelihood for SBI-

based models.

• A connection between Likelihood-Free based meth-

ods for BOED and contrastive ratio estimation (CRE)

methods for SBI models.

• Experimental validation of the unified objective on a

simple linear model.

2. Background

Previous work in SBI methods have focused on improving

methods based on given, observed, data yo, (Papamakar-

ios & Murray, 2016; Papamakarios et al., 2018; Durkan

et al., 2020; Greenberg et al., 2019) whereas BOED has

focused on determining an optimal design ξ∗, based on vari-

ous bounds of MI between y and θ. While these aims seem

to be unrelated, we will show how they can be performed

simultaneously for SBI methods that rely on potentially

stochastic simulators that act as black-box functions.

2.1. Simulation-Based Inference

In many scientific disciplines, it is desirable to infer a distri-

bution of parameters θ, of a potentially stochastic model, or

simulator, given observations, yo. The closed-box simulator

may depend on random numbers z, such as in stochastic

differential equations, and previous experimental designs ξ,

such that the simulator takes the form y = g(θ, ξ, z). When

a likelihood is not available, Approximate Bayesian Com-

putation (ABC) methods can be used, (Sisson et al., 2018)

which aim to infer the likelihood of parameters of the simu-

lator that are within an ϵ ball, Bϵ(y), of the observed data

y := yo, resulting in the likelihood p(∥y−yo∥ < ϵ|θ). How-

ever, recent SBI methods have outperform ABC methods in

inference tasks (Lueckmann et al., 2021). By using a simu-

lator to simulate the joint data distribution (θ, y) ∼ p(y|θ),

drawn from a prior θ ∼ p(θ), we can obtain an amor-

tized likelihood pϕ(y|θ) or posterior pϕ(θ|y) by training

a neural density estimator, such as a normalizing flow, with

parameters ϕ, or estimate the likelihood-to-evidence ratio

exp fϕ(θ, y) ≈
p(y|θ)
p(y) , by training a classifier to distinguish

parameters used to simulate an observed values, y. Differ-

ent SBI methods can be used in inference for downstream

applications depending on the desiderata of the inference

task. For example, one might use an amortized posterior

approximation if there are many different data samples to

evaluate, whereas an ensemble of ratios (Hermans et al.) has

been shown to perform more robustly on Simulation-Based

Calibration (SBC) tests (Talts et al.) at the cost of increased

computational complexity.

There are many SBI methods proposed for approximating

the likelihood, posterior, or ratio. We review the relevant

ones to our method here. See (Lueckmann et al., 2021) for

a more thorough review and benchmark of SBI methods.

Neural Likelihood Estimation We can use data from

the joint distribution to train a conditional neural density-

based likelihood function. If we take a dataset of samples

{yn, θn}1:N obtained from a simulator as previously de-

scribed, we can train a conditional density estimator pϕ(y|θ)
to model the likelihood by maximizing the total log likeli-

hood of
∑

n log pϕ(yn|θn), which is approximately equiva-

lent to minimizing the loss

L(ϕ) = Ep(θ)(DKL(p(y|θ)∥pϕ(y|θ)) + const, (4)

where the Kullback-Leibler divergence is minimized when

pϕ(y|θ) approaches p(y|θ). SBI methods would then con-

dition this likelihood on observed data, yo, and refine the

likelihood estimate by resetting the prior to become the new

posterior samples via Markov Chain Monte Carlo (MCMC)

sampling of the approximate likelihood p(θ) := p(θ|yo) ∝
pϕ(yo|θ)p(θ) and training a new neural density estimator of

the likelihood (Papamakarios et al., 2018; Lueckmann et al.,

2018). This is Sequential Neural Likelihood (SNL) which

we forego as we focus on the preliminary step of optimizing

an experimental design without yo.

2.2. Bayesian Optimal Experimental Design

Following from equation 3, (Foster et al., 2019a) proposed

the prior contrastive estimation (PCE) lower bound of the

MI

IPCE(ξ, L) ≜ E

[

log
p(y|θ0, ξ)

1
L+1

∑L

ℓ=0 p(y|θℓ, ξ)

]

, (5)

where the expectation is over p(θ0)p(y|θ0, ξ)p(θ1:L) and

ξ is the proposed design, θ0 is the original parameter that

generated data y, and L is the number of contrastive sam-

ples. The PCE bound is appropriate in BOED when the
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prior and posterior are similar enough that p(θ) is a suitable

proposal distribution for p(y|ξ). This bound has low vari-

ance but is upper-bounded by logL, potentially leading to

large bias but still demonstrated adequate performance on

various benchmarks. Unfortunately, this bound requires a

tractable likelihood function, which is not available in SBI

applications.

3. SBI-based BOED

3.1. Likelihood Free PCE

We take inspiration from previous SBI and BOED methods

to allow optimization of designs with respect to closed-box

simulators that are modeled using normalizing flows. We

start by noting how the loss function of contrastive ratio

estimation (CRE) (Durkan et al., 2020) lower bounds PCE

log
exp(fϕ(θ, y))

∑L

ℓ=0 exp(fϕ(θℓ, y))
≤ log

exp(fϕ(θ, y))
1

1+L

∑L

ℓ=0 exp(fϕ(θℓ, y))

= log
pϕ(y|θ0, ξ)

1
1+L

∑L

ℓ=0 pϕ(y|θl, ξ)
,

where L is the number of contrastive samples and fϕ is

a discriminative classifier, which holds for a single batch

of data and constant experimental design, i.e. when ξ is

constant. We exchange an explicit likelihood in PCE with

a neural density estimator to create Likelihood-Free PCE

(LF-PCE). We now have a MI lower bound

I(ξ, ϕ, L) ≥ E

[

log
pϕ(y|θ0, ξ)

1
1+L

∑L

ℓ=0 pϕ(y|θl, ξ)

]

, (6)

where the expectation is over p(θ0)p(y|θ0, ξ)p(θ1:L). We

now can simultaneously optimizes designs and parameters

of a neural density estimator. If we are to use a normalizing

flow as exp fϕ(y, θ, ξ) = pϕ(y|θ, ξ), then the PCE lower

bound of the MI holds since the distribution is normalized

as normalizing flows are bounded functions (Papamakarios

et al., 2019). We note that this can be an unstable objective

as the data distribution of the flow will change as experi-

mental designs change. However, the result is that it returns

an amortized likelihood that can be evaluated on observed

experimental data to return a posterior density or used in

downstream inference algorithms, such as SNL. Finally,

using a normalizing flow allows us to take gradients with

respect to designs ξ, which we derive in Appendix A.

Practical implementation of LF-PCE loss For LF-PCE

training, stability of the density estimator is a challenge

when optimizing the MI lower bound. To address this, we

added a regularization term, λ, to both loss functions to help

stabilize the training of the density estimator during design

optimization

E

[

log
pϕ(y|θ0, ξ)

1
1+L

∑L

ℓ=0 pϕ(y|θl, ξ)
+ λ · log pϕ(y|θ0, ξ)

]

, (7)

where the expectation is over p(θ0)p(y|θ0, ξ)p(θ1:L).

3.2. Connection to Generative MI Estimation

The mutual information bound proposed by (Foster et al.,

2019a) for PCE is similar to Contrastive Predictive Coding

(CPC) (Poole et al., 2019; Oord et al., 2018), but where

a generative model replaces a discriminative one and the

random variable X corresponds to observed data and random

variable Y to the prior distribution. In our formulation the

bound of the MI depends on both the amount of training

tr → ∞ and number of contrastive samples L → ∞ to

approach the true MI. The generative approach to CPC can

be simplified as

IPCE(ϕ) := EP [log pϕ(x|y)− log pϕ(x)], (8)

where P is a random variable representing the joint distri-

bution we obtain from our simulators (x, y) ∼ p(x|y)p(y)
and pϕ(x) implicitly depends on the number of contrastive

samples L to approximate the marginal likelihood.

4. Experimental Evaluation

4.1. Noisy Linear Model

We follow (Kleinegesse & Gutmann, 2020) and evaluate

optimal designs on a classic noisy linear model where a re-

sponse variable y has a linear relationship with experimental

designs ξ, which is determined by values of the model pa-

rameters θ = [θ0, θ1], which model the offset and gradient.

We would like to optimize the value of D measurements to

estimate the posterior of θ, and so create a design vector

ξ = [ξ1, . . . , ξD]T. Each design, ξi returns a measurement

yi, which results in the data vector y = [y1, . . . , yD]T. We

assume non-Gaussian noise sources, otherwise evaluating

the posterior and MI would be trivial. We use a Gaussian

noise source N (ϵ; 0, 1) and Gamma noise source Γ(ν; 2, 2).
The model is then

y = θ01+ θ1 ∗ ξ + ϵ+ ν, (9)

where ϵ = [ϵ1, . . . , ϵD]T and ν = [ν1, . . . , νD]T are i.i.d.

samples. We evaluate LF-PCE on this model and examine

how changing the λ regularization parameter in (7) influ-

ences the resulting mutual information bound and design

quality for both models.

For each design dimension, D, we randomly initialize de-

signs ξ ∈ [−10, 10]. For LF-PCE, we chose N = 10, the

number of non-contrastive samples y ∼ p(y|ξ, θ0), and
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Figure 1. Comparison of the EIG across design dimensions, type of BOED, and λ regularization for the noisy linear model examining the

moving average over N=10 samples. For the single design dimension, LF-PCE with no λ regularization outperforms in estimating a lower

bound of the MI, which can translate to more informative experimental designs. In the higher-dimension design cases, LF-PCE increases

its EIG with more designs, which is expected, but sees diminishing returns when expanding from 10D to 100D design evaluations. In

the 100-dimensional design case, we see the benefit of using λ regularization to stabilize the training of a neural density estimator in

high-dimensional input space at the cost of slightly lower EIG.

M = 50 contrastive samples for all experiments. For the

neural spline flow, we chose 5 bijector layers, each with

4 bins, and 4 resnet multilayer perceptrons, each with 128

dimensions, for the neural network-based conditional net-

works. For both the neural density estimator’s parameters ϕ,

and the designs ξ, we use the Adam optimizer (Kingma &

Ba, 2014) with β1 = 0.9 and β2 = 0.99, with learning rate

α = 1e−3 for the neural density estimator and α = 1e−2

for design optimization.

Examining the graph of the mutual information in Figure 1,

we see that LF-PCE lower bound steadily increases for all

values of lambda; however, the stability of the optimization

of the generative model’s parameters diverges in higher

design dimensions whenever λ = 0. We see a general trend

between exploration and exploitation in changing values

of λ, where higher λ values lead to lower MI lower-bound

estimates and potentially more homogenous designs.

Using LF-PCE we obtain an amortized neural density esti-

mator of the likelihood that is able to perform inference on

observed data evaluated at the optimal design. For example,

p(θ|yo, ξ
∗) ∝ pϕ(yo|θ, ξ

∗)p(θ) by MCMC sampling. We

evaluate the posterior densities after optimizing on the LF-

PCE lower bound in Appedix B and can see the mean and

interquartile range in Table 1. We note that we were able

to arrive at accurate and precise posterior estimates using

the neural density estimator that simultaneously optimized

an optimal design ξ∗, without any post-processing such as

using SNL or Sampling Importance Resampling.

Design Dimension θ0 θ1

D=1 1.29± 2.98 5.20± 0.41
D=10 0.07± 1.40 4.87± 0.16
D=100 1.35± 0.52 4.81± 0.20

Table 1. Posterior estimates mean and 68% interquartile range af-

ter observing ξ∗ values for each design dimension only using the

amortized likelihood approximation provided by the neural density

estimator used in the LF-PCE training. The held-out parameter val-

ues that were used to generate yo were θtrue = [2, 5]. More design

dimensions approach the true held-out parameter with increasing

precision.

5. Discussion

We demonstrated a novel information bounds, ILF−PCE ,

to perform gradient-based BOED using black-box simula-

tors present in many SBI applications and obtained lower

bounds of the EIG on a toy model across a range of ex-

perimental design dimensions to showcase its scalability.

Optimizing designs in SBI applications provides a valuable

preconditioning step to typical sequential SBI methods such

as SNL that are based on observed experimental designs.

Sidestepping Bayesian optimization can also help to acceler-

ate model testing and feedback from real-world data. Future

work will examine the tradeoff between design diversity for

improved entropy reduction and neural density estimator ro-

bustness, similar to the exploration and exploitation tradeoff

present in Bayesian optimization.

Acknowledgements

This research was funded by the National Institute of Gen-

eral Medical Sciences (NIGMS) of the National Institutes

4



Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference

of Health (NIH) under award number 1F31GM145188-01.

We would like to thank Adam Foster and members of the

Elowitz Lab for helpful discussions.

References

Cannon, P., Ward, D., and Schmon, S. M. Investigating the

impact of model misspecification in neural simulation-

based inference. doi: 10.48550/arxiv.2209.01845. URL

https://arxiv.org/abs/2209.01845v1.

Cranmer, K., Brehmer, J., and Louppe, G. The fron-

tier of simulation-based inference. Proceedings of the

National Academy of Sciences, 117(48):30055–30062,

November 2020. ISSN 0027-8424. doi: 10.1073/

pnas.1912789117. URL http://arxiv.org/abs/

1911.01429. arXiv: 1911.01429 Publisher: Proceed-

ings of the National Academy of Sciences.

Durkan, C., Murray, I., and Papamakarios, G. On con-

trastive learning for likelihood-free inference, Febru-

ary 2020. URL http://arxiv.org/abs/2002.

03712. arXiv: 2002.03712 Publication Title: arXiv.

Foster, A., Jankowiak, M., Bingham, E., Horsfall, P., Teh,

Y. W., Rainforth, T., and Goodman, N. Variational

Bayesian optimal experimental design. arXiv, March

2019a. ISSN 23318422. URL http://arxiv.org/

abs/1903.05480. arXiv: 1903.05480 Publisher:

arXiv.

Foster, A., Jankowiak, M., O’Meara, M., Teh, Y. W., and

Rainforth, T. A unified stochastic gradient approach to

designing Bayesian-optimal experiments. arXiv, Novem-

ber 2019b. ISSN 23318422. URL http://arxiv.

org/abs/1911.00294. arXiv: 1911.00294 Pub-

lisher: arXiv.

Greenberg, D., Nonnenmacher, M., and Macke, J. Auto-

matic posterior transformation for likelihood-free infer-

ence. In International Conference on Machine Learning,

pp. 2404–2414. PMLR, 2019.

Hermans, J., Delaunoy, A., Rozet, F., Wehenkel, A., Begy,

V., and Louppe, G. A crisis in simulation-based infer-

ence? beware, your posterior approximations can be

unfaithful. Transactions on Machine Learning Research.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Kleinegesse, S. and Gutmann, M. U. Efficient bayesian

experimental design for implicit models. In The 22nd

International Conference on Artificial Intelligence and

Statistics, pp. 476–485. PMLR, 2019.

Kleinegesse, S. and Gutmann, M. U. Bayesian experimental

design for implicit models by mutual information neu-

ral estimation, February 2020. URL http://arxiv.

org/abs/2002.08129. arXiv: 2002.08129 Publica-

tion Title: arXiv.

Kleinegesse, S. and Gutmann, M. U. Gradient-based

Bayesian Experimental Design for Implicit Models

using Mutual Information Lower Bounds. May

2021. URL https://arxiv.org/abs/2105.

04379v1. arXiv: 2105.04379.

Lindley, D. V. Bayesian statistics, a review, volume 2.

SIAM, 1972.

Lueckmann, J., Bassetto, G., Karaletsos, T., and Macke, J.

Likelihood-free inference with emulator networks. arxiv

e-prints. arXiv preprint arXiv:1805.09294, 2018.

Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P.,

and Macke, J. Benchmarking simulation-based inference.

In International Conference on Artificial Intelligence and

Statistics, pp. 343–351. PMLR, 2021.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-

ing with contrastive predictive coding. arXiv preprint

arXiv:1807.03748, 2018.

Papamakarios, G. and Murray, I. Fast e-free inference

of simulation models with Bayesian conditional den-

sity estimation. In Advances in Neural Information

Processing Systems, pp. 1036–1044, May 2016. URL

http://arxiv.org/abs/1605.06376. arXiv:

1605.06376 Issue: Nips ISSN: 10495258.

Papamakarios, G., Sterratt, D. C., and Murray, I. Sequential

neural likelihood: Fast likelihood-free inference with au-

toregressive flows, May 2018. URL http://arxiv.

org/abs/1805.07226. arXiv: 1805.07226 Publica-

tion Title: arXiv.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mo-

hamed, S., and Lakshminarayanan, B. Normalizing

Flows for Probabilistic Modeling and Inference. Decem-

ber 2019. URL http://arxiv.org/abs/1912.

02762. arXiv: 1912.02762.

Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., and

Tucker, G. On variational bounds of mutual information.

In International Conference on Machine Learning, pp.

5171–5180. PMLR, 2019.

Sisson, S., Fan, Y., and Beaumont, M. Overview of approx-

imate bayesian computation. arxiv e-prints, art. arXiv

preprint arXiv:1802.09720, 2018.

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., and Gel-

man, A. Validating bayesian inference algorithms with

5

https://arxiv.org/abs/2209.01845v1
http://arxiv.org/abs/1911.01429
http://arxiv.org/abs/1911.01429
http://arxiv.org/abs/2002.03712
http://arxiv.org/abs/2002.03712
http://arxiv.org/abs/1903.05480
http://arxiv.org/abs/1903.05480
http://arxiv.org/abs/1911.00294
http://arxiv.org/abs/1911.00294
http://arxiv.org/abs/2002.08129
http://arxiv.org/abs/2002.08129
https://arxiv.org/abs/2105.04379v1
https://arxiv.org/abs/2105.04379v1
http://arxiv.org/abs/1605.06376
http://arxiv.org/abs/1805.07226
http://arxiv.org/abs/1805.07226
http://arxiv.org/abs/1912.02762
http://arxiv.org/abs/1912.02762


Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference

simulation-based calibration. doi: 10.48550/arxiv.1804.

06788. URL https://arxiv.org/abs/1804.

06788v2.

6

https://arxiv.org/abs/1804.06788v2
https://arxiv.org/abs/1804.06788v2


Stochastic Gradient Bayesian Optimal Experimental Designs for Simulation-based Inference

A. Design Gradients of LF-PCE

For LF-PCE, we need unbiased gradient estimators of the information bounds. A normalizing flow can be seen as a

reparameterized distribution, which allows for calculating the gradient with respect to designs ∇ξf
−1(u; θ, ξ). In practice,

since we are evaluating the log probability of a data point, we would actually evaluate the inverse direction of a flow

∇ξf(y; θ, ξ) at the base distribution pu(u), which is usually a Gaussian distribution and evaluated by maximum likelihood.

More formally, following equation 4, the gradient with respect to ξ is

∇ξL(ξ) ≈ −
1

N
∇ξ

∑

n

log pu(f
−1(yn;ϕ, θ, ξ) + log| detJ(f−1)(yn;ϕ, θ, ξ)|), (10)

which is tractable as long as we can compute f−1, its Jacobian determinant, and evaluate the base density, pu(u), which is

tractable for a base Gaussian distribution. Given this gradient, we can plug this into the gradient of LF-PCE to estimate the

gradient of the information bound:

∂ILF−PCE

∂ξ
= Ep(θ0)p(y|θ,ξ)q(θ1:L|y)

[

∂g

∂ξ
+ g ·

∂

∂ξ
log pϕ(y|θ0, ξ)

]

, (11)

where

g(y, θ0:L, ϕ, ξ) = log
pϕ(y|θ0, ξ)

1
L+1

∑L

ℓ=0 pϕ(y|θℓ, ξ)
. (12)

B. Evaluation of Linear Model Designs and Posteriors

We evaluated the efficacy of the neural density estimator trained using the LF-PCE loss function to infer a held out true

parameter value in Figure 2 by MCMC. We provide a quantitative evaluation of the posteriors in Table 1. The posteriors can

be improved by computationally efficient methods such as Sampling Importance Resampling, or used in SBI algorithms that

use sequential methods to refine the neural density estimator.

Figure 2. Comparison of the prior density the posterior achieved by the different design dimensional normalizing flows evaluated at an

optimal design p(θ|yo, ξ
∗) ∝ pφ(yo|θ, ξ

∗)p(θ). The red cross denotes the true model parameters.

C. Evaluation of Posterior Predictive Distribution

As a reference, we plot the prior and posterior predictive plots for the 1-dimensional optimal design in Figure 3. An insight

into the optimal experimental design problem is that the designs closer to where the prior distribution has more noise will

lead to more clarification in a performed experiment, which is why the most optimal designs will be at the boundaries for

the noisy linear model.
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Figure 3. Prior predictive (blue) and posterior predictive (orange) distributions with the ground truth liner model (dotted red) for the single

design case where D=1.
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