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Abstract

Inferring the most probable evolutionary tree

given leaf nodes is an important problem in com-

putational biology that reveals the evolutionary

relationships between species. Due to the expo-

nential growth of possible tree topologies, finding

the best tree in polynomial time becomes com-

putationally infeasible. In this work, we propose

a novel differentiable approach as an alternative

to traditional heuristic-based combinatorial tree

search methods in phylogeny. The optimization

objective of interest in this work is to find the

most parsimonious tree (i.e., to minimize the to-

tal number of evolutionary changes in the tree).

We empirically evaluate our method using ran-

domly generated trees of up to 128 leaves, with

each node represented by a 256-length protein

sequence. Our method exhibits promising con-

vergence (< 1% error for trees up to 32 leaves,

< 8% error up to 128 leaves, given only leaf node

information), illustrating its potential in much

broader phylogenetic inference problems and pos-

sible integration with end-to-end differentiable

models. The code to reproduce the experiments in

this paper can be found at https://github.

ramith.io/diff-evol-tree-search.

1. Introduction

Evolutionary trees (or phylogenetic trees) provide biologists

with a structured, hierarchical representation of how current

species are related through hypothetical ancestors that are

probably extinct at present. Beyond theoretical constructs,

they have practical applications in various fields of biology

and medicine. For instance, phylogenetic techniques are

crucial in the decision-making process when responding to

emerging viruses (Attwood et al., 2022).
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Figure 1. Search for evolutionary tree (N = 32, l = 256) left :

sequences (leaves and ancestors), right : tree topology. A) random

initialization, B) converged solution. optimal solution cost = 2913.

Parsimony methods are one of many methods (such as dis-

tance methods, maximum likelihood, maximum compati-

bility) for constructing evolutionary trees. The parsimony

principle states that the most acceptable explanation of an

occurrence is the one that requires the minimum number of

assumptions or explanations (Sober, 1981). Thus, inferring

the most parsimonious tree given leaf nodes requires finding

the tree that explains the data with minimum number of

evolutionary steps. This combinatorial problem was shown

to be NP-Complete (Foulds & Graham, 1982; Steel, 1992).

Due to the complexity of the problem, existing methods

consider heuristic search techniques by limiting the search

space. Although this does not guarantee that the algorithm

will find the optimal solution, they do facilitate exploration

of a vast number of tree topologies, starting from an initial

guess and iteratively refining it. These methods can be

broadly categorized into 1) tree rearrangement methods 2)

branch and bound methods 3) neighbor joining methods

(Saitou & Nei, 1987; Giribet, 2007; Felsenstein, 2004).

With the success of deep learning methods, there have been

several new directions in constructing evolutionary trees.

(Zhu & Cai, 2021) et al. propose an alignment-free method

in which an attention model (Vaswani et al., 2017) is trained
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Figure 2. Visual depiction of the constructed adjacency matrix and the node representation using learnable parameters θT and φseq .

through reinforcement learning to reconstruct evolutionary

trees. However, it requires algorithmic post-processing to

produce the final tree, preventing it from being end-to-end

differentiable. (Azouri et al., 2023) demonstrate a deep-Q-

learning agent on empirical data consisting up to 20 leaves.

With the success of using hyperbolic geometry for hierarchi-

cal data, there has been work on obtaining continuous em-

beddings for trees (Monath et al., 2019; Chami et al., 2020).

Subsequently, optimization in the hyperbolic space for phy-

logeny (Wilson, 2021), developing new metrics (Matsumoto

et al., 2021) and addressing the phylogenetic placement

problem (Jiang et al., 2022) have been explored. Given

the challenge of scalability in traditional Bayesian phy-

logenetics, methods based on variational inference have

been proposed (Zhang & Matsen, 2019; Dang & Kishino,

2019). Recently, (Zhang, 2023) proposed a topological fea-

ture learning framework for phylogenetic inference using

graph neural networks.

In contrast to these work, our approach circumvents the

discreteness of the raw tree and sequence representations in

the first place and model their relationship in a differentiable

manner. By doing so, we obtain a soft-parsimony score that

can be optimized in an end-to-end differentiable manner,

without the need for any prior training data.

We perform experiments for tree topologies up to 128 leaves

and analyze our method for 3 tasks. 1) Learn the tree given

all sequences, 2) learn the ancestors given the tree topology

and leaves (small parsimony), and 3) learn the tree and the

ancestors given leaves (maximum parsimony). For the small

parsimony problem we achieve the ≈ 0% mean error for all

tree complexities, meaning that our approach can find the

optimal ancestral sequences if the tree topology is known.

For the maximum parsimony problem, we achieve < 1%
error for trees up to 32 leaves, < 8% error up to 128 leaves.

Our work opens up new realms for integration with mod-

els with more complex cost functions that go beyond site-

independence assumption. For example, the cost function

can integrate pseudo-likelihood between nodes using protein

language models or those conditioned on protein structure.

2. Notation and background

2.1. Maximum parsimony problem (learn tree and

ancestors)

A rooted phylogenetic tree is a directed acyclic graph

(DAG) G = (V,E). Given a set of N leaves, the maxi-

mum parsimony problem intends to find the phylogenetic

tree (T ) and ancestor nodes that describe the given data

with minimum number of evolutionary steps (Carmel et al.,

2014; Kannan & Wheeler, 2012). For a fixed alphabet

A = {1, ..., c}, each node in this DAG can be repre-

sented by an l dimensional vector s = (s1, ..., sl) such

that s ∈ Al. We consider the Hamming distance d on

the node representation d((s1, ..., sl), (s
′

1, ..., s
′

l)) that de-

scribes the number of indices i such that s
′

i ̸= si. Let

δ(T ) =
∑

(u,v) ∈ E(T ) d(u,v) represent the total number

of evolutionary changes in the tree T . The maximum parsi-

mony problem is then to find the tree that minimizes δ(T ).

2.2. Complexity

The maximum parsimony problem has been comprehensivey

studied in the literature as a special case of the Steiner

tree problem (Hwang & Richards, 1992). Further (Foulds

& Graham, 1982) showed that even when |A| = 2, the

problem of finding the tree with the minimum number of

evolutionary steps is NP-Complete. Given N leaves, the

number of rooted bifurcating tree topologies that exists can

be calculated as (2N − 3)!! (Cavalli-Sforza & Edwards,

1967). Thus, even for a tree with only 12 leaves, there are

more than 13 billion tree topologies in total.

2.3. Small parsimony problem (learn ancestors)

The small parsimony problem (Carmel et al., 2014) is a

much simplified version of the problem in which the phylo-

genetic tree topology T is already given. Therefore, the task

is to find the best possible ancestors. There are a number of

dynamic programming (DP) algorithms proposed to solve

this problem in polynomial such as the Fitch’s algorithm

(Fitch, 1971) and the Sankoff’s algorithm (Sankoff, 1975).
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3. Methodology

In the following subsections, we consider how the discrete

aspects of the problem are relaxed and how gradient-based

optimization can be performed.

3.1. Relaxations

There are two aspects to this problem that make it inherently

non-differentiable. First, each element of the sequence is

combinatorial. Second, considering the adjacency matrix,

the space of valid and meaningful tree topologies is sparse.

Sequence representation In both the small and maximum

parsimony problems, the ancestor sequences are unknown.

We denote learnable parameters φseq ∈ R
(2N−1)×l×c to

represent the ancestors to be optimized. To obtain a con-

tinuous relaxation of the categorical nature of amino acid

types, we transform the real tensor into a tensor φ̂seq , where

each element represents a probability distribution over the

character space for each position of the sequence. This trans-

formation is done using the softmax function (Jang et al.,

2017), with the sharpness of the distribution controlled by

the temperature parameter τ2.

φ̂seqijk =
e
φseqijk

/τ2

∑c
m=1 e

φseqijm/τ2

(1)

This probability tensor φ̂seqijk representing ancestors, com-

bined with the one-hot encoding of known leaves results in

the node representation tensor S.

Tree representation Since the adjacency matrix of any

DAG can be permuted to be a strictly upper triangular matrix

(Nicholson, 1975; Li et al., 2022; Charpentier et al., 2022),

we ensure the acyclicity of the graphs represented by the

adjacency matrix (A) by enforcing it to be strictly upper

triangular. Furthermore, since leaves cannot be connected

to each other, we ensure that the first N columns of A are

zero. The remaining positions are parameterized as θT .

Due to the irregular structure of the adjacency matrix rep-

resentation and to speed up the implementation, we first

set the non-parameterized region of the adjacency matrix

to − inf , and then apply the softmax function for each row.

This ensures that the parameterized positions of the adja-

cency matrix will be represented by the correct probability.

Thus, the ith row of A represents the probabilities of node i

being a child of all other nodes, respectively.

Aij =
e
θTij

/τ1

∑N−1
k=1 eθTik

/τ1
(2)

3.2. Tree enforcing loss function

With the relaxation of the adjacency matrix, optimizing

parameters to reduce Lcost does not explicitly guide the

optimization towards a bifurcating tree. Therefore, we en-

force the following regularization constraint to maintain the

bifurcating property. This regularization forces tree nodes

to have exactly two child node connections.

Lb =

N−1
∑

j=1

abs((

2N−2
∑

i=1

Aij)− 2)2 (3)

3.3. Differentiable soft parsimony score calculation

To calculate the number of evolutionary steps that have

occurred in the DAG, we formulate the evolutionary cost

calculation as follows. The transposed node representation

tensor Sp = S
⊺

(2,0,1) ∈ R
c×(2N−1)×l is constructed by rep-

resenting the characters of the alphabet as its first dimension.

Lcost(θT , φseq, τ1, τ2) =
1

2

2N−1
∑

i=1

l
∑

j=1

|Ac|
∑

k=1

|Spk
−A×Spk

|ij

(4)

In this equation, the adjacency matrix A describes the con-

nection of each node to its parent in the tree structure. The

matrix Spk, considers kth character of the alphabet at a time.

Thus, in the matrix Spk, (Spk)ij = 1 iff ith sequence has

jth position equal to the kth character in the alphabet A.

The matrix multiplication A×Spk
serves as a lookup of the

sequence table (Spk
) and returns the parent corresponding

to each node in the tree. Thus, the difference between the

matrices |Spk
−A× Spk| represents the distance between

each child and its parent in the kth character space. By

summing these differences over all dimensions, the cost

function captures the overall evolutionary cost. For a visual

depiction of this calculation, refer to the Appendix Figure 6.

3.4. Bi-level optimization

In the maximum parsimony problem, we need to traverse

both the tree and sequence spaces, and there is a dependency

between these two. Note that for each tree topology, there

is a best set of sequences that define how good each topol-

ogy is. And once the topology changes, these sequences

are no longer valid. Thus, for this task, we formulate the

optimization procedure as a bi-level optimization problem.

Experimentally, we obtain better results with this formula-

tion than optimizing both of the parameters independently

(see the appendix A.2 for the ablation study).

θ∗T = argmin
θT

Lcost

(

φ∗
seq(θT ), θT

)

+ λLb (5)

s.t. φ∗
seq(θT ) = argmin

φseq

Lcost (φseq, θT ) + λLb (6)

During implementation, we perform k gradient descent it-

erations for the inner objective (Eq. 6). Gradient descent

is performed for both objectives using the Adam optimizer

(Kingma & Ba, 2015). Furthermore, we use the JAXopt

library to optimize multiple initialization seeds as a batch

and obtain the best result (Blondel et al., 2021).
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Table 1. Evaluation on the Maximum Parsimony and Small Parsimony Problems

Tree Complexity Maximum Parsimony (learn both tree & seqs) Small Parsimony (learn seqs given tree)

N
Mean optimal

solution

Mean

solution

Mean

error

Mean error as a %

w.r.t optimal solution

Mean

solution

Mean

error

Mean error as a %

w.r.t optimal solution

4 277.2 277.2 0.0 ± 0.0 0.000% 277.2 0.0 ± 0.0 0.000%

8 653.1 653.1 0.0 ± 0.0 0.000% 653.1 0.0 ± 0.0 0.000%

16 1407.6 1407.7 0.1 ± 0.3 0.007% 1407.6 0.0 ± 0.0 0.000%

32 2915.4 2936.3 20.9 ± 7.4 0.717% 2915.4 0.0 ± 0.0 0.000%

64 5929.3 6188.6 259.3 ± 27.4 4.373% 5929.3 0.0 ± 0.0 0.000%

128 11971.1 12885.5 914.4 ± 99.6 7.638% 11971.3 0.2 ± 0.4 0.001%

3.5. Evaluation

In order to evaluate our method, we first generate known

evolutionary trees (each consisting of 4− 128 leaves, 256

sequence length, alphabet size c = 20). Therefore, we gen-

erate complete binary trees starting with a random sequence

as the root, make two copies of the sequence at each node,

and generate two random sets of indices each with m = 50
elements which are mutated to a different character. For

each tree complexity, we perform 10 random initializations

for the leaf sequences to generate examples. Further details

on ground truth generation are included in Appendix A.

4. Results

We first analyze a simpler task in which all nodes S (leaves

and ancestors) are known, yet the tree topology is unknown.

For all tree complexities, the adjacency matrix converges to

the groundtruth tree. This task is similar to a hierarchical

clustering task, where all the nodes are known, and we need

to establish a hierarchical dependency between them.

4.1. Small Parsimony (learn ancestors given tree)

The ground-truth ancestor solutions for the known tree topol-

ogy is obtained by the Sankoff algorithm. Table 1 shows the

results for varying number of tree sizes. For all cases, the

error between ours and the optimal parsimony score is ≈ 0.

4.2. Maximum Parsimony (learn ancestors and tree)

In this task, only the leaf sequences are known, and we need

to optimize towards both the best tree topology and ances-

tors. As shown in Figure 3 and Table 1, the mean error in-

creases as the complexity of the tree increases. Note that for

up to N = 8 the possible tree topologies are even enumer-

able, as they result in only 135,135 combinations. Thus, our

method also converges to the optimal solutions. However,

from N = 16 to 128 leaves, tree topologies grows from

≈ 1015 to 10250 possibilities and our method converges to

local optima. We intend to explore methods to simplify

the loss landscape and gradually increase the complexity in

order to discover better solutions.

4 8 16 32 64 128
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Figure 3. Evaluation on the maximum parsimony problem

(learn both the tree and ancestors, given leaves). Error is cal-

culated w.r.t Sankoff algorithm solutions on the groundtruth tree

topology.

5. Discussion and Future Work

Our work establishes a new direction for generating evolu-

tionary trees by traversing a soft tree and sequence space.

Although here we focused on minimizing the parsimony

cost as the objective (with unit cost for any change), our

general optimization method can be coupled with various

loss functions. For instance, the parsimony cost assumes

site-independence, which means that any position wise evo-

lutionary dependence in amino acids is ignored. Thus, if

the tree is known, this independence property can be uti-

lized to develop a dynamic programming algorithm that can

derive the most optimal ancestral sequences (i.e. Sankoff

algorithm (Sankoff, 1975)). Therefore, our method can be

most beneficial when this condition is lifted (e.g. integration

of pseudo-likelihood between nodes using protein language

models or those conditioned on protein structure).

Even though the error increases with tree complexity, future

work could explore an iterative procedure to combine sub-

trees gradually (e.g. for 128 leaves, breaking down the

problem to two sets of 64 leaves or 4 sets of 32 leaves and

running gradient descent, then using these answers as a

better initialization for the original problem).
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tiable DAG Sampling. In ICLR 2022 - 10th International

Conference on Learning Representations, 2022.

Dang, T. and Kishino, H. Stochastic variational inference for

Bayesian phylogenetics: A case of CAT model. Molecu-

lar Biology and Evolution, 36(4), 2019. ISSN 15371719.

doi: 10.1093/molbev/msz020.

Felsenstein, J. Inferring phylogenies, volume 2. Sinauer

associates Sunderland, MA, 2004.

Fitch, W. M. Toward defining the course of evolution:

Minimum change for a specific tree topology. Sys-

tematic Biology, 20(4), 1971. ISSN 1076836X. doi:

10.1093/sysbio/20.4.406.

Foulds, L. R. and Graham, R. L. The steiner prob-

lem in phylogeny is NP-complete. Advances in Ap-

plied Mathematics, 3(1), 1982. ISSN 10902074. doi:

10.1016/S0196-8858(82)80004-3.

Giribet, G. Efficient tree searches with available algorithms.

Evolutionary Bioinformatics, 3:117693430700300014,

2007.

Hwang, F. K. and Richards, D. S. Steiner tree problems.

Networks, 22(1), 1992. ISSN 10970037. doi: 10.1002/

net.3230220105.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-

tion with gumbel-softmax. In 5th International Confer-

ence on Learning Representations, ICLR 2017 - Confer-

ence Track Proceedings, 2017.

Jiang, Y., Tabaghi, P., and Mirarab, S. Learning Hyperbolic

Embedding for Phylogenetic Tree Placement and Updates.

Biology, 11(9), 2022. ISSN 20797737. doi: 10.3390/

biology11091256.

Kannan, L. and Wheeler, W. C. Maximum Parsimony

on Phylogenetic networks. Algorithms for Molecular

Biology, 7(1), 2012. ISSN 17487188. doi: 10.1186/

1748-7188-7-9.

Kingma, D. P. and Ba, J. L. Adam: A method for stochastic

optimization. In 3rd International Conference on Learn-

ing Representations, ICLR 2015 - Conference Track Pro-

ceedings, 2015.

Li, X., CAI, Y., Sun, M., and Li, P. Causal discovery via

cholesky factorization. 2022.

Matsumoto, H., Mimori, T., and Fukunaga, T. Novel metric

for hyperbolic phylogenetic tree embeddings. Biology

Methods and Protocols, 6(1), 2021. ISSN 23968923. doi:

10.1093/biomethods/bpab006.

Monath, N., Zaheer, M., Silva, D., McCallum, A., and

Ahmed, A. Gradient-based hierarchical clustering using

continuous representations of trees in hyperbolic space.

In Proceedings of the ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, 2019.

doi: 10.1145/3292500.3330997.

Nicholson, V. A. Matrices with permanent equal to one.

Linear Algebra and Its Applications, 12(2), 1975. ISSN

00243795. doi: 10.1016/0024-3795(75)90067-1.

Saitou, N. and Nei, M. The neighbor-joining method: a new

method for reconstructing phylogenetic trees. Molecular

biology and evolution, 4(4), 1987. ISSN 07374038. doi:

10.1093/oxfordjournals.molbev.a040454.

Sankoff, D. Minimal Mutation Trees of Sequences. SIAM

Journal on Applied Mathematics, 28(1), 1975. ISSN

00361399. doi: 10.1137/0128004.

Sober, E. The principle of parsimony. British Journal for

the Philosophy of Science, 32(2), 1981. ISSN 00070882.

doi: 10.1093/bjps/32.2.145.

Steel, M. The complexity of reconstructing trees from qual-

itative characters and subtrees. Journal of Classification,

9(1), 1992. ISSN 01764268. doi: 10.1007/BF02618470.

5



Diff-Trees : Differentiable Search of Evolutionary Trees from Leaves

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-

tion is all you need. In Advances in Neural Information

Processing Systems, volume 2017-December, 2017.

Wilson, B. Learning phylogenetic trees as hyperbolic point

configurations. arXiv preprint arXiv:2104.11430, 2021.

Zhang, C. Learnable topological features for phylogenetic

inference via graph neural networks. In The Eleventh

International Conference on Learning Representations,

2023. URL https://openreview.net/forum?

id=hVVUY7p64WL.

Zhang, C. and Matsen, F. A. Variational Bayesian phylo-

genetic inference. In 7th International Conference on

Learning Representations, ICLR 2019, 2019.

Zhu, T. and Cai, Y. Applying Neural Network to Reconstruc-

tion of Phylogenetic Tree. In ACM International Con-

ference Proceeding Series, 2021. doi: 10.1145/3457682.

3457704.

6

https://openreview.net/forum?id=hVVUY7p64WL
https://openreview.net/forum?id=hVVUY7p64WL


Diff-Trees : Differentiable Search of Evolutionary Trees from Leaves

A. Appendix

A.1. Groundtruth data generation

We generate complete binary trees starting with a random sequence as root, make two copies of the sequence at each node,

and generate two random sets of indices each with m = 50. These two sets of random indices are mutated into two copies,

so that a new random amino acid is introduced at each index. It should be noted that this process does not necessarily mean

that the generated complete binary trees are the trees with minimum number of evolutionary steps for the reached leaves (for

these leaves there could be a better tree topology and ancestors). However, since mutations are introduced only at 50/256

≈ 20% of the sequence length, the probability of the existence of better topologies is low, yet we find the best ancestors

for this topology by applying the Sankoff algorithm, and this serves us as the groundtruth. Therefore, these serve as test

samples to assess whether the optimization procedure converges to tree and its corresponding ancestors with evolutionary

steps that are sufficiently close to the generated groundtruth.

A.2. Ablation study of optimization methods

As mentioned in 3.4, we compare the bi-level optimization procedure with an independent alternative optimization scheme.

In this formulation, we treat the tree parameters and sequence parameters independently and alternatively perform gradient

descent using Adam optimizer. We find that, even though this procedure works similarly well for trees with fewer leaves

(N ≤ 16), it accumulates high error as the tree grows. The results are shown in Table 2.

θ∗T = argmin
θT

Lcost (θT ) + λLb (7)

φ∗
seq = argmin

φseq

Lcost (φseq) + λLb (8)

Table 2. Ablation study on two different methods for optimization on the maximum parsimony problem

Tree Complexity Bi-level optimization Alternative Optimization

N
Mean optimal

solution

Mean

solution

Mean

error

Mean error as a %

w.r.t optimal solution

Mean

solution

Mean

error

Mean error as a %

w.r.t optimal solution

4 277.2 277.2 0.0 ± 0.0 0.000% 277.2 0.0 ± 0.0 0.000%

8 653.1 653.1 0.0 ± 0.0 0.000% 653.1 0.0 ± 0.0 0.000%

16 1407.6 1407.7 0.1 ± 0.3 0.007% 1411.1 3.5 ± 5.6 0.249%

32 2915.4 2936.3 20.9 ± 7.4 0.717% 2977.9 62.5 ± 18.1 2.144%

64 5929.3 6188.6 259.3 ± 27.4 4.373% 6341.0 411.7 ± 64.3 6.943%

128 11971.1 12885.5 914.4 ± 99.6 7.638% 13597.29 1632.0 ± 129.0 13.639%
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Figure 4. Number of rooted bifurcating tree topologies for N leaves (blue) and number of possible amino acid sequences (red) for a single

256-residue protein (i.e. 20256 ≈ 1.16× 10
333 )
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Figure 5. Search for evolutionary tree (N = 32, l = 256) left : sequences, right : tree topology. A) random initialization, B) converged

solution. optimal solution cost = 2913.
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Figure 6. Explanation of parsimony cost calculation. A) considering one character dimension at a time. B) The matrix multiplication

A× Spk serves as a look-up of the sequence table (Spk ). C) Difference between the child and parent sequence in the kth character space.
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