
Sample-efficient learning of auditory object representations

using differentiable IR synthesis

Vinayak Agarwal 1 2 James Traer 3 Josh H. McDermott 2

Abstract

Many of the sounds we hear in daily life are gener-

ated by contact between objects. Rigid objects are

often well approximated as linear systems, such

that IRs can be used to predict their vibrational be-

havior. IRs carry information about material and

shape. Previous research has shown that IRs mea-

sured from objects can be used to generate realis-

tic impact, scraping and rolling sounds. However,

it has been unclear how to efficiently synthesize

IRs for objects of a particular material and size.

Here we present an analysis-by-synthesis tech-

nique that uses a differentiable IR synthesis model

to infer generative parameters of a measured IR.

Then, we introduce a way of representing audi-

tory material as distributions in the generative

parameter space. Object IRs can be sampled from

these distributions to render convincingly realistic

contact sounds.

1. Introduction

Imagine you hear the sound of something falling on the floor

in the next room. What was it? Might it have damaged the

floor, or hurt someone it hit on the way down? Such physical

interactions between objects are important for humans and

machines to perceive correctly. Interacting objects produce

sounds which encode information about physical variables -

the motion of the objects, their shapes, and their materials

(Gaver, 1993a;b). Yet we know relatively little about how

humans derive information about physical interactions from

sound, and lack machine systems to mirror our abilities

(Bianco et al., 2019).
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Recent progress in contact sound synthesis has made it pos-

sible to realistically render the sounds arising from physical

interactions such as impacts, scrapes and rolls (Rocchesso

et al., 2003; Rath & Rocchesso, 2005; Aramaki & Kronland-

Martinet, 2006; Agarwal et al., 2021). Most such sounds can

be modelled using linear systems that represent vibrating

objects using their IRs, which can be measured from individ-

ual objects (van de Doel & Pai, 1996). The IRs are excited

by forces that occur between objects when they interact,

yielding sound (Sinha, 1992).

Although sounds can be synthesized from measured IRs,

we have thus far lacked an efficient way to synthesize IRs

to obtain new examples of a given material. We sought to

estimate distributions over object IRs that could be used

for synthesis, as well as for material classification, and po-

tentially as models of human material perception (Klatzky

et al., 2000). Because this is a domain where we lack exten-

sive sets of data, it seemed important to represent IRs with

a structured model that would be governed by a modest set

of parameters, and to be able to infer these parameters from

measured IRs (Avanzini & Rocchesso, 2001). Moreover, a

differentiable forward model can enable quick and robust

inference akin to similar successes in other domains (Hu

et al., 2020; Murthy et al., 2021; Clarke et al., 2021).

In this paper, we present a novel differentiable synthesis

model for object IRs that combines two signals correspond-

ing to the sinusoidal resonant modes and the stochastic part

of the signal. We also present an inference scheme which

when used in conjunction with the differentiable synthesis

simultaneously infers the stochastic and sinusoidal parts of

recorded IRs. Lastly, we present a learned distributions of

auditory materials using this inferred space of generative

parameters.

2. Methods

2.1. Differentiable IR Synthesis

Building on prior work, we model object IRs as a sum of

decaying sinusoidal modes and a noisy transient (Aramaki

& Kronland-Martinet, 2006; Ren et al., 2013). The key

assumption is that the functional form of the decay is expo-

nential and hence can be modelled with two parameters per
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Figure 1. a) Overall scheme for generating novel IRs for a material class. b) Synthesis of IRs from generative parameters in the proposed

synthesis algorithm. c) Analysis-by-synthesis scheme for inferring the generative parameters of an IR.

mode: an initial amplitude and a decay rate.

yir(t) = ysin(t) + ynoise(t) (1)

where yir(t) is the net waveform of an IR and ysin(t) and

ynoise(t) are the decaying sinusoidal modes and the noise

transient, respectively.

The decaying sinusoidal modes can be expressed as:

ysin(t) =

N∑

j=1

10
aj
20 −

(60/20)
bj

t
sin(2πfjt) (2)

where aj is the initial amplitude (dB), bj is the RT60 (sec)

and fj is the frequency (Hz) of the jth mode respectively.

For the purpose of this work, we only considered the 10 most

salient sinusoidal modes for each IR recording (N = 10).

The noise transient is modelled as a sum of decaying noise

bands:

ynoise(t) =

M∑

i=1

10
αi
20 −

(60/20)
γi

t
νi(t) (3)

where αi denotes the initial amplitude (in dB re: a maximum

possible value) and γi denotes the RT60 (in sec) for the

amplitude envelope on the ith cochlear noise band. We

used M = 10 noise bands to model the transient, as this

seemed sufficient to account for the variations in spectral

shape in everyday IRs. The noise bands were generated by

filtering Gaussian white noise by a simulated cochlear filter

bank, with the intention of making the spectral detail equally

discriminable to humans across the spectrum. Specifically,

we first generated a random Gaussian noise sample and

then filtered it using FIR filters whose cutoffs were equally

spaced on an ERB scale (Glasberg & Moore, 1990).

We found the noise transient to be critical to modelling the

vibrational response of damped, soft materials like plastics,

cardboards etc. This component was also important for large

objects, for which multiple vibration modes can occur in

close frequency proximity, giving rise to a noise-like band

in the IR.

2.2. Inference algorithm

Learning low-dimensional object representations has been

the central focus of perception research. Having modelled

the acoustical regularities of object IRs through a generative

model, we wanted to test if recorded object IRs can be ex-

pressed in terms of the proposed parameters. If we are able

to infer a unique set of parameters within this generative

model that can yield compelling resynthesis, then the pro-

posed parameter set can be a useful stimulus-computable

representation of object IRs.

Based on the differentiable model described above, we pro-

pose the use of gradient-based optimization to achieve this

goal. For this, we used a spectrogram-based loss function

that quantified the difference between the measured IR and

a synthetic replica generated from the model. To infer the

generative parameters through gradient-based optimization,

we implemented the algorithm shown in Fig. (1) in PyTorch

2.0 using differentiable audio tools contained in TorchAudio

toolbox (Paszke et al., 2019).

2.2.1. INITIALIZATION

We found that the success of the inference was greatly aided

by “good” initial guesses for each parameter. Since the pa-

rameters have physical meaning and known regularities, we

used physically motivated heuristics to initialize inference.
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Figure 2. a) Representation of material as two joint distributions (of the sinusoidal and noise generative parameters, respectively). b)

Shows the 0.5 probability contours on the RT60 vs frequency marginal distribution on the multivariate Gaussian distribution for different

materials c) Shows the 0.5 probability contours for the Initial Amplitude vs frequency marginal distribution of the multivariate normal

distribution for different materials d) Example of the noise parameter distribution for wood IRs (bars show standard deviation).

The sinusoidal mode frequencies [fi, Eq. (2)] were most

important to initialize well because when hypothesized

mode frequencies are sufficiently different from the true

values, small changes to the mode frequencies leave the

spectrogram-based reconstruction loss unchanged, prevent-

ing gradient-based optimization. We used the power spec-

trum of the IR to detect possible modes, using peak picking

to identify the top N candidate modes with the highest aver-

age power. We applied A-weighting to the spectrum prior

to peak picking to emphasize perceptually relevant regions

of the spectrum (Lee, 1979). To avoid assigning multiple

peaks to the same mode, we constrained the selected peaks

to be at least 100 Hz apart. To avoid explaining parts of

the noise transient with sinusoidal components, we required

the peak prominence ≥ 2 (to reject noise bands, that were

typically wider than sinusoidal modes).

We initialized sinusoidal mode amplitudes (ai) by uni-

formly sampling from [-10 dB, -30 dB]. To initialize mode

RT60s (bi), we first calculate the ‘broadband’ RT60 for the

IR waveform by calculating the time it takes for the average

power to dip by 60 dB, and then randomly initialize mode

RT60s around the broadband RT60. We found that this

helped to make sure that the modes were fit correctly for

both resonant and damped materials, and sinusoidal modes

were not accounted for by noise bands during optimization.

For the noise parameters, initial guesses for αj [Eq. (3)]

were sampled from a uniform distribution from [-5 dB, -

15 dB], while the noise RT60 value (γj) were initially sam-

pled from a uniform distribution from [0.04 s, 0.12 s].

2.2.2. RECONSTRUCTION LOSS

Due to the tradeoff between temporal and spectral resolution

in spectrograms, selecting the optimal time window for a

spectrogram representation is often a challenge. Larger

time windows yield better estimates of sinusoidal mode

frequencies where as shorter time windows are better for

estimating modal and noise RT60s

To circumvent this issue, we used a multi-resolution spec-

trogram loss. We calculated four different spectrograms

(Number of FFT points - 4096, 1024, 256, 64) for the syn-

thesized and recorded IRs; the loss was the sum of the Huber

loss between these representations of the two signals (Hastie

et al., 2001).

2.2.3. OPTIMIZATION SCHEME

For gradient-based optimization during inference, we used

the Adam optimizer in PyTorch 2.0 (Paszke et al., 2019).

We used a learning rate of 2 × 10-6. Larger learning rates

produced poor results, presumably because of the multi-

dimensional spiky loss landscape.
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Figure 3. a) Multi-resolution spectrogram loss during an exam-

ple optimization run. Final loss after 1.4e5 steps was 6.83 dB b)

Spectrograms of two example wood IRs synthesized from mode

statistics sampled from the wood material distribution learnt using

5 recorded IRs c) Spectrograms of a measured IR (left), the syn-

thetic generated with initial guesses of IR properties (center), and

after optimization (right).

2.3. Material representations

The differentiable generative model and inference algorithm

allowed us to infer the parameters of a large set of mea-

sured IRs. We sought to fit distributions to these inferred

parameters in order to classify novel IRs as belonging to one

material or another, and to sample novel IRs corresponding

to a particular material [Fig. (2)].

We found that multivariate Gaussian distributions were able

to capture much of the structure of object IRs. We learned

separate distributions for the sinusoidal and the noise param-

eters. For the sinusoidal parameters [aj , bj , fj , Eq. (2)], we

fit a 3-dimensional multivariate Gaussian to the mode param-

eter estimates, pooling across IRs from a particular material

class. For the noise parameters, we fit a 2N -dimensional

multivariate Gaussian distribution combining the α and γ pa-

rameters for each noise band [Eq. (3)]. Unlike the sinusoidal

modes, each noise band has a fixed frequency, and occupied

a separate set of two dimensions in the generative space. To

generate a sampled IR, we sampled N = 10 modes from

the sinusoidal distribution, and the 2N noise parameter vec-

tor from the noise distribution, and then synthesized the IR

using the generative model described above.

3. Results and Discussion

3.1. Inference of modes

When applied to a measured IR, the inference scheme typi-

cally converged to a low reconstruction loss and was able to

infer parameters that resynthesized an IR that was perceptu-

ally similar to the measured IR [Fig. (3)].

We found that the covariance between the various genera-

tive parameters was important for the realism of IRs. For

instance, physics predicts that higher frequency modes of

vibration will have shorter RT60s, and the learned mate-

rial distributions captured this regularity. If the covariance

was replaced with a diagonal matrix, eliminating this reg-

ularity, the realism was reduced (based on our subjective

impressions).

3.2. Sample-efficient learning of auditory material

From our tests, we found that a modest number of recorded

IRs were enough to learn a material representation that

could generate new IRs that evoke the perception of the

same material type. The number of IR recordings could be

as low as four to five.

Using the physical regularities captured by the acoustic

generative model, we were able to lower the number of

generative parameters by several orders of magnitudes com-

pared to other audio representation learning systems (Engel

et al., 2020). These structural assumptions which helped us

avoid over-fitting to the small set of IR recordings but at the

same time, allowed the model to represent the key physical

features that acoustically and perceptually define a material

(Traer et al., 2019).

4. Future Work

IRs can be used to generate impact sounds, as well as scrap-

ing and rolling sounds – the latter two types of sound simply

have more complicated excitation forces that are a function

of surface textures (Agarwal et al., 2021). Since the pro-

posed generative model of IRs is differentiable, it can be

used as a building block in a more complex generative model

for contact sounds. In conjunction with recent progress in

the synthesis of impacts, scrapes and rolls, the model pre-

sented here will enable the development of computational

inference algorithms that could be useful in inferring phys-

ical interactions from sound, and in explaining the human

perception of these interactions.
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Supplementary information

Please find the training data and example re-

synthesized sounds on the project webpage here -

https://mcdermottlab.mit.edu/ICML2023/sound website.html
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