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Abstract

Deep learning models are often used with some

downstream task. Models solely trained to

achieve accurate predictions may struggle to per-

form well on the desired downstream tasks. We

propose using the task’s loss to learn a metric

which parameterizes a loss to train the model.

This approach does not alter the optimal predic-

tion model itself, but rather changes the model

learning to emphasize the information important

for the downstream task. This enables us to

achieve the best of both worlds: a prediction

model trained in the original prediction space

while also being valuable for the desired down-

stream task. We validate our approach through

experiments conducted in two main settings: 1)

decision-focused model learning scenarios involv-

ing portfolio optimization and budget allocation,

and 2) reinforcement learning in noisy environ-

ments with distracting states.

1. Introduction

Machine learning prediction models are typically trained to

maximize the likelihood on a training dataset. While the

models are capable of approximating the underlying data

generating process to predict the output, they are prone to

approximation errors due to limited training data and model

capacity. These errors lead to suboptimal performance in

downstream tasks where the models are used. End-to-end

task-based model learning methods is an the area of machine

learning research that uses information from the downstream

task to improve the model’s performance on that particular

task. These methods work well for financial price predic-

tions (Bengio, 1997; Elmachtoub & Grigas, 2022), inventory

stock, demand, and price forecasting (Donti et al., 2017; El-

machtoub & Grigas, 2022; El Balghiti et al., 2019; Mandi

et al., 2020; Liu et al., 2023), dynamics modeling for RL

(Farahmand et al., 2017; Amos et al., 2018; Farahmand,

2018; Bhardwaj et al., 2020; Voelcker et al., 2022; Nikishin
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Figure 1. TaskMet learns a metric for parameterized prediction

loss using the gradient signal from a downstream task loss.

et al., 2022), and budget allocation, matching, and recom-

mendation (Kang et al., 2019; Wilder et al., 2019; Shah

et al., 2022). We notate the model’s loss on the prediction

problem as Lpred and the downstream task loss as Ltask.

Running examples of predictions and tasks. We focus

on the following examples in this paper: 1) the portfolio

setting from Wilder et al. (2019), which predicts the ex-

pected returns from stocks for a financial portfolio. Here,

the Lpred is the MSE and Ltask is from the regret of running

a portfolio optimization problem on the output; 2) the allo-

cation setting from Wilder et al. (2019), which predicts the

value of items that are being allocated, e.g. click-through-

rates for recommender systems. Here, Lpred is the MSE

and Ltask measures the result of allocating the highest-value

items. 3) the model-based reinforcement learning setting of

learning the system dynamics from Nikishin et al. (2022).

Here, Lpred is the MSE and the Ltask measures how well the

dynamics performs for downstream value predictions.

Limitations of task-based learning. Task-based model

learning comes with the promise of being able to discover

task-relevant features and data-samples on its own without

the need of explicit inductive biases. The current trend for

end-to-end model learning uses task loss along with the

prediction loss to train the prediction models. Though easy

to use, these methods may be limited by 1) the prediction

overfitting to the particular task, rendering it unable to gen-

eralize; 2) the need of tuning weights to combine the task

and prediction losses as in Eq. (1).

Our contributions. We present TaskMet — a task-driven

end-to-end metric learning framework which is used for

training prediction model, see Fig. 1. This enables more in-

terpretable learning of the model using the metric compared

to learning with combination of task loss and prediction

loss. The learned metric can uncover underlying properties

of the task that are useful for training the model, e.g. as

in Figs. 2 and 4. Section 4 shows the empirical success of

metric learning on decision focused model learning setting

and MBRL with policy learning as the downstream task.
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2. Preliminaries and Background

We consider a prediction model ŷ := fθ(x) : X → Y
that maps from X to Y and is parameterized by θ. The

dataset D := {(xi, yi)}Ni=1 consists of N input-output

(x, y) ∈ X × Y pairs. The prediction model has an as-

sociated prediction loss, Lpred and is used in conjunction

with some downstream task that provides a task loss Ltask

characterizing how well the model performs on the task.

The most relevant related work to ours includes the ap-

proaches of Bengio (1997); Donti et al. (2017); Farahmand

et al. (2017); Kang et al. (2019); Wilder et al. (2019); Nik-

ishin et al. (2022); Shah et al. (2022); Voelcker et al. (2022);

Nikishin et al. (2022), which learn the optimal prediction

model parameter θ to minimize the task loss Ltask:

θ⋆ := argmin
θ
Ltask(θ) + αLpred(θ), (1)

whereα is a regularization parameter to weigh the prediction

loss which is MSE error (Eq. (2)) in general. Alternatives

to Eq. (1) include 1) Smart, “Predict, then Optimize” (SPO)

methods (Elmachtoub & Grigas, 2022; El Balghiti et al.,

2019; Mandi et al., 2020; Liu et al., 2023), which consider

surrogates for when the derivative is undefined or uninfor-

mative, or 2) changing the prediction space from the original

domain X into a latent domain with task information, e.g.

task-specific latent dynamics for RL (Hafner et al., 2019b;a;

Hansen et al., 2022). Sadana et al. (2023) provide a broader

survey of the field of decision making under uncertainty.

3. TaskMet: Task-Driven Metric Learning

3.1. Metricized loss for training prediction models

A supervised prediction model fθ parameterized by θ is

often trained using the mean squared error (MSE)

θ⋆ := argmin
θ

Ex,y∼D[(fθ(x)− y)2]. (2)

Equation (2) is equivalent to maximizing the data likelihood

and is often optimized using a stochastic first-order method,

e.g. as in Bottou et al. (2018). MSE error is indicative of

the prediction performance of the model. We propose to

use a parameterized variant of the MSE to turn it into a

metricized loss:

Lpred(θ, ϕ) := Ex,y∼D[∥fθ(x)− y∥2Λϕ(x)
], (3)

where ∥x∥M := (x⊤Mx)1/2 is a Mahalanobis norm with

positive semi-definite matrix M , e.g. as in Ghojogh et al.

(2022). We consider a parametric metric Λϕ with param-

eters ϕ and make it conditional on the feature x so it can

learn the importance of the regression space from each part

of the feature space. Learning θ using Lpred(θ, ϕ) makes

the model parameters θ an implicit function of ϕ denoted

as θ⋆(ϕ), with the condition ∇θLpred(θ, ϕ)|θ=θ⋆ = 0.

Algorithm 1 TaskMet

Models: predictor fθ and metric Λϕ
while unconverged do

for i in 1 . . .K do

θ ← update(θ,∇θLpred(θ, ϕ)) // Eq. (3): fit f to the current metric loss

end for

ϕ← update(ϕ,∇ϕLtask) // Eq. (6): update Λ with the task loss

end while

return optimal parameters θ, ϕ

Learning model parameters with a given metric can condi-

tion the learning process in the following ways: 1) Relative

importance of dimensions: the metric allows for down- or

up-weighting different dimensions of the prediction space

by changing the diagonal entries of the metric. 2) Corre-

lation in the prediction space: the quadratic nature of the

loss with the metric allows the model to be aware of cor-

relations between dimensions in the prediction space. 3)

Relative importance of samples: heteroscedastic metrics

Λ(x) enable different samples to be weighted differently for

the final expected cost over the dataset. Hence, learning

model parameters with a metricized loss can be seen as

conditioning the learning problem. The ability to learn the

metric end-to-end enables the task to condition the learning

of the model in any or all of the three ways described above.

This approach offers an interpretable method for the task to

guide the model learning, in contrast to relying solely on

task gradients for learning model parameters, which may or

may not align effectively with the given prediction task.

3.2. End-to-end metric learning for model learning

The key idea of the method is to learn a metric end-to-end

with a given task, which is then used to train the prediction

model as shown in Eq. (3). The learning problem of the

metric and model parameters are

ϕ⋆ := argmin
ϕ

Ltask(θ
⋆(ϕ)), (4)

s.t. θ⋆(ϕ) = argmin
θ
Lpred(θ, ϕ) (5)

where ϕ and θ are (respectively) the metric and model pa-

rameters, Lpred is the metricized prediction loss (Eq. (3)) to

train the prediction model, and Ltask is the task loss defined

by the task at hand (which could be another optimization

problem, e.g. Eq. (8), or another learning task, e.g. Eq. (10).

Gradient-based learning. We learn the optimal metric

Λϕ⋆ with the gradient of the task loss, i.e. ∇ϕLtask(θ
⋆(ϕ)).

Using the chain rule and assuming we have the optimal

θ⋆(ϕ) for some metric parameterization ϕ, this derivative is

∇ϕLtask(θ
⋆(ϕ)) = ∇θLtask(θ)

∣

∣

θ=θ⋆(ϕ)
· ∂θ

⋆(ϕ)

∂ϕ
(6)

To calculate the term ∇ϕLtask(θ
⋆(ϕ)), we need to compute

two gradient terms: ∇θLtask(θ)
∣

∣

θ=θ⋆(ϕ)
and ∂θ⋆(ϕ)/∂ϕ.
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The former can be estimated in standard way since Ltask(θ)
is an explicit function of θ. However, the latter cannot be

directly calculated because θ⋆ is a function of optimization

problem which is multiple iterations of gradient descent, as

shown in Eq. (5). Backpropping through multiple iterations

of gradient descent can be computationally expensive, so we

use the implicit function theorem on the first-order optimal-

ity condition of Eq. (5), i.e.
∂Lpred(θ,ϕ)

∂θ = 0; see Appendix A

for more details. ∇ϕLtask(θ
⋆(ϕ)) can be computed with

−∇θLtask(θ) ·

(

∂2
Lpred(θ, φ)

∂θ2

)

−1

·
∂2

Lpred(θ, φ)

∂φ∂θ

∣

∣

∣

∣

∣

θ=θ⋆(ϕ)

(7)

We follow Blondel et al. (2022) and compute the implicit

derivative by using conjugate on the normal equations.

Discussion. Other related work on metric learning such as

Hastie & Tibshirani (1995); Yang & Jin (2006); Weinberger

& Tesauro (2007); Kulis et al. (2013); Hauberg et al. (2012);

Kaya & Bilge (2019) often learns a non-Euclidean metric

or distance that captures the geometry of the data and then

solves a prediction task such as regression, clustering, or

classification in that geometry. In contrast to these, in the

task-based model learning, we propose that the downstream

task (instead of the data alone) gives the relevant metric

for the prediction, and that it is possible to use end-to-end

learning as in Eq. (4) to obtain the task-based metric.

4. Experiments

We evaluate our method on standard decision-focused model

learning and model-based reinforcement learning settings.

4.1. Decision Oriented Model Learning

Setup. We use three standard resource allocation tasks for

comparing task-based learning methods (Shah et al., 2022;

Wilder et al., 2019; Donti et al., 2017; Futoma et al., 2020).

In this setting, resource prediction based on some input

features constitutes prediction model, resource allocation

constitutes downstream task which is characterized by Ltask

The prediction model’s output is used in a downstream

resource optimization. The settings are implemented exactly

as in Shah et al. (2022) and have task losses defined by

Ltask(θ) := Ex,y∼D[g(z
⋆(ŷ), y)] (8)

where z⋆(ŷ) := argminz g(z, ŷ) and g(z, y′) is some com-

binatorial optimization objective over variable z parame-

terized by y′. The task loss Ltask is the expected value of

objective function with decision variable z⋆(ŷ) induced by

the prediction model ŷ = fθ(x) under the ground truth

parameters y. We use corresponding surrogate losses to

replicate the z⋆(ŷ) optimization problem as in Shah et al.

(2022); Wilder et al. (2019); Xie et al. (2020) and differenti-

ate through the surrogate using cvxpylayers (Agrawal

Table 1. Comparison of the normalized test decision quality

(0=random, 1=oracle) on the decision oriented learning problems.

α is prediction loss weight in Eq. (1)

Problems

Method α Cubic Budget Portfolio

MSE −0.96±0.02 0.54±0.17 0.33±0.03

DFL 0 0.61±0.74 0.91±0.06 0.25±0.02

DFL 10 0.62±0.74 0.81±0.11 0.34±0.03

LODL 0 0.96±0.005 0.84±0.105 0.17±0.05

LODL 10 −0.95±0.005 0.58±0.14 0.30±0.03

TaskMet 0.96±0.005 0.83±0.12 0.33±0.03

−3
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x
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2
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Figure 2. (Cubic problem) TaskMet learns a metric that prioritizes

points that are the most important the downstream task. The

euclidean metric (MSE) puts equal weight on all points and leads

to a bad model with respect to the downstream task.

et al., 2019). Appendix B.2 provides the exact formulations

of g(z, y) and description for the optimization problems.

We use Eq. (4) and Eq. (5) to find optimal parameters.

These settings evaluates the ability of TaskMet to capture

the correlation between model predictions and differentiate

between different data-points in accordance to their impor-

tance for the optimization problem. Hence, we consider a

heteroscedastic metric i.e., Λϕ(x).

Baselines. We compare our method with standard baselines

such as MSE and DFL (Donti et al., 2017; Shah et al., 2022)

along with more sophisticated method such as LODL (Shah

et al., 2022). The description of baseline methods can be

found in the Appendix B.2. We run our own experiments

for LODL (Shah et al., 2022) using their public code.

Results. Table 1 presents a summary of the performance

of different methods on all the tasks. Each problem poses

unique challenges for the methods. The cubic setting suf-

fers from severe approximation errors, hence the learning

method needs to prioritize the accuracy of higher utility

points over the accuracy of lower utility points. The MSE

method performs the worst as it lacks task information and

only care about prediction error. DFL with α = 0 performs

better than MSE, but it can get trapped in local optima, lead-

ing to higher variance in the problem (Shah et al., 2022).

LODL (α = 0) performs among the highest in this prob-

lem since it uses metricized loss as well learned for each

point. TaskMet performs as good as LODL as it can cap-

ture the relative importance of higher utility points versus
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lower utility points using the learned metric, resulting in

more accurate predictions for those points (see Fig. 2). In

budget allocation, DFL (with α = 0) performs the best,

since it is solely optimizer over Ltask, but on the other hand

it has 10 orders of larger prediction error as shown in Ta-

ble 2 indicating that the model is overfit to the task, LODL

(α = 0) suffers from the same problem. TaskMet has the

2nd best Decision Quality without overfitting on the task i.e.,

low prediction error. In Portfolio Optimization, the decision

quality correlates highly with the model accuracy/prediction

error as in this setting the optimization problem mostly de-

pends upon the accurate prediction of the stocks. This is the

reason that MSE, DFL (α = 10) performs the best, but DFL

(α = 0) performs the worst, since it has solely being trained

on Ltask without any Lpred. As shown in Table 1 and Table 2,

TaskMet is the only method that consistently performs well

across all the problem setting, this is due to the ability of

metric to infer problem specific features without manual

tuning unlike other methods.

4.2. Model Based Reinforcement Learning

Setup. Given the current state st and control at at a

timestep t of a discrete-time MDP, the dynamics model

predicts the next state transition, i.e. ŝt+1 := fθ(st, at).
The prediction loss is commonly the squared error loss

Est,at,st+1
∥st+1 − fθ(st, at)∥22, and the downstream task

is to find the optimal Q-value/policy. Nikishin et al. (2022)

introduces idea of optimal model design (OMD) to learn the

dynamics model end-to-end with the policy objective via im-

plicit differentiation. Let Qω(s, a) be the action-conditional

value function parameterized by ω. The Q network is trained

to minimize the Bellman error induced by the model fθ:

LQ(ω, θ) := Es,a[Qw(s, a)− BθQw̄(s, a)]
2, (9)

where ω̄ is moving average of ω and Bθ is the model-

induced Bellman operator BθQw̄(s, a) := rθ(s, a) +
γ Epθ(s,a,s′)[log

∑

a′ expQ(s′, a′)] Q-network optimality

defines ω as implicit function of model parameters θ as

ω⋆(θ) = argminω LQ(ω, θ) =⇒ ∂LQ(ω,θ)
∂ω = 0. Now we

have task loss which is optimized to find optimal Q-values:

Ltask(ω
⋆(θ)) := Es,a[Qω⋆(θ)(s, a)− BQω̄(s, a)]

2 (10)

where the Bellman operator induced by ground-truth

trajectory and reward is BQω̄(s, a) := r(s, a) +
γ Es,a,s′ log

∑

a′ expQω̄(s
′, a′).

OMD setup. OMD end-to-end optimizes the model for the

task loss, i.e. θ⋆ = argminθ Ltask(ω
⋆(θ)).

TaskMet setup. For metric learning, we extend OMD to

learn a metric using task gradients, to train the model param-

eters, see Fig. 5. Metric learning just adds one more level of

16 32 64 128 256 512

# Distractors

100

200

300

400

500

E
p
is
o
d
e
R
et
u
rn

TaskMet MLE OMD

Figure 3. Results on the cart-

pole with distracting states

(Nikishin et al., 2022).
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Figure 4. Our learned metric suc-

cessfully distinguishes the real

states from the distracting states,

i.e. the real states take a higher

metric value.

optimization to OMD and results in the tri-level problem

φ
⋆ = argmin

ϕ

Ltask(ω
⋆)

subject to ω
⋆(θ⋆) = argmin

ω

LQ(ω, θ
⋆)

θ
⋆(φ) = argmin

θ

Lpred(φ, θ)

(11)

where Ltask(ω
⋆) and LQ(ω, θ⋆) are defined in Eq. (10) and

Eq. (9), respectively, and Lpred(ϕ, θ) = Est,at,st+1
∥st+1 −

fθ(st, at)∥2Λϕ(st)
is the metricized prediction loss in Eq. (3).

Appendix B.3 describes how we compute gradients.

Results. We replicated experiments from Nikishin et al.

(2022) on the Cartpole environment. The first experiment

involved state distractions, where the state of the agent was

augmented with noisy and uninformative values to increase

dimensionality. In this setting, we considered an uncondi-

tional diagonal metric of dimension n, which is the dimen-

sion of the state space, i.e. Λϕ := diag(ϕ), where ϕ ∈ R
n.

As shown in Fig. 3, the MLE method performed the worst

across different numbers of distracting states, as it allocated

its capacity to learn distracting states as well. TaskMet

outperformed the other methods in all scenarios. The su-

perior performance of TaskMet with distracting states can

be attributed to the metric’s ability to explicitly distinguish

informative states from noise states using the task loss and

then train the model using the given metric, as shown in

Fig. 4. The learned metric in Fig. 4 assigned the highest

weight to the third dimension of the state space, which cor-

responds to the pole angle — the most indicative dimension

for the reward. This shows that the metric can differentiate

state dimensions based on their importance to the task. Ap-

pendix B.3 also shows experiments with a limited capacity.

5. Conclusions

This paper addresses the challenge of combining task and

prediction losses in task-based model learning. This paper

introduces the concept of task-driven metric learning, which

integrates the task loss into a parameterized prediction loss.

This approach enables end-to-end learning of metrics to train

prediction models, allowing the models to focus on task-

relevant features and dimensions in the prediction space.
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A. The implicit function theorem

We used the implicit function theorem to compute the derivative of the prediction model with respect to the metric’s

parameters in Eq. (7). For completeness, this section briefly presents the standard implicit function theorem, cf. Dini (1878)

and Dontchev & Rockafellar (2009, Theorem 1B.1):

Theorem 1 (Implicit Function Theorem). Implicit Function Theorem: Let f : Rn×R
m → R be a continuous differentiable

function, and let x⋆, y⋆ be a point satisfying f(x⋆, y⋆) = 0. If the Jacobian
∂(f(x⋆,y⋆)

∂y ̸= 0, then there exists an open set

around (x⋆, y⋆) and a unique continuously differentiable function g such that y⋆ = g(x⋆) and f(x, g(x)) = 0. Additionally,

the following relation holds:
∂g(x)

∂x
= −

(

∂f(x, y⋆)

∂y

)

∂f(x, y⋆)

∂x
|y⋆=g(x) (12)

B. Experimental Details

B.1. Metric Parameterization

We parameterize the metric using a neural network with parameters ϕ, denoted as Λϕ := L⊤
ϕLϕ, where Lϕ is an n × n

matrix, where n is the dimension of the prediction space. This particular factorization constraint ensures that the metric

matrix is positive semi-definite, which is crucial for it to be considered a valid metric. To initialize the neural network

parameters, we set them to initialize the matrix closer to the identity matrix I, representing the Euclidean metric. The learned

metric can be conditional on the input, denoted as Λϕ(x), or unconditional, represented as Λϕ, depending on the problem’s

structure.

B.2. Decision Oriented Model Learning

Description of the resource allocation problems (Shah et al., 2022) used to benchmark our method:

• Cubic This setting evaluate methods under model mismatch scenario where the model being learned suffer with severe

approximation error. In this task, it is important for methods to model the data well around the points that are more

critical for the downstream tasks. Prediction Model: A linear prediction model fθ(x) := θx is learned for the problem

where the ground truth data is generated by cubic function i.e. D := {xi, yi}Ni=1 yi = 10x3i − 6.5xi, xi ∈ U [−1, 1].
Downstream task: Choose top B = 1 out of M = 50 resources ŷ = [ŷ1, . . . , ŷM ], z⋆(ŷ) := argmaxi ŷ

• Budget Allocation: Choose top B = 2 websites to advertise based on Click-through-rates (CTRs) predictions

of K users on M websites. Prediction Model: ŷm = fθ(xm) where xm is given features of mth website and

ŷm = [ŷm,1, . . . , ŷm,K ] is the predicted CTRs for mth website for all K users. Downstream task: Determine

B = 2 websites such that expected number of users that click on the ad at least once is maximized i.e., z⋆(ŷm) =

argmaxz
∑K
j=0(1−

∏M
i=0 zi · ŷij) where zi ∈ {0, 1}.

• Portfolio Optimization: The task is to choose a distribution over M stocks in Markowitz portfolio optimization

(Markowitz & Todd, 2000; Michaud, 1989) that maximize the expected return under the risk penalty. Prediction Model:

Given the historical data xm about a stock m, predict the future stock price ŷm. Combining prediction over M stocks

to get ŷ = [ŷ1, . . . , ŷM ]. Downstream Task: Given the correlation matrix Q of the stocks, choose a distribution over

stocks z⋆(ŷ) = argmax
z
z
⊤
ŷ − λz⊤Qz s. t.

∑M
i=0 zi ≤ 1 and 0 ≤ zi ≤ 1, ∀i

Description of different baselines considered for benchmarking:

• MSE: Prediction model trained with standard MSE loss, θ⋆ = argminθ Ex,y∼D[(fθ(x)− y)2]. This method doesn’t

use any task information.

• DFL: Prediction model trained with combination of Ltask and Lpred as shown in Eq. (1).

• LODL: Shah et al. (2022) learn parametric loss for each point in the training data to approximate the Ltask around

that point i.e., LODLψn
(ŷn) ≈ Ltask(ŷn)∀n. They create a dataset of {(ŷn,Ltask(ŷn))} for ŷn sampled around the yn.

After this they learn the LODL loss for each point as follows - ψ⋆n = argminψn

1
K

∑K
k=1(LODLψn

(ykn)−Ltask(y
k
n))

2.

We chose the variant of their method which was closest to ours, where LODLψn
(ŷ) = (ŷ − y)⊤ψn(ŷ − y) where ψn
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is a learned symmetric Positive semidefinite (PSD) matrix. LODL also uses Eq. (1) to learn the model parameters, but

using LODLψn
(ŷn) ≈ Ltask(ŷn)

Table 2. Prediction Error of different methods

Problems

Method Cubic Budget Allocation Portfolio Optimization

MSE 2.30± 0.03 4.32e−4 ± 2.35e−4 4.03e−4 ± 0.24e−4

DFL (α = 0) 2.89± 0.32 7.17e−3 ± 5.83e−3 0.826± 0.081
DFL (α = 10) 2.41± 0.05 8.09e−4 ± 12.07e−4 5.18e−4 ± 0.46e−4

LODL-Quadratic (α = 0) 2.88± 0.030 3.59e−3± 1.29e−3 5.56e−3 ± 9.95e−4

LODL-Quadratic( α = 10) 2.29± 0.19 5.05e−4 ± 1.88e−4 4.31e−4 ± 0.31e−4

TaskMet 2.89± 0.03 9.74e−4 ± 13.79e−4 4.69e−4 ± 0.56e−4

B.3. Model-based reinforcement learning

Following is the derivation of final gradient to learn ϕ from Eq. (11). Using the implicit function theorem and using it on

Eq. (11), we get the following

∇ϕLtask =∇ωLtask(ω
⋆) · ∂ω

⋆

∂θ⋆
· ∂θ

⋆

∂ϕ
(13)

=∇ωLtask(ω
⋆) ·

(

∂L(ω, θ⋆)
∂2ω

)−1

· ∂L(ω, θ
⋆)

∂θ∂ω

∣

∣

∣

∣

∣

ω=ω⋆(θ⋆)

·
(

∂Lpred(θ, ϕ)

∂2θ

)−1

· ∂Lpred(θ, ϕ)

∂ϕ∂θ

∣

∣

∣

∣

∣

θ=θ⋆(ϕ)

(14)

Model Q* LossMetric

Planning ActingLearning

IFT IFT Backprop

OMD

TaskMet

Figure 5. OMD (Nikishin et al., 2022) uses planning task loss to learn the model parameters using implicit gradients. TaskMet add one

more optimization step over OMD and instead of learning the model parameters using task loss, we learn the metric which then is used to

learn model parameters.

We also consider a setting with reduced model capacity, where the network is under-parametrized, forcing the model to

prioritize how it allocates its capacity. In this scenario, we employ a full conditional metric, denoted as Λϕ = Λϕ(x), which

enables the metric to weigh dimensions and state-action pairs differently. We conducted the experiment using a model size

of 3 hidden units in the layer. As depicted in Fig. 6, TaskMet achieves a better return on evaluation compared to MLE

and OMD. Additionally, it is evident that TaskMet achieves a lower MSE on the model predictions compared to OMD,

indicating that learning with the metric also contributes to a better dynamics model.

C. Implementation Details

C.1. Source code

Upon request, we will provide an anonymized version of our code in the rebuttal.

C.2. Decision Oriented Model Learning

We replicated our experiments using the codebase provided by Shah et al. (2022), which can be found at github. To ensure

consistency, we used the same hyperparameters as mentioned in the code or article for the baselines. Our metric learning

8
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Figure 6. Results on cartpole with a reduced model capacity from Nikishin et al. (2022).

pipeline was added on top of their code, and thus we focused on tuning hyperparameters related to metric learning. The

metric is parameterized as Λϕ(x) = Lϕ(x)L
⊤
ϕ (x) + ϵϕIn×n, where ϵϕ is a learnable parameter that explicitly controls the

amount of Euclidean metric in the predicted metric. This helps ensure the stability of metric learning. We initialize the

parameters in such a way that the predicted metric is close to the Euclidean metric. For each outer loop of metric update, we

perform K inner updates to train the predictor. Following the methodology of Shah et al. (2022), we conducted 50 runs with

different seeds for each of the experiments, where each method was evaluated on 10 different datasets, with 5 different seeds

used for each dataset.

Table 3. Hyper-parameters for Decision Oriented Learning Experiments

Hyper-Parameter Values

Λϕ learning rate 10−3

Λϕ hidden layer sizes [200]

Warmup steps 500
Inner Iterations (K) 100

Implicit derivative batchsize 10
Implicit derivative solver Conjugate gradient on the normal equations (5 iterations)

C.3. Model-Based Reinforcement Learning

We consider the work of Nikishin et al. (2022) as the baseline for replicating the experiments, and we build upon their source

code. Our metric learning is just one additional step to their method. We adopt exact same hyperparameters as their for

dynamics learning and Action-Value function learning. We focus on exploring and tuning the hyper-parameters specific to

the metric learning component of the method.

Table 4. Hyper-parameters for the CartPole experiments

Hyper-Parameter Values

Λϕ learning rate 10−3

Λϕ hidden layer sizes [32, 32]

Warmup steps 5000
Inner iterations (K) 1

Implicit derivative batchsize 256
Implicit derivative solver Conjugate gradient on the normal equations (10 iterations)

For the state distractor experiments, we parameterize the metric as an unconditional diagonal matrix, denoted as Λϕ =
diag(ϕ) where ϕ ∈ R

n and n is the dimension of the state space. In addition, we also consider a hyper-parameter of
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metric parameterization, for which we either take normalize or unnormalized metric. When we refer to normalizing

the metric, we mean constraining the norm of the ϕ vector to be equal to the L2 norm of an euclidean metric which is

used by MSE method. This constraint the family of learnable metrics. To achieve this, we set ϕ := ϕ
∥ϕ∥2

√
n, ensuring

∥ϕ∥2 = ∥In×n∥2 =
√
n. We also used L1 regularization on the metric output, to induce sparsity in the metric. We

sweep over three values of the regularization coefficient - [0.0, 0.001, 0.1]. We ran a sweep over the 6 combinations of

hyperparameters - [unnormalized, normalized]× [0.0, 0.001, 0.1] and choose the best hyper-parameter combination for each

of the experiment. All the number reported in the experiments are calculated over 10 random seeds.

Our metric learning approach uses two implicit gradient steps. Firstly, we take the implicit derivative through action-value

network parameters, approximating the inverse hessian to the identity, similar to Nikishin et al. (2022). Secondly, for the

step through dynamics network parameters, we calculate the exact implicit derivative.

D. Training time analysis

We also measure the training time of our method compared to MLE-based training, as using implicit derivatives may

introduce additional computational overhead. It is important to note that the evaluation time is not affected by the use of

metric learning, as the metric is only employed during the training phase. Consequently, the evaluation runtime of the agent

remains the same for both methods.

Table 5. Time (sec) for one update step of the agent

Method Time (s)

MLE 0.0240
TaskMet 0.0243

We measure the time for single update step of agent. The code is written in JAX and evaluated on the computer with GPU

— Quadro GV100 and CPU — Intel Xeon Gold 6230 @ 2.10GHz. As shown in Table 5, learning a metric using implicit

derivative to train the predictor takes negligible extra time compared to MLE method.
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