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Abstract

The message-passing principle is used in the most

popular neural networks for graph-structured data.

However, current message-passing approaches

use black-box neural models that transform fea-

tures over continuous domain, thus limiting the

description capability of GNNs.

In this work, we explore a novel type of mes-

sage passing based on a differentiable satisfiabil-

ity solver. Our model learns logical rules that

encode which and how messages are passed from

one node to another node. The rules are learned

in a relaxed continuous space, which renders the

training process end-to-end differentiable and thus

enables standard gradient-based training. In our

experiments we show that MAXSAT-MP learns

arithmetic operations and that is on par with state-

of-the-art GNNs on graph structured data.

1. Introduction

Graph-structured data can be found in many domains such as

biology, chemistry, and computer science (Bronstein et al.,

2021; Scarselli et al., 2008). Consequently, machine learn-

ing for graph-structured data is gaining more interest from

the machine learning community.

A key component of neural networks for graph-structured

data, so-called graph neural networks, is the message pass-

ing principle (Gilmer et al., 2017). The key idea of message

passing is to exchange messages between nodes in a graph

such that representations for nodes or the graph can be

learned. The obtained representations are used to address

tasks such as node classification (Kipf and Welling, 2016),

graph classification (Niepert et al., 2016), and missing node

feature prediction (Rossi et al., 2021).

GNNs provide limited graph reasoning capabilities they use
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traditional neural network that fails to reason over discrete

variables or combinatorial problems (Pogančić et al., 2019;

Cappart et al., 2021).

In this work, we explore an alternative to standard mes-

sage passing. We propose to learn logic rules (which could

model for example binary arithmetics) end-to-end with a

differentiable satisfiability solver to encode how messages

are distributed within the graph. By modeling the node fea-

tures as logical variables, we describe the relationship of

those features over the neighbor nodes using one or more

logical sentences. A feature is propagated over neighbor

nodes only if correct according to the graph logic rules.

Our approach MAXSAT-MP is a continuous-discrete ap-

proach and thus enjoys several benefits such as data effi-

ciency and interpretability. For example in the arithmetic

experiments (subsection 4.1) the number of clauses is lim-

ited. Moreover, our experiments show (section 4) that our

approach exceeds or is comparable accuracy of standard

message passing approaches.

2. Background

2.1. Notation

An undirected graph is a pair G = (VG, EG), where

VG = {v1, . . . , vN} is finite set of vertices (nodes), and

EG ⊆ {{u, v} : u, v ∈ VG, u ̸= v} is a symmetric, irreflex-

ive, binary relation on VG, while e ∈ EG is called edge.

N (v) = {u : {v, u}, u ∈ V, {v, u} ∈ EG} is the set of

neighborhood of v and |·| denotes the size of a set. For a

column vector h, hT is its transpose, and 1x is the indicator

function.

2.2. SAT and MaxSAT Problems

Satisfiability problems (SAT) consists of a set of boolean

variables (literals) that are related by a logical rules (clauses).

The rules that govern the relationship among the variable

are represented in conjunctive normal form (CNF), which

consists of a series of clauses joined by AND operators.

CNF represents any propositional logic (sec.7.5 of (Russell,

2010)) Each of the clauses contains some of the variables, or

their negation, as for example (s11x1∨ . . .∨ s1nxn)∧ . . .∧
(sm1x1 ∨ . . . ∨ smnxn), where sji determines whether the
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variable xi ∈ {⊥,⊤}1 is present and/or negated in clause

j , for example if s11 = 1 then x1 participates in the first

clause, while if s11 = −1 then x1 is negated into ¬x1, while

if s11 = 0 then x1 is not present. The objective of the SAT

problem is to find the truth values of the variables so that the

CNF statement is fulfilled, while a Maximum Satisfiability

problems (MaxSAT)’s goal is to find the values of variables

that satisfies the maximum number of clauses.

2.3. SATNet

The SATNet (Wang et al., 2019) is a satisfiability solver that

maps the variables and parameters of the MaxSAT problem

into a continuous high-dimensional space. In this relax-

ation, the MaxSAT problem is defined as Semi-Definite

Programming (SDP) problem, which allows the algorithm

to be integrated as a layer in machine learning systems.

Given a MAXSAT problem with n variables m clauses,

we denote the variables of the SAT as xi ∈ {−1, 1} for

i ∈ {1, . . . n}, where xi represent the i-th variable truth

value. Let sji ∈ {−1, 0, 1} denote the parameters of the

SAT for i ∈ {1, . . . n} and j ∈ {1, . . . m} . The value

of sji represents thus the sign (if present) of variable xi

in clause j. The MaxSAT problem consists of finding the

values of xi so that

max
x∈{−1,1}n

m
∑

j=1

n
∨

i=1

1sjixi>0, (1)

The SAT variables xi are given a probabilistic interpretation

and are relaxed by a map into the k-dimensional sphere:

P (xi = 1) ∈ [0, 1] → x̄i ∈ Sk−1 ⊂R
k, with ∥x̄i∥ = 1 and

Sk−1 = {x̄ ∈ R
k : ∥x̄∥ = 1}. The probability of xi being

true is set to

P (xi = 1) = cos−1(−x̄T
i x̄0)/π, (2)

given the truth direction x̄0. The coefficients sji are also

mapped into the real numbers s̄ji ∈ R, with s̄j0 = −1. The

Semi-Definite Programming (SDP) of the MaxSAT of Eq.1

is

min
X̄

⟨STS, X̄T X̄⟩, such that ∥x̄i∥ = 1 ∀i (3)

where X̄ ∈ R
k×(n+1) and S ∈ R

m×(n+1) are the matrices

formed by the column vectors x̄i and si = s̄i/
√

4∥s̄i∥ re-

spectively. Given a set of known parameters S, the MaxSAT

as in Equation 3 is solved via a block coordinate descent

method that converges to the optimal global point of the SDP

(Wang et al., 2017). The solutions of the relaxed MaxSAT

1
⊥ is the logic false value, and ⊤ is the logic true value. In the

following, the true value will be mapped to +1, while the false
value into −1.

x̄i ∈ Sk−1 are mapped back to a probabilistic value using

Equation 2.

To improve convergence, the vectors x̄i are generated from

the logical values as x̄i = − cos(πxi)x̄0+sin(πxi)P⊤x̄
rand
i ,

where Pi = IK − x̄ix̄
T
i is the projection matrix on the

vector x̄i, while x̄rand
i is a random unit vector. The solu-

tion of Equation 3 is given as the fix point equation (Wang

et al., 2019) x̄i = − gi
∥gi∥

, with gi = X̄ST si − ∥si∥2x̄i =

X̄ST si − vis
T
i si. SATNet (Wang et al., 2019) provides an

efficient way to back-propagate the gradients with respect

to S. The complexity of solving Equation 3 (Wang et al.,

2019), for both forward and backward steps, is O(knmT ),
with T being the maximum number of iterations. Additional

information is provided in the Appendix H.

In the following, we will use y = MAXSATN
M (x) to denote

a MAXSAT problem with N logic variables and M clauses,

where the input variable x ∈ [0, 1]dx and output variables

y ∈ [0, 1]dy have a combined size of dx + dy = N . When-

ever multiple inputs x1, x2, . . . are presented to MAXSAT,

these are concatenated in a single input x.

2.4. Message Passing

Message passing (Gilmer et al., 2017) consists of three

steps. First, for each pair of connected nodes u, v, a message

m(v, u) is computed. Second, for each node v, all messages

m(v, u) with u ∈ N (v) are aggregated. Third, the node

representation hv of v is updated based on the aggregated

messages.

3. MaxSAT-based Message Passing

We propose a message aggregation procedure where neigh-

boring nodes’ features, associated with a central node,

are logically related to the updated central node’s feature

through an unknown MaxSAT (see Figure 4 in Annex), i.e.

a set of logic rules. Our motivation lies in the intuition that

the information carried across graph edges and the updated

nodes can be represented as a set of truth variables. The

logic rule that fulfills the MaxSAT related to them can in

principle be learned and computed from the neighbor nodes

and is inherent to the nature of information represented in

the graph.

In the proposed model, we use a differentiable rule learn-

ing approach to learn the MaxSAT behind the aggregation.

Node features and aggregated messages will therefore ac-

quire a probabilistic nature according to the relaxation pro-

cess discussed in the previous section.

3.1. Recursive MAXSAT Message Passing

The aggregation function over the neighbors of a node is

implemented recursively similar to Recurrent Networks
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Figure 1. MAXSAT variables: Visualization of the Message Pass-

ing aggregation using a MaxSAT problem at the l-layer of the net-

work. mk
i ,m

k−1

i are the messages when considering the i-node

of the graph, while hl
j is the feature of the j-neighbout node. The

attention bit al
ji, described in subsection 3.3, helps the MaxSAT to

select the relevant features.

(Hochreiter and Schmidhuber, 1997), where the aggregation

step uses a MaxSAT solver. We call it R-MAXSAT-MP,

i.e. Recursive MaxSAT Message Passing.

Using node i and the set of its neighbor features hl
i, h

l
j ∈

[0, 1]dl , j ∈ N (i), where dl is the dimension of the features

at the l-layer, and the logic value is represented as a proba-

bility (Equation 2), the R-MAXSAT-MP applies a logic rule

to all of those elements in a recursive manner, see Figure 1.

It starts operating on two of them and the output is used as

memory for the next operation with the next element until

the whole set takes part in the aggregation. The memory is

a key element of our aggregation since it contains the impor-

tant information from all neighbor nodes to help to compute

a logic-related output. Let {hl
j : j ∈ N (i)} be the set of

features entering the node vi, where j is the neighbor node

index. With reference to Figure 1, we proposed aggregation

of the following form:

mk
i = MAXSAT3dl

M (mk−1
i , hl

j) ∀j ∈ N (i) (4)

hl+1
i = m

|N (i)|
i , m0

i = hl
i (5)

where mk
i is the message/memory that aggregates the infor-

mation from the neighboring nodes for the ego-node, whose

feature, hl
i, can be used as the initial state.

3.2. Canonical ordering

In Equation 4, the nodes do not have a predefined order,

thus, to implement an equivariant or invariant Message Pass-

ing method for graph data (Bronstein et al., 2021), i.e. to

the group of permutations over the nodes, we propose to

order the features before they are processed sequentially

(Niepert et al., 2016). This ordering consists of mapping

the binary representation encoded in the features to the

real numbers and sorting the neighbors in decreasing order.

Whenever two or more nodes have the same feature’s val-

ues, the relative order is not relevant for the permutation

invariant property, since the result of the node’s features

aggregation of Equation 4 is independent of the permutation

of these nodes.

3.3. Logic attention bit

An attention bit is used to help the solver to decide if

the message should be processed or not. We call RA-

MAXSAT-MP, the model that uses the attention bit. The

attention bit is computed between the center node and

each of its neighbors alji = σ(hlT
j W lhl

i − bl) and the

message update includes the additional information mk
i =

MAXSAT3dl+1
M (mk−1

i , alji, h
l
j), ∀j ∈ N (i) where σ is the

non-linear Sigmoid function, W l ∈ R
dl×dl , bl ∈ R

dl are

trained parameters and mk
i is the memory of the aggregation

related to node i at step k, and dl is the feature dimension

ath l-layer. Self-attention bit alj = σ(hlT
j W lhl

j) is used

when the central node feature is missing, and the attention

would provide self-filtering information for the SAT.

Figure 2. Visualization of the batch version of the MAXSAT (B-

MAXSAT-MP), where multiple nodes’ features are considered at

once.

3.4. Batch aggregation

Batch MAXSAT-MP (B-MAXSAT-MP) (see Figure 2)

computes outputs over K neighboring nodes’ features at

once in a single forward pass, where K is fixed to the max-

imum node degree of the network by concatenating the

ordered node features

hl+1
i = MAXSAT

(n+2)dl

M (φ(hl
i, h

l
j1
, . . . , hl

jn
)), (6)

where φ refers to an ordering function, j ∈ N (I), and n =
|N (i)|. This model only requires one evaluation and does

not require hidden states, thus improving training stability.

For larger graphs, K-neighbors sampling is used to reduce

the size of the MaxSAT problem.

4. Experiments

Baselines To evaluate MAXSAT-MP, we consider two

recursive networks, LSTM (Hochreiter and Schmidhuber,

1997) and GRU (Cho et al., 2014), that use a hidden state

to propagation of information over consecutive inputs. For

message passing on graph structures, we consider the stan-

dard graph GCN convolution (Kipf and Welling, 2016),

the GAT convolution which contains an attention mecha-

nism to assign weights to edge messages (Veličković et al.,

2017) and the Graph Isomorphism Network (GIN) (Xu et al.,

2018), which improves GNN’s expressive power. Tran-
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Method / task Addition Multiplication

Trained/ tested on 2 → 2 3 → 3 4 → 4 2 → 2 3 → 3 4 → 4

R-MAXSAT-MP 1.0000(000) 0.9284(532) 0.8196(493) 0.9633(055) 0.9554(42) 0.9030(2)
B-MAXSAT-MP - 0.9958(008) 0.9859(105) - 0.9586(3) 0.9758(018)

LSTM 0.8254(267) 0.4787(310) 0.7109(47) 0.8000(286) 0.8392(64) 0.8859(58)
GRU 0.8894(280) 0.7779(600) 0.7670(30) 0.8196(54) 0.8509(54) 0.8848(19)
GCN 0.5753(158) 0.6427(56) 0.6735(21) 0.6291(51) 0.7171(40) 0.7907(2)
GAT 0.7946(247) 0.7713(24) 0.7690(78) 0.7917(204) 0.8313(35) 0.8709(31)
GIN 1.0000(000) 0.9999(001) 0.9990(011) 0.8070(106) 0.8321(15) 0.8433(17)

Table 1. In this table we report the performance in terms of accuracy for the Addition of 5-bit numbers and Multiplication with modulo of

5-bit numbers. The best and second-best results (if overlaps statistically) are reported, where the top results are also underlined. The

error, expressed as standard deviation, is reported in parenthesis and represents the last relevant digits. For example 1.234± 0.050 is

represented as 1.234(50). The dash represents that B-MAXSAT-MP is equivalent to R-MAXSAT-MP.

former based model have been adapter to work with graph

data, for example the Graph Transformer of the Unified

Message Passaging Model (UniMP) (Shi et al., 2021).

4.1. Learning arithmetic operations

Basic arithmetic over integer numbers are implemented,

even in modern computer architectures, using logic rules,

we thus test the ability of the MAXSAT-MP in learning

arithmetic operations. Therefore design two experiments:

1) Addition of 2, 3, and 4 numbers; 2) Multiplication with

modulo of 2, 3, and 4 numbers. The synthetic datasets

consist of numbers in binary representation with a length of

five bits (i.e. integer numbers from 0 to 31). For the addition

over 2, 3, 4 elements, we take all possible pairs, triplets, and

quadruplets whose sum does not exceed 31 bits, while for

multiplication we used modulo 32 operations. A proper star

graph dataset is build to test graph neural network. From

the results on addition and multiplication in Table 1, we

notice MAXSAT-MP learns better arithmetic operations

than recurrent networks such as GRU and LSTM. Compared

with graph-based convolutions (GCN and GAT) we discover

that MAXSAT-MP have more power to aggregate messages

on a logic-based setting. GIN shows better performance in

the addition, but underperforms in the multiplication dataset.

Graph Classification

MUTAG Mutagenicity PROTEINS ZINC

B-MAXSAT-MP 0.9211(456) 0.7949(123) - -

RA-MAXSAT-MP 0.9035(152) 0.8078(130) 0.7227(262) 0.8690 (0.0206)

GCN 0.7632(912) 0.7919(131) 0.7047(324) 0.9025 (0.0035)

GAT 0.7979(405) 0.7905(87) 0.6811(419) 0.9028 (0.0055)

GIN 0.8502(402) 0.8150(149) 0.6922(475) 0.9114 (0.0036)

Graph Transformer - - - 0.9012 (0.0023)

Table 2. Standard deviation is reported with the last n position.

The best and second-best results (if it overlaps statistically) are

reported, where the top results are also underlined. The accuracy

is reported as in Table 1.

4.2. Graph Classification

For graph classification, we consider three datasets from

the graph learning benchmarks (Morris et al., 2020a): MU-

TAG, Mutagenicity, and PROTEINS, and the ZINC dataset

(Sterling and Irwin, 2015; Gómez-Bombarelli et al., 2018).

The first two contain graphs with one-hot encoded features.

The PROTEINS dataset consists of an integer number plus

a one-hot encoded three-class features. All continuous vari-

able of the datasets have been converted into 5-bits inte-

gers. Use use uniform architectures composed of 2 layers.

For MAXSAT-MP we used as message aggregation RA-

MAXSAT-MP, and B-MAXSAT-MP, followed by a max
pooling and a final dense linear layer. We train our models

using Adam (Kingma and Ba, 2014) optimizer and the bi-

nary cross entropy loss (Zhang and Sabuncu, 2018) over a

80/20 split. The results in Table 2, show that in complex

tasks such as graph classification where multiple aggrega-

tions are involved, the MaxSAT-based models are capable

of performing similarly to the baselines.

5. Conclusions

In this work, we propose to model the properties of graph

structure data using logic rules that can be learned through

end-to-end training. We exploit the structure of message

passing and proposed an invariant-equivariant architecture

based on an ordering function and a flexible attention

mechanism. Experiments that MAXSAT-MP learns rules

for arithmetic operations, while on molecular datasets is

equal capable in classifying graphs. Limitations of this

work: while MAXSAT solution computation is efficient

(O(knmT ) complexity), it has higher cost then regular neu-

ral networks.
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Supplementary Materials

A. Related Work

Deep learning on graphs and in particular graph neural net-

works (GNNs) has been extensively studied in the last few

years (Sperduti and Starita, 1997; Scarselli et al., 2008;

Kipf and Welling, 2016; Gilmer et al., 2017). The predom-

inant paradigm is message passing (Gilmer et al., 2017),

which propagates information using a learnable non-linear

function on the graph. Among the most popular architec-

ture is GCN (Kipf and Welling, 2016), where the graph

is represented using the normalized adjacent matrix, GAT

(Veličković et al., 2017), where the weights of multiple

heads on the node are mixed with learnable functions, and

Graph Isomorphism Network (GIN) (Xu et al., 2018), which

achieves the same discriminative power level of Weisfeiler-

Lehman (WL) isomorphism test. RNNLogic (Qu et al.,

2021) uses an EM-based algorithm to learn a set of rules for

reasoning on knowledge graphs. Contrary to our approach,

the model is not differentiable. In (Niepert et al., 2016)

the authors consider a fixed canonical ordering, while we

use a fixed function, which depends on the current node’s

feature. To overcome the limited expressive power of GNN,

recently alternative approaches have been proposed as in

(Maron et al., 2019; 2018; Morris et al., 2020b; Morris and

Mutzel, 2019), where WL-k (k ≥ 1) networks are described,

whose complexity, however, increases exponentially with

the expressive level k.

Learning Aggregation Function and Learning on Sets

An alternative line of work addresses the improvement in

the aggregation function in current graph neural netwok and

message passing architectures. (Corso et al., 2020),(Pelle-

grini et al., 2021). Another alternative direction is discard

the graph straucture and directly learn over sets (Lee et al.,

2019). These works do not attempt to model the learning

process using logic clauses.

Reasoning in Knoledge Graphs Reasoning over categor-

ical data is a critical task in Knowledge Graphs (Zhang et al.,

2020),(Qiu et al., 2023). In this application the information

in organized in triplet and infgerence of new relationships

or links an important task.

Discrete latent variables An alternative way to model

reasoning is to use discrete latent variables. To integrate dis-

crete variables into traditional differentiable architectures,

various gradient estimations have been proposed (Jang et al.,

2016; Maddison et al., 2016; Paulus et al., 2021). Unfor-

tunately, these models only mimic the discrete nature of

the variables but do not capture the underlying reasoning

mechanism.

Neural Combinatorial Optimization (NCO) The combi-

natorial problem can be solved using heuristics, NCO meth-

ods use deep neural networks to learn adaptable heuristics

either using supervised learning or reinforcement learning

(Joshi et al., 2019; Kool et al., 2019). These approaches

could be alternatives to the one proposed in this work.

B. Limitations of the proposed approach

We recognize some limitations of the proposed approach.

First, the dataset’s input features are considered discrete

and the dataset is generated at least partially according to

some logic rules. If the input data is described with continu-

ous variables and quantization of the input values does not

introduce high distortion, then the model can be used. In

some situations, we can employ an initial nonlinear layer to

encode the features either into discrete features (for example

using (Jang et al., 2016; Maddison et al., 2016; Paulus et al.,

2021)) or into continuous value in [0, 1]. Otherwise, other

approaches are more appropriate. Training of the model

is longer because of the recursive nature of the model and

proportional to the number of neighbors of the nodes, but

the number of variables is similar to alternative methods.

With the batch architecture, the computational time and con-

vergence are comparable with the classical forward neural

network.

C. Example Application

For example in Figure 3, the variable describing if the

molecule is Alanine or Glycine is set based on the num-

ber of hydrogen atoms around the carbon atom and the

presence of three or two carbon atoms. We thus assume

that a collection of logical rules can be collected at the level

of the single atom and then verified by pooling the logical

variables at the level of the whole graph.

C C O−

OH

N+H3

CH3

Alanine

C C O−

OH

N+H3

H

Glycine

Figure 3. Alanine and Glycine Molecules; the difference is in the

presence of a specific sub-structure or the abundance of specific

atoms.

D. Message Passing Visualization

E. Additional Experiments

E.1. Learn arithmetic: addition and multiplication

To support our motivation that logical reasoning can be

found in common machine learning problems, we com-
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Figure 4. MAXSAT Message passing: Visualization of the Mes-

sage Passing aggregation using a MaxSAT problem. We use the

Methane molecule from Figure 3, where the carbon atom is the

current node. The neighbor nodes are visualized according to the

adopted notation. The neighbor nodes N(v) are first ordered (sub-

section 3.2) and then aggregated using Equation 4.

pare the learning capability of arithmetic operations of both

MAXSAT and existing approaches. Basic arithmetics over

interger numbers are implmented, even in modern computer

architectures, using logic rules, we test the ability of the

MAXSAT-MP in learning those rules. Therefore we take

into account two experiments: 1) Addition of 2, 3, and 4
numbers; 2) Multiplication with modulo of 2, 3, and 4 num-

bers. The synthetic datasets consist of numbers in binary

representation with a length of five bits (i.e. integer numbers

from 0 to 31). For the addition, we take all possible pairs,

triplets, and quadruplets whose sum does not exceed 31.

For multiplication, we consider all possible pairs, triplets,

and quadruplets. The labels are set to be the result of addi-

tion/multiplication with modulo 32 of those numbers. The

recurrent networks and the MAXSAT-MP are tested by a

simple forward pass on the set of numbers. To test those

sets on our graph-based benchmarks, we construct a star

graph dataset (from the previous sets) with an unlabeled

center node whose neighbors correspond to the numbers to

be operated. The output after a message aggregation should

give us an insight into their ability to learn the arithmetic

operation we are studying.

E.1.1. RESULTS OF LEARNING ARITHMETIC

The results of learning arithmetic are summarized in Table 1

for addition and for multiplication. We report the mean

accuracy per bit of the binary rounded results given by the

models. In general, we notice that our model learns much

better arithmetic operations than recurrent networks such as

GRU and LSTM. This is evidence of that the MAXSAT-MP

are more capable of encoding logic functions and carrying

them across a memory state. Also, if we take a general view

of the results of the graph-based convolutions (GCN and

GAT) we discover that MAXSAT-MP have more power to

aggregate messages on a logic-based setting, which is not

based only on a sum aggregation such as the GCN’s and

GAT’s. Taking a look at the specific results, in addition, we

find out that MAXSAT-MP give satisfactory results in this

task. When training on pairs of numbers the R-MAXSAT-

MP achieves a perfect score together with the GIN.

We notice also that adding elements to the recursion makes

the performance of the R-MAXSAT-MP drop by 7.2% and

18.0%. GIN maintains its almost perfect score when training

on quadruplets. The B-MAXSAT-MP is still capable to

capture the addition operation maintaining its performance

over 98, 5% when it is trained on quadruplets.

We conclude from this that the R-MAXSAT-MP is sensible

to lose information as explained in subsection 3.4 when

the input has more elements. This idea is supported when

looking at the uncertainty of the results. B-MAXSAT-MP

has more stable results while the recursive version did only

sometimes achieve similar scores (and could not learn in

the others). For the multiplication task, R-MAXSAT-MP

achieves the best accuracy score when training with pairs.

As before, B-MAXSAT-MP has the peculiarity that their

results stay similar, over 95.8%, with the three datasets.

E.1.2. GENERALIZATION OF ARITHMETIC LEARNED

OPERATIONS

We explore if our models can generalize the arithmetic op-

eration on a different aggregation size, by testing them with

the other datasets that were not used for training. (For ex-

ample, the MAXSAT-MP that was trained with pairs of

numbers tested on triplets and quadruplets). We report these

results on Table 3 and Table 4. For the addition, we observe

in general that the R-MAXSAT-MP is able to generalize

when it was trained on pairs, but in the other experiments,

they are not, showing decreases in performance over 12%.

On the other hand, B-MAXSAT-MP proves to be more

successful in this task, maintaining their ability to learn

pair multiplication at 99.4% and 93.7% in the triplet and

quadruplet experiments respectively. Unfortunately, this

achievement is obscured by the fact the GIN is able to gen-

eralize in all cases with scores over 99%.

We report a similar generalization behavior on the multipli-

cation task with MAXSAT-MP. In contrast to its recursive

version, the accuracy of B-MAXSAT-MP does not decrease

more than 3% for the pairs and triplet experiments and it

decreases slightly more, by 5.4%, when it is trained on four

numbers and tested on two.

E.2. Node Missing Data

As a second step, knowing that the R-MAXSAT-MP is ca-

pable to learn an arithmetic operation on binary numbers,

we move on to real datasets whose features are represented
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Training on 2, 3, 4 number set (addition, out-domain evaluation)

Tested on 2 → 3 2 → 4 3 → 2 3 → 4 4 → 2 4 → 3

R-MAXSAT-MP 1.0000(000) 0.9990(015) 0.8010(1783) 0.7875(1379) 0.6508(1529) 0.6438(1927)
B-MAXSAT-MP - - 0.9938(059) - 0.9379(578) 0.9709(247)

LSTM 0.6027(1481) 0.5337(1268) 0.5870(526) 0.4787(310) 0.5886(40) 0.6393(73)
GRU 0.6903(233) 0.6034(261) 0.5957(1301) 0.5332(1624) 0.5577(519) 0.6304(167)
GCN 0.6387(61) 0.6727(36) 0.5918(258) 0.6736(16) 0.6013(340) 0.6384(39)
GAT 0.6075(91) 0.5440(150) 0.6421(189) 0.6654(76) 0.7038(147) 0.6688(79)
GIN 0.9199(44) 0.8228(82) 1.0000(000) 0.9679(039) 0.9987(022) 0.9999(002)

Table 3. In this table we show the accuracy results for the Addition of 5-bit numbers, where we test the generalization (out-distribution),

where the models are trained on 2, 3, 4 number-sets. The best and second-best results (if overlaps statistically) are reported, where the top

results are also underlined. The accuracy is reported as in Table 1. The dash represents when B-MAXSAT-MP can not be used since the

number of operations is larger than K.

Training on 2, 3, 4 number sets (multiplication, out-distribution)

Tested on 2 → 3 2 → 4 3 → 2 3 → 4 4 → 2 4 → 3

R-MAXSAT-MP 0.9445(048) 0.9409(066) 0.7221(1060) 0.9013(543) 0.7884(39) 0.8544(1)
B-MAXSAT-MP - - 0.9306(016) - 0.9218(036) 0,9541(014)

LSTM 0.7654(334) 0.7462(367) 0.6514(134) 0.8001(171) 0.6556(313) 0.7676(443)
GRU 0.7539(288) 0.7707(489) 0.7672(178) 0.8699(167) 0.7063(568) 0.8037(230)
GCN 0.7160(16) 0.7909(4) 0.6116(127) 0.7903(7) 0.6128(73) 0.7121(28)
GAT 0.7426(174) 0.7226(440) 0.7122(78) 0.8499(33) 0.6963(183) 0.7891(45)
GIN 0.5290(59) 0.4970(68) 0.5945(256) 0.6138(45) 0.6278(43) 0.7165(25)

Table 4. In this table we show the accuracy results for the Multiplication with modulo of 5 bit numbers, where we test the generalization

(out-distribution), and where the models are trained on 2, 3, 4 number-sets. The best and second best results (if overlaps statistically) are

reported, where the top results are also underlined. The accuracy is reported as in Table 1.

in binary or one-hot encoding. We follow the assumption,

that there is some logical operation, similar to an arithmetic

operation, that can be performed on messages toward a spe-

cific node. This operation would help to discern newer or

missing node representations on a graph, for instance, to

find node labels when data is not available, from the neigh-

borhood information. Missing node data prediction consists

in predicting node features based on the information that

can be gathered from their neighborhood. It is a useful task

when the dataset is incomplete, but there is still information

enough to capture the missing data.

We set up our experiment on three datasets from the bench-

marks for graph learning TUDataset (Morris et al., 2020a)

MUTAG, Mutagenicity, and ENZYMES. For training, we

set 20% of all the nodes to be test nodes: their features are

set to zero, meaning that they are unknown. The rest of the

nodes are the training nodes. During each training iteration

(mini-batch), 10% of the training nodes are set to zero, and

their features are inferred at training time. We use a similar

architecture as in the previous experiment, composed of

one layer of message aggregation with our three models

and the baselines to gather neighborhood information; and

one linear layer for non-probabilistic outputs. The labels

of the nodes are one-hot encoded features. Therefore we

optimize the cross entropy loss for multiclass classification

and evaluate performance using classification accuracy after

applying a soft-max layer to the output.

E.2.1. RESULTS OF NODE MISSING FEATURE TASK

As shown in Table 5, the ability of the MAXSAT-MP to find

the correct label based on closest neighbor message passing

is similar to or slightly better that the other models.

On the MUTAG dataset, the Satnet achieves an accuracy

of 93.7% which is somewhat better than the results of the

baselines which reach 91.3%. This difference is more re-

markable in the case of the Mutagenicity dataset where the

difference is over 7% with respect to the best of the GNN

networks. The results achieved on the ENZYMES dataset

do not exhibit a particular improvement over the baselines.

E.3. Graph Classification

We further investigate the performance of the proposed

method for the task of graph classification. We consider

three datasets from the same graph learning benchmarks

(Morris et al., 2020a): MUTAG, Mutagenicity, and PRO-

TEINS. We additionally tested on the ZINC dataset (Ster-

ling and Irwin, 2015; Gómez-Bombarelli et al., 2018). The

first two contain graphs with one-hot encoded features. The

PROTEINS dataset consists of an integer number plus a one-

hot encoded three-class features. That integer number was

”clamped” between the values 0 and 31, the interval where
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Node Missing Data

MUTAG Mutagenicity ENZYMES

R-MAXSAT-MP 0.9372(031) 0.8968(009) 0.7123(178)
*B-MAXSAT-MP 0.9201(22) 0.8221(18) 0.7266(045)

RA-MAXSAT-MP 0.9365(002) 0.8962(010) 0.7269(046)

GCN 0.9165(17) 0.7637(92) 0.7164(36)
GAT 0.9086(40) 0.8182(1) 0.7202(43)
GIN 0.9134(109) 0.8263(8) 0.7152(41)

Table 5. The accuracy performance in recovering the missing node

features on the molecular datasets. The best and second best results

(if overlaps statistically) are reported, where the top results are also

underlined. The accuracy is reported as in Table 1.

most of the values lie, and subsequently was converted into

a binary 5-bit vector and was eventually concatenated to the

rest of the features.

All those datasets have a global graph label with two differ-

ent classes. For training and metric evaluation, we split them

into a training set (80%) and a test set (20%) respectively.

The architecture for our MaxSAT-based message passing

consisted of 2 layers of message aggregation with RA-

MAXSAT-MP, and B-MAXSAT-MP. A global pooling

using the max function, which should resemble an OR gate.

One linear dense layer followed by a Sigmoid function, for

probabilistic outputs. The baselines (GCN, GAT, and GIN)

use the same architecture. We train our models using Adam

(Kingma and Ba, 2014) optimizer and the binary cross en-

tropy loss (Zhang and Sabuncu, 2018). For the Zinc dataset

we additional compared with the Graph Transformer. We

also evaluate our results using the accuracy metric.

E.3.1. RESULTS OF GRAPH CLASSIFICATION TASK

In complex tasks such as graph classification where multiple

aggregations are involved, the MaxSAT-based models are

capable of performing similarly to the baselines. The results

are shown in Table 2. We report the performance of B-

MAXSAT-MP, although they are not an adequate model for

performing aggregation, especially for datasets such as PRO-

TEINS, where the maximum graph degree is considerably

larger than the other datasets. While for the ZINC dataset,

our MaxSAT model shows lower performance, we see that

our models outperform on average the other baselines on

the MUTAG dataset reaching 92.1% in accuracy, while in

the others the results overlap. This demonstrates that graph

classification can be modeled with SAT solvers where an

internal logical representation of the nodes is capable of

classifying the graphs.

Graph Classification

MUTAG Mutagenicity PROTEINS ZINC

B-MAXSAT-MP 0.9211(456) 0.7949(123) - -

RA-MAXSAT-MP 0.9035(152) 0.8078(130) 0.7227(262) 0.8690 (0.0206)

GCN 0.7632(912) 0.7919(131) 0.7047(324) 0.9025 (0.0035)

GAT 0.7979(405) 0.7905(87) 0.6811(419) 0.9028 (0.0055)

GIN 0.8502(402) 0.8150(149) 0.6922(475) 0.9114 (0.0036)

Graph Transformer - - - 0.9012 (0.0023)

Table 6. Standard deviation is reported with the last n position.

The best and second-best results (if it overlaps statistically) are

reported, where the top results are also underlined. The accuracy

is reported as in Table 1.

F. Logic expressive power

We model the relationship of nodes’ (or edges’ ) features

in the neighborhood of a node of a graph. When we use

multiple layers, we can extend the scope of the learned rules

to a larger number of features. While we model extended

logic rules over the features of a graph, we do know if we

cover all possible logic rules. This is left for future work.

G. Experimental details

G.1. Addition

For the addition experiments, we set the number of bits

to 5, thus the total number of variables is n = 15, where

two numbers are used as input and one variable is the out-

put. We set the number of auxiliary variables (Wang et al.,

2019) to aux = 12, while the number of clauses m = 40.

The number of applications of the MAXSAT depends on

the experiment N = 1, 2, 3. The same network is applied

recursively. With the B-MAXSAT-MP, the missing input

variables are set to zero.

G.2. Multiplication

For the multiplication experiments, we set the number of

bits to 5, thus the total number of variables is n = 15,

where two numbers are used as input and one variable is

the output. We set the number of auxiliary variables (Wang

et al., 2019) to aux = 16, while the number of clauses m =
88. The number of applications of the MAXSAT depends

on the experiment N = 1, 2, 3. The same network is applied

recursively. With the B-MAXSAT-MP, the missing input

variables are set to zero, while aux = 100,m = 100, and

n = 5 + 5N .

G.3. Graph Classification

For the Graph Classification experiments the total number

of variables is n, the number of auxiliary variables (Wang

et al., 2019) aux, and the number of clauses m, the number

of applications of the MAXSAT depends on the dataset,
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for Mutagenicity N = 5, aux = 20,m = 20, n = 42, for

PROTEINS N = 26, aux = 12,m = [12, 20], n = 24 and

for MUTAG N = 28, aux = 12,m = [24, 24], n = 27.

The same network is applied recursively as an aggregation

function, while we use 2 layers in the experiments. With

the B-MAXSAT-MP, the missing input variables are set

to zero. GCN has a similar architecture with two layers

and 64 channels, while GAT has 16 channels, and GIN

has 7 channels. An additional network generates the graph

classification from the node features. For training, we use

ADAM (Kingma and Ba, 2014) gradient update and lr =
1e−3, while the training loss function is the binary cross

entropy loss (Zhang and Sabuncu, 2018).

G.4. Node missing features

As for the Graph Classification experiments, also for the

Node missing features experiments the total number of vari-

ables is n, the number of auxiliary variables (Wang et al.,

2019) aux, the number of clauses m, the number of applica-

tion of the MAXSAT depends on the dataset, for Mutagenic-

ity N = 5, aux = 20,m = 20, n = 42, for PROTEINS

N = 26, aux = 12,m = [12, 20], n = 24 and for MUTAG

N = 28, aux = 12,m = [24, 24], n = 27. The same net-

work is applied recursively as an aggregation function, while

we use 2 layers in the experiments. With the B-MAXSAT-

MP, the missing input variables are set to zero. GCN has a

similar architecture with two layers and 64 channels, while

GAT has 16 channels, and GIN has 7 channels. For training,

we use ADAM (Kingma and Ba, 2014) gradient update and

lr = 1e−3, while the training loss function is the binary

cross entropy loss. The difference with respect to the graph

classification is that we do not have a graph pooling func-

tion, but we predict the node features for the missing node

features directly.

H. Differentiable Satisfiability Network

H.1. MAX-SAT Problem

In Maximal Satisfiability Problems (MAX-SAT), we are

interested to find the assignment of n binary variables xi ∈
{−1, 1}, i = 1, . . . , n concerning m given clauses, or

max
x∈{−1,1}n

∑

j∈[m]

∨i∈[n]1sjixi>0 (7)

where sji ∈ {−1, 0,+1} are the clauses of the MAX-SAT

problem. If sji = 0 the variable i is ignored in the j clause,

while xi = +1 is associated with a true value and xi = −1
to a false value, thus sji = −1 negates the variable xi.

MAX-SAT is one of the extensions of the Satisfiability

(SAT) problem, where all the clauses need to be true. Re-

laxing the SAT is useful when we want to find the closest

solution that satisfies most of the clauses.

H.2. SAT-Net: differentiable MAX-SAT relaxation via

Semi-definitive programming (SDP)

The problem in Equation 7 can be relaxed into a Semi-

Definitive Programming (SDP) problem (?Wang and Kolter,

2019; Wang et al., 2017)

min
V ∈Rk×(n+1)

⟨STS, V TV ⟩ s.t. ∥vi∥ = 1, ∀i ∈ {⊤, 1, . . . , n},
(8)

where for each input variable xi is associated with uni-

tary vector vi ∈ R
K of dimension k, with some k >√

2n (Pataki, 1998), with k is the size of the embed-

ded space, while n is the number of variables. The

variable v⊤ is used as a reference and is associated

with true logic value. The normalized matrix S =
[s⊤, s1, . . . , sn]/ diag(1/

√

4|sj |) ∈ R
m×(n+1) encodes

the clauses, while the unitary matrix V ∈ R
K×(k+1) en-

codes the variables.

Reading the logic variables Once we solve the relaxed

problem, we need to compute the logic variables from the

vectors that minimize Equation 8.

P (xi = 1) =
1

π
arccos (−vTi v⊤)

The probability measures the angle between the vector asso-

ciated with the true value and the vector associated with the

i variable, indeed vTi v⊤ = cos(πxi). If we want to recover

the discrete value, we compute the sign of the probability,

i.e. xi = sign(P (xi = 1)).

Transforming the logic variables to the relaxed vectors

We generate the vectors from the logical values as vi =
− cos(πxi)v⊤ + sin(πxi)P⊤v

rand
i , where Pi = IK − viv

T
i

is the projection matrix on the vector vi, while vrand
i is a

random unit vector.

Solving the SDP relaxation The solution of Equation 8

is given as the fix point (Wang et al., 2019)

vi = − gi
∥gi∥

(9)

where gi = V ST si − ∥si∥2vi = V ST si − vis
T
i si.

Auxiliary variables As noted in (Wang et al., 2019), ad-

ditional variables (aux) are necessary to help the SDP re-

laxation to converge to the minimal point. These variables

do not have a specific meaning, but we notice that they are

akin to reformation using additional variables of the original

problem, this reformulation, while not changing the original

truth table, helps the underlying minimization procedure to

converge.
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Algorithm 1 Forward pass algorithm: coordinate descent

Input: VI , where I is the set of input variables

Output: VO, where O is the set of output variables

1: G = V ST

2: while not converged do

3: for i ∈ O do

4: gi = V ST si − ∥si∥2vi
5: vi = − gi

∥gi∥
{As described in section subsec-

tion H.2}
6: G = G+ (vi − vprev

i )sTi
7: end for

8: end while

Computational complexity of solving SDP relaxation

The complexity of the algorithm depends on the solution of

Equation 8. As shown in (Wang et al., 2019) the solution

of the SDP relaxation can be computed using coordinate

descent and the integration as differentiable is implemented

using two separated, but similar algorithms Alg.1 and Alg.2

for the forward and backward passes.

Since the algorithms require only rank-one updates, the

overall complexity of the two algorithms is O(Tkmn), with

k the expanded dimension, n the number of variables and

m the number of clauses. At the same time, T represents

the number of iterations of the algorithm. During the exper-

iments, T is set to a small number, e.g. T = 40.

Computational complexity of solving SDP relaxation on

graphs When solving MAXSAT-MP, we need to solve

a MAXSAT problem for each node and for all the neigh-

bours. The computational complexity of in this scenario is

O(TkmnNML), where N is the number of nodes, M is

the number of edges, and L number of layers. The batch

version of MAXSAT-MP has the same time complexity,

but it is more stable during training since the MAXSAT

modules are not connected in series but in parallel.

Algorithm 2 Backward pass algorithm: coordinate descent

Input: ∇OL, where O is the set of output variables

Output: ∇IL, where I is the set of input variables

1: UO = 0, F = UOS
T
O = 0

2: while not converged do

3: for i ∈ O do

4: ∇gi = Fsi − ∥si∥2ui − ∂L/∂vi
5: ui = −Pi∇gi/∥gi∥
6: F = F + (ui − uprev

i )sTi
7: end for

8: end while

(a)

(b)

Figure 5. Graph (a) and graph (b) are not distinguishable for a

standard GNN or 1-WL test.

I. Motivational Example: 1-WL Isomorphism

Test

In Figure 5, we show two graphs that can not be distin-

guished according to the 1-WL isomorphism test and, con-

sequently, by a standard GNN. Indeed the neighborhood of

the red and green nodes in both graphs is the same, so the

aggregation function will return the same result. If we are

able to propagate the multi-hop distance in binary format,

then we can reason on the relative distance of nodes. In a

simplified example, consider the adjacent matrix A of the

two networks, we then thus use the one-hop and two-hop

adjacent matrices Aa, A
2
a of the first graph (Equation 10)

and Ab, A
2
b of the second graph (Equation 11). We can use

the rows of the two-hop adjacent matrix to reason on the

node contribution. For example, the node 1 (as highlighted

in Equation 10) has one entry equal to 2 and three equal to

1, while in the second graph (as highlighted in Equation 11),

two entries equal to 2 and one equal to 1. We can thus

use this information to classify the node or the graph. A

standard GNN would not be able to count the entries.

Aa =















0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 1 1 0
0 1 1 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0















, A2
a =















2 0 1 1 1 0
0 2 1 1 0 1
1 1 3 0 1 1
1 1 0 3 1 1
1 0 1 1 2 0
0 1 1 1 0 2















(10)
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Ab =















0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0
0 1 1 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0















, A2
b =















2 0 0 2 1 0
0 2 2 0 0 1
0 2 3 0 0 2
2 0 0 3 2 0
1 0 0 2 2 0
0 1 2 0 0 2















(11)

J. Zinc Experiments

We propose also experiments with the Zinc dataset, where

we model the regression tasks as a classification into 5
classes representing different intervals defined by the in-

tervals of probabilities [0.7, 0.3, 0.1, .01] and train on the

first 12′000 samples. We additional compared with a graph

transformer model (Shi et al., 2021). For this dataset, the

GIN network provides higher accuracy.

Graph Classification

ZINC

B-MAXSAT-MP 0.8690(0206)

Graph Transformer 0.9012(0023)

GCN 0.9025(0035)

GAT 0.9028(0055)

GIN 0.9114(0036)

Table 7. Standard deviation is reported with the last n position.

The best and second-best results (if it overlaps statistically) are

reported, where the top results are also underlined. The accuracy

is reported as in Table 1.
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